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Last time
• Diagonalization and Vector Calculus

• Introduction to Numpy and reading/writing images in Python.

Today
• Principal Component analysis (PCA)



Recall
Let v1, . . . , vk be orthonormal vectors in Rn and set

L = span{v1, v2, . . . , vk},

and
V =

⇥
v1 v2 . . . vk

⇤
.

Then we have

• ProjLx = V V Tx

• kProjLxk2 =
Pk

i=1(x
T vi)2

• kxk2 = kProjLxk2 + kx� ProjLxk2

Given x0 2 Rn, projection onto an affine space A = x0 + L is given by

ProjAx = x0 + ProjL(x� x0).

Also, for a symmetric matrix A

rkAxk2 = 2A2x.



Principal Component Analysis (PCA)
Given points x1, x2, . . . , xm in Rn, find the k-dimensional linear or affine subspace
that “best fits” the data in the mean-squared sense. That is, we seek an affine
subspace A = x0 + L that minimizes the energy

E(x0, L) =
mX

i=1

kxi � ProjAxik2.



Optimizing over x0

Claim: For any L, the function x0 7! E(x0, L) is minimized by the centroid

x0 =
1

m

mX

i=1

xi.











Reduction to fitting a linear subspace
Since the centroid is optimal, we can center the data (replace xi by xi � x0), and
reduce to the problem of finding the optimal linear subspace L. Thus, we can
consider the problem

min
L

E(L) =
mX

i=1

kxi � ProjLxik2,

where the minL is over k-dimensional linear subspaces L. We can write

L = span{v1, v2, . . . , vk},

and treat the problem as optimizing over the orthonormal basis v1, v2, . . . , vk of L.



The covariance matrix
Lemma 1. The energy E(L) can be expressed as

(1) E(L) = Trace(M)�
kX

j=1

vTj Mvj ,

where M is the covariance matrix of the data, given by

(2) M =
mX

i=1

xix
T
i .

Note: We can write M = XTX, where X =
⇥
x1 x2 · · · xm

⇤T .













Covariance Matrix
The covariance matrix

M =
mX

i=1

xix
T
i = XTX

is a positive semi-definite (i.e., vTMv � 0) and symmetric matrix. Indeed, for a
unit vector v we have

vTMv =
mX

i=1

vTxix
T
i v =

mX

i=1

(xT
i v)

2 � 0,

which is exactly the amount of variation in the data in the direction of v.

If v is an eigenvector with eigenvalue �, then Mv = �v and

� = vTMv = Variation in direction v.



Covariance Matrix
Since the covariance matrix M is symmetric, it can be diagonalized:

M = PDPT

where D = diag(�1,�2, . . . ,�n) and

P =
⇥
p1 p2 · · · pn

⇤
.

We choose �1 � �2 � · · · � �n, and note that p1, p2, . . . , pn are orthonormal eigen-
vectors of M , so

Mpi = �ipi.



Principal Component Analysis (PCA)
Theorem 2. The energy E(L) is minimized over k-dimensional linear subspaces
L ⇢ Rn by setting

L = span{p1, p2, . . . , pk}

and the optimal energy is given by

E(L) =
nX

i=k+1

�i.

Note: The pi are called the principal components of the data, and the �i are the
principal values. The prinipal components are the directions of highest variation in
the data.













How many principal directions?
If we wish to capture ↵ 2 [0, 1] fraction of the total variation in the data, we can
choose k so that

kX

i=1

�i � ↵Trace(M).







Intro to PCA Notebook: (.ipynb)

https://colab.research.google.com/drive/1TO2Cx3eY5L-z3cazd2E7yrq-q_cJUuun?usp=sharing

