Mathematics of Image and Data Analysis Math 5467

Lecture 4: Principal Component Analysis
Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

Last time

- Diagonalization and Vector Calculus
- Introduction to Numpy and reading/writing images in Python.

Today

- Principal Component analysis (PCA)

Recall

Let v_{1}, \ldots, v_{k} be orthonormal vectors in \mathbb{R}^{n} and set

$$
L=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}
$$

and

$$
V=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{k}
\end{array}\right] .
$$

Then we have

- $\operatorname{Proj}_{L} x=V V^{T} x$
- $\left\|\operatorname{Proj}_{L} x\right\|^{2}=\sum_{i=1}^{k}\left(x^{T} v_{i}\right)^{2}$
- $\|x\|^{2}=\left\|\operatorname{Proj}_{L} x\right\|^{2}+\left\|x-\operatorname{Proj}_{L} x\right\|^{2}$

Given $x_{0} \in \mathbb{R}^{n}$, projection onto an affine space $A=x_{0}+L$ is given by

$$
\operatorname{Proj}_{A} x=x_{0}+\operatorname{Proj}_{L}\left(x-x_{0}\right)
$$

Also, for a symmetric matrix A

$$
\nabla\|A x\|^{2}=2 A^{2} x
$$

Principal Component Analysis (PCA)

Given points $x_{1}, x_{2}, \ldots, x_{m}$ in \mathbb{R}^{n}, find the k-dimensional linear or affine subspace that "best fits" the data in the mean-squared sense. That is, we seek an affine subspace $A=x_{0}+L$ that minimizes the energy

$$
E\left(x_{0}, L\right)=\sum_{i=1}^{m}\left\|x_{i}-\operatorname{Proj}_{A} x_{i}\right\|^{2}
$$

Optimizing over x_{0}
Claim: For any L, the function $x_{0} \mapsto E\left(x_{0}, L\right)$ is minimized by the centroid

$$
x_{0}=\frac{1}{m} \sum_{i=1}^{m} x_{i i} \quad \text { Centroid }
$$

Prot:

$$
E\left(x_{0, L}\right)=\sum_{i=1}^{m}\left\|x_{i}-p r \dot{j}_{A} x_{i}\right\|^{2}
$$

$$
\begin{aligned}
A=x_{0}+L & =\sum_{i=1}^{m}\left\|x_{i}-\left(x_{0}+\operatorname{proj}\left(x_{i}-x_{0}\right)\right)\right\|^{2} \\
\operatorname{proj}_{L} x=V V^{\top} x & =\sum_{i=1}^{m}\left\|x_{i}-x_{0}-\operatorname{proj}_{L}\left(x_{i}-x_{0}\right)\right\|^{2} \\
V=\left[v_{1} \cdots v_{k}\right] & =\sum_{i=1}^{m}\left\|x_{i}-x_{0}-v v^{\top}\left(x_{i}-x_{0}\right)\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{m}\left\|\left(I-v v^{\top}\right)\left(x_{i}-x_{0}\right)\right\|^{2} \\
R=I-v v^{\top} & =\sum_{i=1}^{m}\left\|R\left(x_{0}-x_{i}\right)\right\|^{2}
\end{aligned}
$$

Take gradient in x_{0} (assuming $x_{0} \min$)

$$
\begin{aligned}
& \nabla_{x_{0}} E\left(x_{0}, L\right)=\sum_{i=1}^{m} \nabla_{x_{0}}\left\|R\left(x_{0}-x_{i}\right)\right\|^{2} \\
& T_{0} \\
& \text { Gradient in } x_{0}=\sum_{i=1}^{m} \not 2 R^{2}\left(x_{0}-x_{i}\right)=0
\end{aligned}
$$

last time $R^{2}=R \quad\left[(I-V V T)^{2}=(I-V V T)\right]$
since $V^{\top} V=I$

$$
\begin{aligned}
\sum_{i=1}^{m}\left(I-V^{\top}\right)\left(x_{0}-x_{i}\right) & =0 \\
\left(I-v v^{\top}\right) \underbrace{\sum_{i=1}^{m}\left(x_{0}-x_{i}\right)}_{y} & =0
\end{aligned}
$$

Hence $\sum_{i=1}^{m}\left(x_{0}-x_{i}\right)=y \in L$

$$
m x_{0}-\sum_{i=1}^{m} x_{i}=y
$$

$$
\Rightarrow \quad x_{0}=\underbrace{\frac{1}{m} \sum_{i=1}^{m} x_{i}}_{\text {centroid. }}+\underbrace{\frac{1}{m} y}_{\in L}
$$

Choose $y=0$ to complete proof

$$
E\left(x_{0}, L\right)=\sum_{i=1}^{M}\|\underbrace{x_{i}-x_{0}}_{y_{i}}-\operatorname{proj} L(\underbrace{\left(x_{i}-x_{0}\right.}_{y_{i}})\|^{2}
$$

