# Mathematics of Image and Data Analysis Math 5467

## Lecture 4: Principal Component Analysis

Instructor: Jeff Calder Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

### Last time

- Diagonalization and Vector Calculus
- Introduction to Numpy and reading/writing images in Python.

Today

• Principal Component analysis (PCA)

### Recall

Let  $v_1, \ldots, v_k$  be orthonormal vectors in  $\mathbb{R}^n$  and set

$$L = \operatorname{span}\{v_1, v_2, \dots, v_k\},\$$

and

$$V = \begin{bmatrix} v_1 & v_2 & \dots & v_k \end{bmatrix}.$$

Then we have

•  $\operatorname{Proj}_L x = V V^T x$ 

• 
$$\|\operatorname{Proj}_L x\|^2 = \sum_{i=1}^k (x^T v_i)^2$$

• 
$$||x||^2 = ||\operatorname{Proj}_L x||^2 + ||x - \operatorname{Proj}_L x||^2$$

Given  $x_0 \in \mathbb{R}^n$ , projection onto an affine space  $A = x_0 + L$  is given by

$$\operatorname{Proj}_A x = x_0 + \operatorname{Proj}_L(x - x_0).$$

Also, for a symmetric matrix A

$$\nabla \|Ax\|^2 = 2A^2x.$$

### Principal Component Analysis (PCA)

Given points  $x_1, x_2, \ldots, x_m$  in  $\mathbb{R}^n$ , find the k-dimensional linear or affine subspace that "best fits" the data in the mean-squared sense. That is, we seek an affine subspace  $A = x_0 + L$  that minimizes the energy



### Optimizing over $x_0$

**Claim:** For any L, the function  $x_0 \mapsto E(x_0, L)$  is minimized by the centroid



$$= \sum_{i=1}^{m} \|(I - vvT)(x_i - x_o)\|^2$$
  

$$Z = I - vvT = \sum_{i=1}^{m} \|R(x_o - x_i)\|^2$$
  
Take gradient in xo (assuming Xo min)  

$$\sum_{i=1}^{m} R(x_o - x_i) \|^2$$
  

$$\sum_{i=1}^{m} R(x_o - x_i) \|^2$$
  

$$\sum_{i=1}^{m} R(x_o - x_i) = O$$
  
Last time  $R^2 = R [(I - vvT)^2 = (I - vvT)]$ 

q

Since VTV = I  $\sum_{i=1}^{m} (I - vvT)(x_{s} - x_{i}) = 0$  $(I - VVT) \sum_{i=1}^{m} (x_{i} - x_{i}) = 0$   $(J - VVT) \sum_{i=1}^{m} (x_{i} - x_{i}) = 0$   $(J - VVT) \sum_{i=1}^{m} (x_{i} - x_{i}) = 0$ 

 $\sum_{i=1}^{m} (x_{0} - x_{i}) = 5 \in L$ mx<sub>0</sub> -  $\sum_{i=1}^{m} x_{i} = 5$ lonce

$$=> x_{0} = \prod_{i=1}^{m} \sum_{i=1}^{m} x_{i} + \prod_{i=1}^{m} \sum_{i=1}^{m} \sum_{i=1}^{$$

 $E(L) = \sum_{i=1}^{\infty} ||y_i - pr_{i}y_i||^2$ 

### Reduction to fitting a linear subspace

Since the centroid is optimal, we can center the data (replace  $x_i$  by  $x_i - x_0$ ), and reduce to the problem of finding the optimal linear subspace L. Thus, we can consider the problem

$$\min_{L} E(L) = \sum_{i=1}^{m} \|x_i - \operatorname{Proj}_{L} x_i\|^2,$$

where the  $\min_{L}$  is over k-dimensional linear subspaces L. We can write

$$L = \operatorname{span}\{v_1, v_2, \dots, v_k\},\$$

and treat the problem as optimizing over the orthonormal basis  $v_1, v_2, \ldots, v_k$  of L.

#### The covariance matrix

**Lemma 1.** The energy E(L) can be expressed as

(1) 
$$E(L) = \operatorname{Trace}(M) - \sum_{j=1}^{k} v_j^T M v_j,$$

where M is the covariance matrix of the data, given by

(2) 
$$M = \sum_{i=1}^{m} x_i x_i^T$$

**Note:** We can write  $M = X^T X$ , where  $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_m \end{bmatrix}^T$ .

Pront: let 
$$x \in \mathbb{R}^{n}$$
, note  
 $x \times T = \begin{bmatrix} x_{(1)}^{2} & x_{(2)} \times (x_{2}) & \dots & x_{(1)} \times (x_{n}) \\ x_{(2)} \times (x_{2})^{2} & \dots & x_{(2)} \times (x_{n}) \\ \vdots \\ x_{(n)} \times (x_{n}) & \dots & x_{(n)}^{2} \end{bmatrix}$ 

