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Last time
• Tikhonov regularized denoising

Today
• Total Variation (TV) regularized denoising



Tikhonov regularization
Let f 2 L2(Zn) be the noisy signal. Tikhonov regularized denoising minimizes the
energy E : L2(Zn) ! L2(Zn) defined by

(1) E(u) =
n�1X

k=0

|u(k)� f(k)|2

| {z }
Data Fidelity

+�
n�1X

k=0

|u(k)� u(k � 1)|2

| {z }
Regularizer

,

where � � 0 is a parameter.

Main ideas:

• Data fidelity keeps the denoised signal close to the noisy signal f .

• Regularizer removes the noise.



Tikhonov regularization
We recall the backward difference r� : L2(Zn) ! L2(Zn) is defined by

r�u(k) = u(k)� u(k � 1),

while the forward difference is r+u(k) = u(k+ 1)� u(k). The discrete Laplacian is

�u = r+r�u = r�r+u.

In terms of this notation, the Tikhonov regularized denoising problem is

(2) min
u2L2(Zn)

E(u) = ku� fk2 + �kr�uk2.

Theorem 1. Let � � 0 and f 2 L2(Zn). Then there exists a unique solution
u 2 L2(Zn) of the optimization problem (2). Furthermore, the minimizer u is also
characterized as the unique solution of the Euler-Lagrange equation

(3) u� ��u = f.



Tikhonov regularization
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(b) Tikhonov denoising



Total Variation Regularization
Total Variation (TV) regularization replaces the squared difference by the absolute
differences in the regularizer.

(4) E(u) =
1

2

n�1X

k=0

|u(k)� f(k)|2 + �
n�1X

k=0

|u(k)� u(k � 1)|.

• TV regularization is better at preserving edges (sharp changes) in the signal.

• The analysis is more involved, since the denosing equation is nonlinear.



Variational Regularized Denoising
We will proceed in generality, studying regularizers of the form

(5)
n�1X

k=0

�(u(k)� u(k � 1)) =
n�1X

k=0

�(r�u(k)) = k�(r�u)k1,

where � : R ! R is a twice continuously differentiable, convex, and even function
satisfying �(0) = 0.

• Tikhonov is �(t) = t2

• Total Variation (TV) is �(t) = |t|.

• We will approximate TV by �(t) =
p
t2 + "2.



Convexity
We say � convex if �00 � 0. We also assumed � is even and �(0) = 0.

The following properties hold:

(i) �0 is increasing.

(ii) Since � is even and �(0) = 0 we have �0(0) = 0.

(iii) �0(t)  0 for t < 0 and �0(t) � 0 for t > 0.

(iv) For any t, s 2 R we have

(�0(t)� �0(s))(t� s) � 0.



Total Variation Denoising
The Total Variation (TV) regularized denoising function is

(6) E�(u) =
1

2
ku� fk2 + �k�(r�u)k1.

The denoised signal u is found by minimizing E�.

Note: We will work with real-value signals in this lecture, for simplicity. We denote
by L2(Zn;R) the subspace of L2(Zn) consisting of f : Zn ! R.



Existence of a minimizer
Lemma 2. For any f 2 L2(Zn;R) and � � 0, there exists u 2 L2(Zn;R) minimizing
E�, i.e., E�(u)  E�(w) for all w 2 L2(Zn;R). Furthermore, u satisfies

(7) min
Zn

f  u  max
Zn

f.

The proof is based on a simple fact: A continuous function on a closed and bounded
subset of Rn attains its minimum value.

• f(x) = e�x does not have a minimum value on R (unbounded set).

• f(x) = x2 for x 6= 0 and f(0) = 1 does not have a minimum value (discontin-
uous function).

• f(x) = x does not have a minimum value on (0, 1) (open set).















Euler-Lagrange equation
Lemma 3. Let f 2 L2(Zn;R) and � � 0. Then the minimizer u 2 L2(Zn;R) of E�

is unique and is characterized as the unique solution of the Euler-Lagrange equation

(8) u� �r+�0(r�u) = f.

Recall

Proposition 4. For all u, v 2 L2(Zn) the following hold.

(i) hr�u, vi = �hu,r+vi

(ii) hr+u, vi = �hu,r�vi

(iii) h�u, vi = hu,�vi

















The gradient of E�

The gradient of E� can be interpreted as

rE�(u) = u� �r+�0(r�u)� f.





Gradient Descent
We can minimize E� by gradient descent

uj+1 = uj � dtrE�(u) = uj � dt (uj � �r+�0(r�uj)� f)

Time step restriction: For stability and convergence of the gradient descent iteration,
we have a time step restriction

dt  2

1 + 4C��
,

where C� = maxt2R �00(t). This follows from a Von Nuemann analysis using the
DFT.











Total Variation Denoising
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Convergence of Gradient Descent
Theorem 5. Let f 2 L2(Zn;R) and � � 0. Let uj be the iterations of the gradient
descent scheme for minimizing E� and let u be the solution of (8) (the minimizer
of E�). Assume that the time step dt satisfies

(9) dt <
2

1 + 16C2
��

2
.

Then uj converges to u as j ! 1, and the difference uj � u satisifes

(10) kuj+1 � uk2  µkuj � uk2

where

(11) µ := (1� dt)2 + 16C2
�dt

2�2 < 1.

















Nonlinear stability at larger time steps
We set " = 10�10 and the CFL condition is dt ⇠ 5⇥ 10�10.

Figures are dt = 0.01, 0.05, 0.1, 0.5.
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Local nonlinear stability
A heuristic local version of the Von Neumann analysis for "-regularzied TV shows
that the scheme is stable wherever the gradient of u satisfies

|r�u|3 � 4�"2dt

2� dt
.

Thus, oscillations cannot grow infinitely large, since the scheme is stable for larger
gradients.













Total Variation denoising (.ipynb)

https://colab.research.google.com/drive/1z5pHXOS-G88MGx7gPJEzM3Urp-CGtuk0?usp=sharing

