Mathematics of Image and Data Analysis Math 5467

Lecture 13: TV Denoising

Instructor: Jeff Calder Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

Last time

• Tikhonov regularized denoising

Today

• Total Variation (TV) regularized denoising

Tikhonov regularization

Let $f \in L^2(\mathbb{Z}_n)$ be the noisy signal. Tikhonov regularized denoising minimizes the energy $E: L^2(\mathbb{Z}_n) \to L^2(\mathbb{Z}_n)$ defined by

(1)
$$E(u) = \underbrace{\sum_{k=0}^{n-1} |u(k) - f(k)|^2}_{\text{Data Fidelity}} + \lambda \underbrace{\sum_{k=0}^{n-1} |u(k) - u(k-1)|^2}_{\text{Regularizer}},$$

where $\lambda \geq 0$ is a parameter.

Main ideas:

- Data fidelity keeps the denoised signal close to the noisy signal f.
- Regularizer removes the noise.

Tikhonov regularization

We recall the backward difference $\nabla^- : L^2(\mathbb{Z}_n) \to L^2(\mathbb{Z}_n)$ is defined by

$$\nabla^{-}u(k) = u(k) - u(k-1),$$

while the forward difference is $\nabla^+ u(k) = u(k+1) - u(k)$. The discrete Laplacian is

$$\Delta u = \nabla^+ \nabla^- u = \nabla^- \nabla^+ u.$$

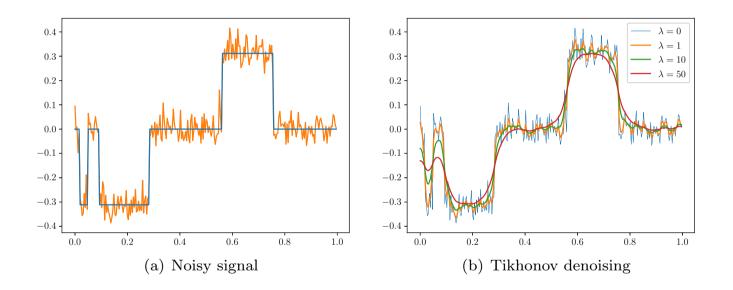
In terms of this notation, the Tikhonov regularized denoising problem is

(2)
$$\min_{u \in L^2(\mathbb{Z}_n)} E(u) = \|u - f\|^2 + \lambda \|\nabla^- u\|^2.$$

Theorem 1. Let $\lambda \geq 0$ and $f \in L^2(\mathbb{Z}_n)$. Then there exists a unique solution $u \in L^2(\mathbb{Z}_n)$ of the optimization problem (2). Furthermore, the minimizer u is also characterized as the unique solution of the Euler-Lagrange equation

(3)
$$u - \lambda \Delta u = f. \qquad \forall F = \mathcal{O}$$

Tikhonov regularization



Total Variation Regularization

Total Variation (TV) regularization replaces the squared difference by the absolute differences in the regularizer.

(4)
$$E(u) = \frac{1}{2} \sum_{k=0}^{n-1} |u(k) - f(k)|^2 + \lambda \sum_{k=0}^{n-1} |u(k) - u(k-1)|.$$

- TV regularization is better at preserving edges (sharp changes) in the signal.
- The analysis is more involved, since the denosing equation is *nonlinear*.

Variational Regularized Denoising

We will proceed in generality, studying regularizers of the form

(5)
$$\sum_{k=0}^{n-1} \Phi(u(k) - u(k-1)) = \sum_{k=0}^{n-1} \Phi(\nabla^{-}u(k)) = \|\Phi(\nabla^{-}u)\|_{1},$$

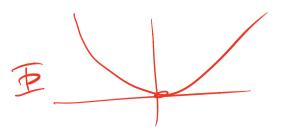
where $\Phi : \mathbb{R} \to \mathbb{R}$ is a twice continuously differentiable, convex, and even function satisfying $\Phi(0) = 0$.