$$T_{rave}(xx^{T}) = \chi_{(1)}^{2} + \chi_{(2)}^{2} + \dots + \chi_{(n)}^{2}$$
  
=  $\|\chi_{1}\|^{2}$ 

Hence  
Trace 
$$(M) = \text{Trace}\left(\sum_{i=1}^{m} X_i X_i^T\right)$$
  
 $= \sum_{i=1}^{m} \text{Trace}\left(X_i X_i^T\right)$   
 $= \sum_{i=1}^{m} \|X_i\|^2$   
To prove theorem:  
 $E(L) = \sum_{i=1}^{m} \|X_i - \text{Proj}_i X_i\|^2$ 

$$Pfhosoneon = \sum_{i=1}^{n} (||x_{i}||^{2} - ||Prij_{i}x_{i}||^{2})$$

$$= \sum_{i=1}^{n} ||x_{i}||^{2} - \sum_{i=1}^{n} ||Prij_{i}x_{i}||^{2}$$

$$= Trace(M) - \sum_{i=1}^{n} \sum_{j=1}^{k} (x_{i}^{T}v_{j})^{2}$$

$$= Trace(M) - \sum_{j=1}^{k} \sum_{i=1}^{m} v_{j}^{T}x_{i}x_{i}^{T}v_{j}$$

$$= Trace(M) - \sum_{j=1}^{k} v_{j}^{T}(\sum_{i=1}^{n} x_{i}x_{i}^{T})^{V_{j}}$$

$$M \square$$

### **Covariance** Matrix

The covariance matrix

$$M = \sum_{i=1}^{m} x_i x_i^T = X^T X$$

is a positive semi-definite (i.e.,  $v^T M v \ge 0$ ) and symmetric matrix. Indeed, for a unit vector v we have

$$v^{T}Mv = \sum_{i=1}^{m} v^{T}x_{i}x_{i}^{T}v = \sum_{i=1}^{m} (x_{i}^{T}v)^{2} \ge 0,$$

which is exactly the amount of *variation* in the data in the direction of v.

If v is an eigenvector with eigenvalue  $\lambda$ , then  $Mv = \lambda v$  and

11/11=

VTMU= JTJV=J

 $\lambda = v^T M v =$ Variation in direction v.

### **Covariance** Matrix

Since the covariance matrix M is symmetric, it can be diagonalized:

 $M = PDP^T$ 

where  $D = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$  and

$$P = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}.$$

We choose  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ , and note that  $p_1, p_2, \ldots, p_n$  are orthonormal eigenvectors of M, so

$$Mp_i = \lambda_i p_i.$$

### Principal Component Analysis (PCA)

**Theorem 2.** The energy E(L) is minimized over k-dimensional linear subspaces  $L \subset \mathbb{R}^n$  by setting

$$L = span\{p_1, p_2, \dots, p_k\}$$

and the optimal energy is given by

$$E(L) = \sum_{i=k+1}^{n} \lambda_i.$$

Note: The  $p_i$  are called the *principal components* of the data, and the  $\lambda_i$  are the principal values. The principal components are the directions of highest variation in the data.

Proof: By lowna, we can just focus  
on maximizing 
$$\sum_{j=1}^{k} v_j^T M v_j^T$$

over otherormal vectors Vi, Vz, ..., Vk.  $\sum_{j=1}^{k} v_j^T M v_j = \sum_{j=1}^{k} v_j^T P D P^T v_j$  $=\sum_{i=1}^{k} \left( v_{i}^{T} P D'^{2} \right) \left( D'^{2} P^{T} v_{j}^{i} \right)$  $=\sum_{i=1}^{k} \left( D^{\prime n} P^{T} v_{i} \right)^{T} \left( D^{\prime n} P^{T} v_{i} \right)$  $= \sum_{j=1}^{k} \| D'^{2} P^{T} v_{j} \|^{2}$  $( \mathbf{f} ) = \sum_{j=1}^{k} \sum_{i=1}^{n} \lambda_i (p_i^{\mathsf{T}} \mathbf{v}_j)^2$ 



= Ži di llproj Pill<sup>2</sup>

 $\sum_{j=1}^{k} v_j^T M v_j = \sum_{c=1}^{n} \lambda_i \| p_{c} p_j P_i \|^2$ 2 a: 21  $\tilde{\Sigma}_{ai} = \sum_{i=1}^{n} |P_{i}||^{2}$  $= \sum_{j=1}^{k} \sum_{i=1}^{2} (p_i^T v_j)^2 = \sum_{j=1}^{k} 1 = k$ 

$$\frac{B_{1}}{E_{1}} + \frac{1}{E_{1}} + \frac{1}{E_{1}$$

### How many principal directions?

If we wish to capture  $\alpha \in [0, 1]$  fraction of the total variation in the data, we can choose k so that



## Intro to PCA Notebook: (.ipynb)