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Abstract

Although mathematical models do not fully match reality, robustness of dynamical objects to
perturbation helps bridge from theoretical to real-world dynamical systems. Classical theories
of structural stability and isolated invariant sets treat robustness of qualitative dynamics to
sufficiently small errors. But they do not indicate just how large a perturbation can become
before the qualitative behavior of our system changes fundamentally. Here we introduce a
quantity, intensity of attraction, that measures the robustness of attractors in metric terms.
Working in the setting of ordinary differential equations on Rn, we consider robustness to
vector field perturbations that are time-dependent or -independent. We define intensity in
a control-theoretic framework, based on the magnitude of control needed to steer trajectories
out of a domain of attraction. Our main result is that intensity also quantifies the robustness
of an attractor to time-independent vector field perturbations; we prove this by connecting the
reachable sets of control theory to isolating blocks of Conley theory. In addition to treating
classical questions of robustness in a new metric framework, intensity of attraction offers a
novel tool for resilience quantification in ecological applications. Unlike many measurements of
resilience, intensity detects the strength of transient dynamics in a domain of attraction.

Keywords: ODEs, resilience, transient dynamics, control, Conley theory, attractors

1 Introduction

Although differential equations are imperfect models of reality, they capture the essential dynamics
of many real-world systems remarkably well. This utility of dynamical systems theory stems in part
from studying robust dynamical objects. For example, classical results about structurally stable
systems [1, 21, 28] and isolated invariant sets [8, 7] guarantee that qualitative dynamics persist
through sufficiently small errors, under suitable conditions of nondegeneracy. In this work we
push beyond “sufficiently small” to explore just how wrong our models can be while still providing
meaningful information about the long-term behavior of a system. More precisely, we ask in metric
terms how different a vector field can become while retaining—in some sense—an original attractor.

To answer this question, we adapt the concept of intensity of attraction from the setting of
maps on compact metric spaces [17] to the setting of vector fields on Rn. We define the intensity
of an attractor in section 5. What makes intensity so well-suited to our purpose is that it

(i) quantifies how far an attractor persists in the context of both time-independent and time-
varying changes to a vector field f : Rn → Rn,

(ii) can be computed, and

(iii) is well-defined for ODE systems of any finite dimension.
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Our main result, Theorem 6.12, links the time-dependent and time-independent vector field per-
turbations in (i): roughly speaking, if we define the intensity µ of an attractor A for a vector field
f as the magnitude of time-varying control needed to escape A’s domain of attraction, then the
attractor continues in a related form through any time-independent perturbations to f that stay
below µ in an appropriate metric. This connection reduces the problem of attractor persistence in
an infinite-dimensional space to the well-studied problem of computing reachable sets in a control
framework [3, 23, 24, 26, 22, 2, 9].

In addition to quantifying tolerable modeling errors, intensity of attraction provides a new tool
for resilience quantification for applications in ecology and other fields [4, 18, 19]. In particular,
intensity measures the resilience of a particular regime—modeled as a domain of attraction—to
continuous-time, exogeneous disturbances. Unlike common resilience metrics like eigenvalues or
basin size [18] that are based solely on invariant sets, intensity detects the strength of attracting
dynamics over transient regions of state space.

We illustrate some of the preceeding points about intensity of attraction in a simple example
before outlining the paper’s full contents.

Example 1.1. Suppose the differential equations x′ = f(x) and y′ = f̂(y) model the dynamics
of biological populations x and y. The vector fields f : R → R and f̂ : R → R graphed in
Figure 1(a) generate topologically equivalent dynamical systems, each with a repelling equilibrium
at the origin and an attracting equilibrium at 1. In the absence of error or disturbance, we expect
each biological population to approach a carrying capacity at 1. But this topological picture misses
a metric difference between the two models: f lies above f̂ over the transient interval (0, 1) of state
space. The intensity of each attractor {x = 1} and {y = 1} captures this metric difference: in
this case, intensity boils down to the maximum values µ and µ̂ that the functions f and f̂ acheive,
respectively, over the interval (0, 1).

1

Figure 1: Motivating example. (a) Vector fields f and f̂ generate topologically equivalent flows
on R, illustrated by the horizontal phase line. Intensities µ and µ̂ of the mutual attractor at 1
capture metric differences between the dynamics. (b) If f(x) is known to an error tolerance of ε
with 0 < ε < µ then we have f(x1)±ε > 0 and f(x2)±ε < 0, suggesting that some trajectories x(t)
remain bounded and positive. (c) Under the same error tolerance ε on f̂(y), we have f̂(y)− ε < 0
for all y ∈ R, so it is possible that no trajectories stay positive.