121

 $||x||_2 = \sum_{k=0}^{\infty} |x(k)|$

Resumbing Af

- Tikhonov is $\Phi(t) = t^2$
- Total Variation (TV) is $\Phi(t) = |t|$.
- We will approximate TV by $\Phi(t) = \sqrt{t^2 + \varepsilon^2}$.



Convexity

We say Φ convex if $\Phi'' \ge 0$. We also assumed Φ is even and $\Phi(0) = 0$.

The following properties hold:

- (i) Φ' is increasing.
- (ii) Since Φ is even and $\Phi(0) = 0$ we have $\Phi'(0) = 0$.
- (iii) $\Phi'(t) \leq 0$ for t < 0 and $\Phi'(t) \geq 0$ for t > 0. \longrightarrow $2 \circ \mathcal{O}$

(iv) For any $t, s \in \mathbb{R}$ we have

$$(\Phi'(t) - \Phi'(s))(t-s) \ge 0.$$
 (monstonicity)

 $\overline{\Phi}'(0) = \lim \overline{\Phi}(h) - \overline{\Phi}(-h) = 0$

Protect: If tiss then
$$\underline{F}'(t) - \underline{F}'(s) \ge 0$$
 and $t \le 0$
If t < 5 then $\underline{F}'(t) - \underline{F}(s) \le 0$ and $t - s \le 0$
Then $\underline{F}'(t) - \underline{F}(s) \le 0$ and $t - s \le 0$

Total Variation Denoising

The Total Variation (TV) regularized denoising function is

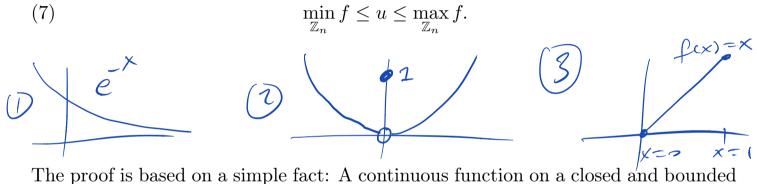
(6)
$$E_{\Phi}(u) = \frac{1}{2} \|u - f\|^2 + \lambda \|\Phi(\nabla^{-}u)\|_1.$$

The denoised signal u is found by minimizing E_{Φ} .

Note: We will work with real-value signals in this lecture, for simplicity. We denote by $L^2(\mathbb{Z}_n; \mathbb{R})$ the subspace of $L^2(\mathbb{Z}_n)$ consisting of $f : \mathbb{Z}_n \to \mathbb{R}$.

Existence of a minimizer

Lemma 2. For any $f \in L^2(\mathbb{Z}_n; \mathbb{R})$ and $\lambda \ge 0$, there exists $u \in L^2(\mathbb{Z}_n; \mathbb{R})$ minimizing E_{Φ} , i.e., $E_{\Phi}(u) \le E_{\Phi}(w)$ for all $w \in L^2(\mathbb{Z}_n; \mathbb{R})$. Furthermore, u satisfies



subset of \mathbb{R}^n attains its minimum value.

- $f(x) = e^{-x}$ does not have a minimum value on \mathbb{R} (unbounded set).
- $f(x) = x^2$ for $x \neq 0$ and f(0) = 1 does not have a minimum value (discontinuous function).
- f(x) = x does not have a minimum value on (0, 1) (open set).

Proof: Define
$$T(x) = \begin{cases} f_{\min} , if x \in f_{\min} \\ x , if f_{\min} \leq x \leq f_{\max} \\ f_{\max} = min f \\ f_{\max} = max f \\ f_{\max} = max f \\ f_{\max} = f_{\max} f_{\max} f_{\max} f_{\max} f_{\max} f_{\max} f_{\max} f_{\max} f_{\min} \\ f_{\min} f_{\min}$$

$$= (\max_{\mathbb{R}} T') \int_{Y}^{X} 2 dt$$

$$= (\max_{\mathbb{R}} T') \int_{Y}^{X} 2 dt$$

$$= (\max_{\mathbb{R}} T') \int_{Y}^{Y} 2 dt$$

$$= 1$$
Let $u \in l^{2}(\mathbb{R}_{n};\mathbb{R})$ and define $w(k) = T(u(k))$

$$C(\max) : E_{\overline{P}}(w) \leq E_{\overline{P}}(w)$$

$$E_{\overline{P}}(w) = \frac{1}{2} \sum_{k=0}^{\infty} |w(k) - f(k)|^{2} + \lambda \sum_{k=0}^{\infty} |w(k) - w(k)|^{2}$$