Center Data: Replace x_{i} with

$$
x_{i}-x_{0}
$$

$$
E(L)=\sum_{i=1}^{m}\left\|y_{i}-p r j_{L} y_{i}\right\|^{2}
$$

Reduction to fitting a linear subspace

Since the centroid is optimal, we can center the data (replace x_{i} by $x_{i}-x_{0}$), and reduce to the problem of finding the optimal linear subspace L. Thus, we can consider the problem

$$
\min _{L} E(L)=\sum_{i=1}^{m}\left\|x_{i}-\operatorname{Proj}_{L} x_{i}\right\|^{2}
$$

where the $\min _{L}$ is over k-dimensional linear subspaces L. We can write

$$
L=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}
$$

and treat the problem as optimizing over the orthonormal basis $v_{1}, v_{2}, \ldots, v_{k}$ of L.

The covariance matrix
Lemma 1. The energy $E(L)$ can be expressed as

$$
\begin{equation*}
E(L)=\operatorname{Trace}(M)-\sum_{j=1}^{k} v_{j}^{T} M v_{j}, \tag{1}
\end{equation*}
$$

where M is the covariance matrix of the data, given by

$$
\begin{equation*}
M=\sum_{i=1}^{m} x_{i} x_{i}^{T} \tag{2}
\end{equation*}
$$

Note: We can write $M=X^{T} X$, where $X=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{m}\end{array}\right]^{T}$.
Pratt: Let $x \in \mathbb{R}^{n}$, note

$$
x x^{\top}=\left[\begin{array}{cccc}
x(1)^{2} & x(1) x(2) & \cdots & x(1) x(n) \\
x(2) x(1) & x(2)^{2} & \cdots & x(2) x(n) \\
\vdots & & \ddots & \vdots \\
x(n) x(1) & \cdots & & x(n)^{2}
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{Trace}\left(x x^{\top}\right) & =x(1)^{2}+x(2)^{2}+\cdots+x(u)^{2} \\
& =\|x\|^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{Trace}(M) & =\operatorname{Trace}\left(\sum_{i=1}^{m} x_{i} x_{i}^{\top}\right) \\
& =\sum_{i=1}^{m} \operatorname{Trace}\left(x_{i} x_{i}^{\top}\right) \\
& =\sum_{i=1}^{m}\left\|x_{i}\right\|^{2}
\end{aligned}
$$

To prove theorem:

$$
E(L)=\sum_{i=1}^{M}\left\|x_{i}-\operatorname{proj}_{L} x_{i}\right\|^{2}
$$

$$
\begin{aligned}
\begin{aligned}
\text { Prthugrean } \\
\text { Therem }
\end{aligned} & =\sum_{i=1}^{m}\left(\left\|x_{i}\right\|^{2}-\| p \text { roj } x_{i} \|^{2}\right) \\
& =\sum_{i=1}^{m}\left\|x_{i}\right\|^{2}-\sum_{i=1}^{m}\left\|p \cos _{L} x_{i}\right\|^{2} \\
& =\operatorname{Trace}(M)-\sum_{i=1}^{m} \sum_{j=1}^{k}\left(x_{i}^{\top} v_{j}\right)^{2} \\
C & =\operatorname{Trace}(M)-\sum_{j=1}^{k} \sum_{i=1}^{m b} v_{j}^{\top} x_{i} x_{i}^{\top} v_{j} \\
& =\operatorname{Trace}(M)-\sum_{j=1}^{k} v_{j}^{\top} \underbrace{\left(\sum_{i=1}^{m} x_{i} x_{i}^{\top}\right.}_{M}) v_{j}
\end{aligned}
$$

Covariance Matrix

The covariance matrix

$$
M=\sum_{i=1}^{m} x_{i} x_{i}^{T}=X^{T} X
$$

is a positive semi-definite (i.e., $v^{T} M v \geq 0$) and symmetric matrix. Indeed, for a unit vector v we have

$$
v^{T} M v=\sum_{i=1}^{m} v^{T} x_{i} x_{i}^{T} v=\sum_{i=1}^{m}(\underbrace{\left.x_{i}^{T} v\right)^{2}}_{p_{i}^{T}} \geq 0
$$

which is exactly the amount of variation in the data in the direction of v.
If v is an eigenvector with eigenvalue λ, then $M v=\lambda v$ and $\quad\|v\|=1$

$$
\lambda=v^{T} M v=\text { Variation in direction } v
$$

$$
v^{\top} M v=v^{\top} \lambda v=\lambda
$$

Covariance Matrix

Since the covariance matrix M is symmetric, it can be diagonalized:

$$
M=P D P^{T}
$$

where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and

$$
P=\left[\begin{array}{llll}
p_{1} & p_{2} & \cdots & p_{n}
\end{array}\right] .
$$

We choose $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, and note that $p_{1}, p_{2}, \ldots, p_{n}$ are orthonormal eigenvectors of M, so

$$
M p_{i}=\lambda_{i} p_{i} .
$$

Principal Component Analysis (PCA)