$$|v(k) - f(k)|^{2} = |T(u(k)) - T(f(k))|^{2} \leq |u(k) - f(k)|^{2}$$

Works for T T(f)=f. Lipsohitzvess of T |w(k) - w(k-i)| = |T(w(k)) - T(w(k-i))| $(T_{i}) = \sum_{i=1}^{n} |w(k) - w(k-i)|$ This means we can minimize Ez our The closed and pointed set M={u+C(RujTR): fmin EUCK) E fmax} frall k}

(*) For general
$$\overline{\Phi}$$
: (Recall $W(k) = T(u(k))$)
 $\overline{\Phi}(\overline{\nabla}W(k)) = \overline{\Phi}(W(k) - W(k-1))$
 $\overline{\Phi}even = \overline{\Phi}(|W(k) - W(k-1)|)$
 $\overline{\Phi}(k) \text{ is increasing } \overline{\Xi}(|W(k) - W(k-1)|)$
 $\overline{\Phi}(k) \text{ is increasing } \overline{\Xi}(|W(k) - W(k-1)|)$
 $\overline{\Phi}(k) = \overline{\Phi}(|W(k) - W(k-1)|) = \overline{\Phi}(\overline{\nabla}W(k)).$

Euler-Lagrange equation

Lemma 3. Let $f \in L^2(\mathbb{Z}_n; \mathbb{R})$ and $\lambda \geq 0$. Then the minimizer $u \in L^2(\mathbb{Z}_n; \mathbb{R})$ of E_{Φ} is unique and is characterized as the unique solution of the Euler-Lagrange equation

(8)
$$u - \lambda \nabla^+ \Phi'(\nabla^- u) = f$$

Tikhonov:
$$n - \lambda D n = f (\overline{\Psi}(t) = \frac{1}{2}t^{2})$$

 $\overline{\Psi}'(t) = t$

Recall

Proposition 4. For all $u, v \in L^2(\mathbb{Z}_n)$ the following hold. $(i) \langle \nabla^{-}u, v \rangle = -\langle u, \nabla^{+}v \rangle$ $(ii) \langle \nabla^{+}u, v \rangle = -\langle u, \nabla^{-}v \rangle$ $(iii) \langle \Delta u, v \rangle = \langle u, \Delta v \rangle$

(iii)
$$\langle \Delta u, v \rangle = \langle u, \Delta v \rangle$$

Proof: let u be aminimizer of E_{Ξ} . Let $v \in l^2(\mathbb{Z}_n; \mathbb{R})$ and set $e(t) = E_{\Xi}(u + tv)$.

Since $e(o) = E_{p}(w) \leq E_{q}(u+tv) = e(t)$ e has a minimizer at t=0. Hence $0 = e'(o) = \frac{1}{2t} \begin{bmatrix} E_{p}(u+tv) \end{bmatrix}$.

e(t) = E(u + tv)

$$= \frac{1}{2} ||u + tv - f||^{2} + \lambda \sum_{k=0}^{n-1} \mathbb{E}(\nabla u(k) + t \nabla v(k))$$

$$= \frac{1}{2} (||u - f||^{2} + 2t (|u - f_{1}v|^{2} + t^{2} ||v||^{2})$$

$$e'(t) = \langle u - f_{1}v \rangle + \frac{1}{2} + \frac{1}{2} \sqrt{2} v \text{ then } t = 0.$$

$$+ \lambda \sum_{k=0}^{n-1} \mathbb{D}' (\nabla u(k) + \frac{1}{2} \nabla v(k)) \nabla v(k)$$

 $D = e'(0) = \langle n - f, v \rangle + \lambda \langle \overline{\Phi}'(\nabla u), \overline{\nabla} v \rangle$ $= \langle n - f, v \rangle - \lambda \langle \overline{\nabla}^{\dagger} \overline{\Phi}'(\nabla u), v \rangle$

 $Gateaux = \langle u - \lambda \nabla^{\dagger} \overline{\Xi}'(\nabla u) - f, v \rangle$. $\frac{d}{dt} \begin{bmatrix} E_{\mathbf{F}}(u+tv) = (u-\lambda \nabla^{\dagger} \mathbf{E}'(\nabla u) - \mathbf{f}, v \rangle = 0 \\ t = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = (u-\lambda \nabla^{\dagger} \mathbf{E}'(\nabla u) - \mathbf{f}, v \rangle = 0 \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \end{bmatrix} \\ T = \mathbf{f} \begin{bmatrix} E_{\mathbf{F}}(u) = \mathbf{f} \end{bmatrix} \\ T = \mathbf$ Since this holds for all v, choose $V = \nabla E_{p}(n) + set || \nabla E_{p}(n) ||^{2} = 0$ $\Gamma \quad \nabla E_{\underline{p}}(u) = \mathcal{O}.$

Aside: It f: R-> R, d f(x+tv)= Df(x).V

be now show that solutions at $D \quad u - \lambda \mathcal{P}^{\dagger} \mathcal{P}'(\mathcal{P}^{-}u) = f$ ave unique. Let v be another Solution $V - \lambda \nabla^{\dagger} \Xi'(\nabla v) = f$

Diff of D - O $u - v - \lambda \nabla^{+} (\Xi'(\nabla u) - \Xi'(\nabla v)) = O$

Take inner product with h-V on both Sides's $(\mu-\nu-\lambda\nabla^{\dagger}(\underline{\pi}'(\nabla\nu)-\underline{\pi}'(\nabla\nu)), \nu-\nu)=0$ $\|\mu - \nu\|^2 - \lambda \langle \mathcal{D}^{\dagger}(\bar{\mathfrak{T}}(\bar{\mathfrak{T}})) - \bar{\mathfrak{T}}'(\bar{\mathfrak{T}})\rangle, \mu - \nu \rangle = 0$ $P^{\mu} = 2T$ $\|u-v\|'+\lambda\left(\Xi'(\nabla u)-\Xi'(\nabla v),\nabla u-\nabla v\right)c$ $(\underline{F}'(t) - \underline{E}'(s))(t-s) \ge 0$ due to convexity of I

=> both terms above are 20 and they sum to Zero, 50 both vanish => U=V. TA

The gradient of E_{Φ}

The gradient of E_{Φ} can be interpreted as

$$\nabla E_{\Phi}(u) = u - \lambda \nabla^+ \Phi'(\nabla^- u) - f.$$

$$\frac{d}{dt} = E_{\overline{x}}(u+tv) = \langle \nabla E_{\overline{x}}(u), v \rangle$$

$$If \quad f: \mathbb{R}^{n} \to \mathbb{R} \quad hen \quad x \quad v$$

$$x, v \in \mathbb{R}^{n} \quad \frac{d}{dt} = f(x+tv) = \nabla f(x) \cdot v = \langle \nabla f, v \rangle$$

Gradient Descent

We can minimize E_{Φ} by gradient descent

$$(GD) \quad u_{j+1} = u_j - dt \nabla E_{\Phi}(u_j) = u_j - dt (u_j - \lambda \nabla^+ \Phi' (\nabla^- u_j) - f)$$

$$C \lambda OU \quad \text{Linear approx.}$$

Time step restriction: For stability and convergence of the gradient descent iteration, we have a time step restriction

$$dt \le \frac{2}{1 + 4C_{\Phi}\lambda},$$

where $C_{\Phi} = \max_{t \in \mathbb{R}} \Phi''(t)$. This follows from a Von Nuemann analysis using the DFT.