Theorem 2. The energy $E(L)$ is minimized over k-dimensional linear subspaces $L \subset \mathbb{R}^{n}$ by setting

$$
L=\operatorname{span}\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}
$$

and the optimal energy is given by

$$
E(L)=\sum_{i=k+1}^{n} \lambda_{i} .
$$

Note: The p_{i} are called the principal components of the data, and the λ_{i} are the principal values. The prinipal components are the directions of highest variation in the data.
Proof: By lemma, we can just focus
on maximizing

$$
\sum_{j=1}^{k} v_{j}^{T} M v_{j}
$$

over othonomal vectors $v_{1}, v_{2}, \ldots, v_{k}$.

$$
\begin{aligned}
& \sum_{j=1}^{k} v_{j}^{\top} M v_{j}=\sum_{j=1}^{k} v_{j}^{\top} P D P^{\top} v_{j} \\
& D^{1 / 2}=\left[\begin{array}{cc}
1 / 2 & \lambda_{1}{ }_{1 / 2} \\
0^{2} & 0 \\
0 & \lambda_{n}^{1 / 2}
\end{array}\right] \\
&=\sum_{j=1}^{k}\left(v_{j}^{\top} P D^{1 / 2}\right)\left(D^{1 / 2} P^{\top} v_{j}\right) \\
&\left.=\sum_{j=1}^{k} \| D^{1 / 2} P^{\top} v_{j}\right)^{\top}\left(D^{1 / 2} P^{\top} v_{j}\right) \\
&(\mathbb{*})=\sum_{j=1}^{k} \sum_{i=1}^{n} \|_{i}^{2}\left(P_{i}^{\top} v_{j}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
D^{1 / 2} p^{\top} v_{j} & =\left[\begin{array}{ccc}
\lambda_{1}^{1 / 2} & & 0 \\
\lambda_{2}^{1 / 2} & 0 \\
0 & \ddots & \lambda_{n}^{1 / 2}
\end{array}\right]\left[\begin{array}{c}
p_{1}^{\top} \\
p_{2}^{\top} \\
\vdots \\
p_{n}^{\top}
\end{array}\right] v_{j} \\
& =\left[\begin{array}{ccc}
\lambda_{1}^{1 / 2} & & \lambda_{2}^{1 / 2} \\
\lambda_{2} & 0 \\
0 & & \lambda_{n}^{1 / 2}
\end{array}\right]\left[\begin{array}{l}
p_{1}^{\top} v_{j} \\
p_{2}^{\top} v_{j} \\
p_{n}^{\top} v_{j}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\lambda_{1}^{1 / 2} & p_{1}^{\top} v_{j} \\
\lambda_{2}^{1 /} & p_{2}^{\top} v_{j} \\
\lambda_{n}^{1 / 2} & \vdots \\
p_{n}^{\top} v_{j}
\end{array}\right] \\
(*) & =\sum_{i=1}^{n} \lambda_{i} \sum_{j=1}^{k}\left(p_{i}^{\top} v_{j}\right)^{2}
\end{aligned}
$$

$$
=\sum_{i=1}^{n} \lambda_{i}\left\|p r o_{L} p_{i}\right\|^{2}
$$

Hence

$$
\begin{aligned}
& \text { en } \sum_{j=1}^{k} V_{j}^{\top} M v_{j}=\sum_{i=1}^{n} \lambda_{i} \underbrace{\left\|p_{j} \sigma_{L} p_{i}\right\|^{2}}_{0 \leq a_{i} \leq 1} \\
& \left.\begin{array}{rl}
\sum_{i=1}^{n} a_{i} & =\sum_{i=1}^{n}\left\|p r r_{L} p_{i}\right\|^{2} \\
& =\sum_{j=1}^{k} \underbrace{k}_{i=1}\left(p_{i}^{2} v_{j}\right)^{2}=1
\end{array}\right)=\sum_{j=1}^{k} 1=k
\end{aligned}
$$

By HW工 H6 $\sum_{i=1}^{n} \lambda_{i}\left\|p a r_{j} p_{i}\right\|^{2} \leq \sum_{i=1}^{k} \lambda_{i}$
and by choosing $v_{1}=p_{1}, v_{2}=p_{2}, \ldots, v_{k}=P_{k}$ we set

$$
\left\|p \times j_{L} p_{i}\right\|^{2}= \begin{cases}1, & 1 \leq i \leq k \\ 0, & i \geq k+1\end{cases}
$$

and $\sum_{i=1}^{n} \lambda_{i}\left\|p o j_{L} p_{i}\right\|^{2}=\sum_{i=1}^{k} \lambda_{i}$

How many principal directions?
If we wish to capture $\alpha \in[0,1]$ fraction of the total variation in the data, we can choose k so that

$$
\sum_{i=1}^{k} \lambda_{i} \geq \alpha \operatorname{Trace}(M)
$$

$$
\operatorname{Trace}(\mu)=\sum_{i=1}^{n} \lambda_{i=1}^{k} \lambda_{i}
$$

Intro to PCA Notebook: (.ipynb)