Von Neumann Arabysis: D Linearise the 6D equation. $\overline{P}'(t) - \overline{P}(s) = \int_{s}^{t} \overline{P}''(\tau) J \tau$ $\overline{T} \overline{P}''(t) \cdot (t-s)$

 $C_{\underline{F}} = \max_{t \in \mathbb{R}} \overline{\Phi}''(t)$ Set

and replace

 $\nabla^{\dagger} \overline{\Xi}'(\nabla u(k)) = \overline{\Xi}'(\nabla u(k+1)) - \overline{\Xi}'(\nabla u(k))$ $\simeq C_{\overline{D}}(\overline{\mathcal{T}}_{u(k+1)} - \overline{\mathcal{T}}_{u(k)}).$ $= C_{\overline{a}} D^{\dagger} D^{\dagger} u(k) = C_{\overline{a}} \Delta u$

Linearized eq= $U_{j+1} = u_j - Jt (u_j - JC_F \Delta u_j - f).$ Take DFT on both sides

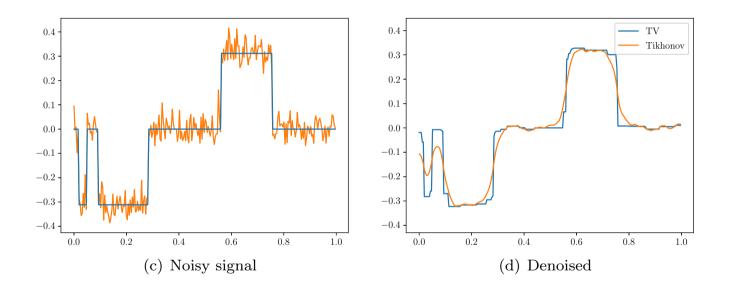
 $Du_{j+1} = (1 - dt)Du_j + \lambda C_{\overline{z}}dt D(Du_j) + JtDf$

 $D(Du_j)(k) = 2(cos(2\pi t in) - 1) Du_j(k).$ λk $Du_{j+1} = (1 - dt + 2\lambda C_{\overline{\Phi}} dt (cos(2\pi t in) - 1)) Du_j$ $\chi = frequency$

 $Du_{j+1}(k) = \lambda_k Du_j(k)$ induction $Du_j(k) = \lambda_k Du_o(k)$

the scheme to be stable need For VR; -I SAK SI 2-2 $| 2\lambda_{k} = | - J + + 2\lambda C_{\overline{z}} J + (C_{\gamma}(2\pi k(n) - 1))$ $2 l - Jt - 4\lambda C_{\overline{E}}Jt$ brant 2 - 150 $1 - dt(1 + 4\lambda C_{\mathbb{P}}) = -1$ $(=) \left[\begin{array}{c} J + \zeta \\ I + 4 \end{array} \right] (=) \\ (=$

Total Variation Denoising



Convergence of Gradient Descent

Theorem 5. Let $f \in L^2(\mathbb{Z}_n; \mathbb{R})$ and $\lambda \geq 0$. Let u_i be the iterations of the gradient descent scheme for minimizing E_{Φ} and let u be the solution of (8) (the minimizer of E_{Φ}). Assume that the time step dt satisfies

(9)
$$dt < \frac{2}{1+16C_{\Phi}^2\lambda^2}.$$

Then u_i converges to u as $j \to \infty$, and the difference $u_i - u$ satisfies

(10)
where
(11)

$$\begin{aligned} \|u_{j+1} - u\|^2 \le \mu \|u_j - u\|^2 \\ \|e_j + \| \|e_j \| \\ \mu := (1 - dt)^2 + 16C_{\Phi}^2 dt^2 \lambda^2 < 1. \end{aligned}$$

inear onversence ate p.

 $\mu - \lambda \nabla^{\dagger} \overline{\mathbb{P}}'(\nabla \mu) = f$

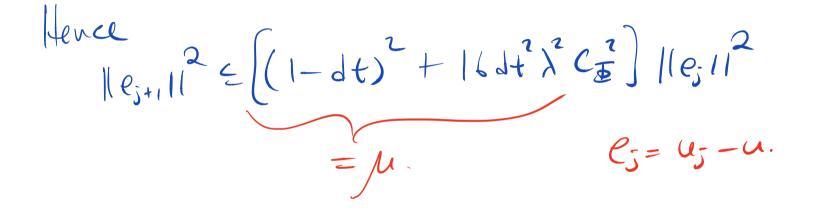
Proof: Write GD as (D $U_{j+1} = (1 - J_{j}^2) U_{j}^2$ $+ dt \lambda \nabla^{\dagger} \overline{E}'(\nabla u_{j}) + dt f$ and write (8) as O $U = (I - Jt)u + dt \lambda D^{\dagger} \overline{D}'(\overline{D}u) + dt f$ Write e; = u; -u. Subtract @ from D: $e_{j+1} \equiv (I-dt) e_j + dt \lambda \nabla^+ (\overline{\mathfrak{T}}'(\overline{\mathfrak{T}}'_{j}) - \overline{\mathfrak{T}}'(\overline{\mathfrak{T}}'_{j})).$ Take III on populsides 11f+91i2= 11f1i2+1191i2+2 (f,s)

$$\begin{split} \|e_{j+1}\|^{2} &= \|(1-Jt)e_{j} + dt\lambda\nabla^{+}(\Xi'(\nabla u_{j}) - \Xi'(\nabla u))\|^{2} \\ &= (1-dt)^{2}\|e_{j}\|^{2} + dt^{2}\lambda^{2}\|\nabla^{+}(\Xi'(\nabla u_{j}) - \Xi'(\nabla u))\|^{2} \\ &+ 2dt(1-dt)\lambda\langle\nabla^{+}(\Xi'(\nabla u_{j}) - \Xi'(\nabla u)),e_{j}\rangle. \\ \langle\nabla^{+}f,g\rangle &= -(f_{j}\nabla g) \\ A \\ A &= -\langle\Xi'(\nabla u_{j}) - \Xi'(\nabla u),\nabla e_{j}\rangle. \\ e_{j} = u_{j} - u \\ &= -\langle\Xi'(\nabla u_{j}) - \Xi'(\nabla u),\nabla u_{j} - \nabla u\rangle \\ &\leq 0 \quad b_{j} \text{ monotonicity property (iv).} \end{split}$$

It dt El, drop 3d term (since EO) to set $\frac{1}{||e_{j+1}||^2} \leq (|-Jt|)^2 ||e_{j}|^2 + Jt^2 \lambda^2 ||D^{\dagger}(\overline{\Xi}'(\overline{\nabla u_j})|^2 - \overline{\Xi}'(\overline{\nabla u_j})||^2$ Aside: $\|\nabla^{+}f\|^{2} = \sum_{k=0}^{n-1} |f(k) - f(k-n)|^{2}$ $= \sum_{k=0}^{n-1} (f(k)^{2} + f(k-i)^{2} - 2f(k)f(k-i))$ = 2||f||^{2} - 2\sum_{k=0}^{n-1} f(k)f(k-i). Claim: $2ab \leq a^2 + b^2$ for any $a, b \in \mathbb{R}$.

 $(a-b)^{2} = a^{2} + b^{2} - 2ab^{2} = 0$ True since $-2f(k)f(k-1) \leq f(k)^{2} + f(k-1)^{2}$ - 7 by taking a = -f(k), b = f(k-i). $= \sum_{\substack{||v^{\dagger}f||^{2} \leq 4 ||f||^{2} \\ ||v^{\dagger}f||^{2} \leq 4 ||f||^{2} \\ ||v^{\dagger}f||^{2} \leq 4 ||f||^{2} \\ nrm \text{ of } \\ p^{\dagger}$ Hene $\|\nabla^{\dagger}(\overline{\mathfrak{F}}'(\overline{\mathfrak{T}}_{uj}) - \overline{\mathfrak{F}}'(\overline{\mathfrak{T}}_{u}))\|^{2} \leq 4\|\overline{\mathfrak{F}}'(\overline{\mathfrak{T}}_{uj}) - \overline{\mathfrak{F}}'(\overline{\mathfrak{T}}_{uj})\|^{2}$ $\leq 4 C_{\mathbb{P}}^2 || \nabla u_j - \nabla u ||^2 (\mathbb{P})$ Since $\overline{\Xi}'(t) - \overline{\Xi}'(s) = \int_{s}^{t} \overline{\Xi}''(\tau) d\tau \leq C_{\overline{\Xi}}(t-s)$

$$(\cancel{P}) = 4C_{\cancel{P}}^{2} || \nabla e_{j} ||^{2} \leq 16C_{\cancel{P}}^{2} || e_{j} ||^{2}$$

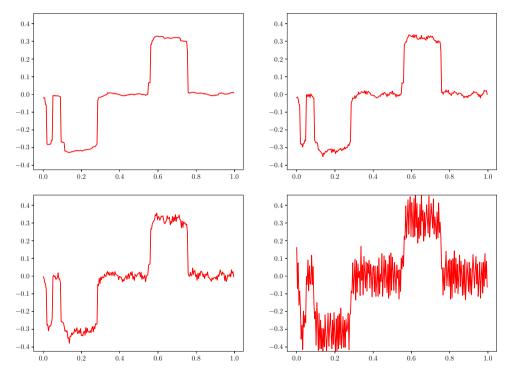


It will then 6D converge at rate u, and dt 5... follows from This The

[Note:) (TV) $\overline{\mathbb{P}}(t) = 1tI$, $C_{\overline{\mathbb{P}}} = \infty$ $(TV_{\varepsilon}) = \overline{f_{\varepsilon}^{2} + \varepsilon^{2}}$ $\overline{\mathcal{F}}_{\mathbf{x}}'(t) = \frac{t}{\sqrt{t^2 + \varepsilon^2}}$ $-t\frac{t}{5t^2+t^2}$ $\overline{\mathbb{P}}_{g}^{"}(t) = \sqrt{t^{2}+\varepsilon^{2}}$ t2+ ε $= \frac{\Sigma'}{(t^2 + \Sigma^2)^{3/2}} \leq \frac{\Sigma'}{\Sigma^3} = \frac{1}{\Sigma} = C_{\mathbf{D}}$

Nonlinear stability at larger time steps

We set $\varepsilon = 10^{-10}$ and the CFL condition is $dt \sim 5 \times 10^{-10}$. Figures are dt = 0.01, 0.05, 0.1, 0.5.



Local nonlinear stability

A heuristic local version of the Von Neumann analysis for ε -regularzied TV shows that the scheme is stable wherever the gradient of u satisfies

$$|\nabla^{-}u|^{3} \ge \frac{4\lambda\varepsilon^{2}dt}{2-dt}.$$

Thus, oscillations cannot grow infinitely large, since the scheme is stable for larger gradients.

Instead of
$$C_{\overline{E}} = \max \overline{\Phi}''$$

 $\nabla^{\dagger} \overline{\mathbb{P}}'(\overline{\mathbb{P}}') = \overline{\mathbb{P}}'(\overline{\mathbb{P}}'(\overline{\mathbb{P}}')) - \overline{\mathbb{P}}'(\overline{\mathbb{P}}'(\overline{\mathbb{P}}'))$

 $\simeq \overline{P}''(\nabla u(k))(\nabla u(kn) - \nabla u(k))$ $= \overline{\mathcal{P}}''(\overline{\mathcal{V}}_{\mathcal{V}}) \overline{\mathcal{V}}^{\dagger} \overline{\mathcal{V}}_{\mathcal{V}}$ $-\overline{p}''(\nabla u) \Delta u.$ leave as I": $dt \leq \frac{2}{1+4\mathfrak{F}''(\mathfrak{Tu})\lambda}$ Flip around

 $\overline{P}(t) = \int t^2 + z^2$ Chuk $\underline{\mathfrak{P}}''(t) = \frac{\epsilon^2}{(t^2 + \epsilon^2)^3 h} \leq \frac{\epsilon^2}{t^3}$ (4) holds if $\frac{\Sigma^2}{|\nabla u|^2} \leq \frac{1}{4\lambda} \left(\frac{2}{4t} - 1\right)$ Rearrage 19-4132 422dt 2-Jt

Total Variation denoising (.ipynb)