The fact that the intensity µ of {x = 1} exceeds the intensity µ̂ of {y = 1} holds implications
for both population resilience and model interpretation. If we take the models at face value, then
µ > µ̂ suggests that population x is more resilient to external time-dependent forcings (such as
climate variability or seasonal harvests, as in [19]) than population y, based on its higher rebound
rate at depressed population levels. Notably, two common resilience quantifiers based on invariant
sets fail to detect this difference: f and f̂ share the same distance between equilibria and the same
eigenvalues (slopes) at equilibria.
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On the other hand, suppose models x′ = f(x) and y′ = f̂(y) originated from data on real-world
populations x and y, and the values of f and f̂ are known to an accuracy of ε, where µ̂ < ε < µ. As
illustrated in Figure 1(b), we would still have topological grounds to believe that population x can
remain bounded above zero in the long term, because f(x1)± ε > 0 and f(x2)± ε < 0. But under
the same error tolerance ε on f̂(y), we have f̂(y)− ε < 0 for all y ∈ R (Figure 1(c)), so it is possible
that no trajectories for population y remain bounded above zero. In this way, the intensities µ and
µ̂ measure the degree to which each attracting equlibrium (x = 1 or y = 1) persists to structure
system behavior in the face of changes to the vector field—whether these are extrinsic, time-varying
perturbations to population growth or intrinsic, time-independent changes to the model equations.
//

In the body of this paper, we generalize the notion of intensity from Example 1.1 to an analog
for higher dimensions that still quantifies attractor persistence and is computable. The organization
is as follows.

Section 2 outlines the necessary preliminaries regarding Rn as a metric space and the dynamics
generated by an autonomous differential equation x′ = f(x), x ∈ Rn.

In section 3 we introduce time-dependent perturbations to the vector field f via control functions
g(t). In this work control functions g(t) play a role analogous to discrete errors in the theory of
intensity of attraction for maps [17]. In particular, studying the dynamics of x′ = f(x)+g(t) allows
us to probe outwards from an attracting set that would otherwise be invariant under f into the
transient regions of its domain of atttraction. We take controls g to be essentially bounded, and
endow them with an L∞ norm ‖g‖∞ that reflects the norm in play on Rn. In the sections that
follow we quantify how large ‖g‖∞ must become in order to escape the domain of attraction of an
attractor under f—this is the essential ingredient for defining intensity of attraction.

Towards this end, section 4 broadens our attention from individual control functions to bounded
collections of control functions. Given a set S ⊂ Rn and a bound r on control, we ask which points
in state space can be reached from S using some control g with ‖g‖∞ < r. The answer is called a
reachable set, a term that carries a compatible and more general meaning in the theory of control
[6, 14] and differential inclusions [3]. Depending on the vector field f and the magnitude of r,
the reachable set from an attractor might lie within its domain of attraction or spill outside this
domain.

Section 5 defines intensity of attraction in terms of reachable sets: roughly, intensity reflects
the largest value of r for which sets reachable from an attractor are bounded inside its domain of
attraction. We connect intensity to resilience of predator-prey dyanmics in Example 5.6. Additional
examples revisit Figure 1 with greater precision (Example 5.3), illustrate how the value of intensity
depends on the metric used to quantify perturbations (Example 5.4), and show how intensity relates
to Colonius and Kliemann’s point of first discontinuity in a map from control bounds to reachable
sets [6] (Example 5.5).

Section 6 demonstrates that intensity of attraction also quantifies attractor persistence in the
face of time-independent perturbations to a vector field. Theorem 6.12 gives the main result that
intensity bounds from below the distance in the space of vector fields that an attractor continues
immediately. The key to this result is a link between reachable sets and the isolating blocks of
Conley theory, which we develop in section 6.1 and section 6.2. Example 6.13 illustrates continu-
ation of a predator-prey limit cycle through time-independent perturbations that don’t exceed its
intensity. We close by leveraging the present setting to provide a new proof that attractors are
upper-semicontinuous (Theorem 6.16).
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2 Preliminaries

2.1 Rn as a metric space

Let d : Rn×Rn → [0,∞) be a homogeneous and translation-invariant metric on Rn. Let ‖·‖ denote
the corresponding norm with ‖x‖ = d(x, 0) and d(x, y) = ‖x− y‖. Though we use the Euclidean
metric and norm in most examples, we intentionally develop the theory for general d and ‖·‖. In
any particular application, context should inform the choice of metric and norm.

The following definitions and notations are standard in this metric setting. We say a set X ⊂ Rn
is bounded if there exists an M > 0 such that ‖x‖ ≤ M for all x ∈ X. The distance between two
sets X, Y ⊂ Rn is

dist(X,Y ) ≡ inf{d(x, y) | x ∈ X, y ∈ Y }.

A single-point set {x} is not distinguished from its element x. For ε > 0 and x ∈ Rn, we denote
the ε-ball about x as

Bε(x) ≡ {y ∈ Rn | d(x, y) < ε}.

More generally, we denote the ε-neighborhood of a set S ⊂ Rn as

Nε(S) ≡ {x ∈ Rn | d(x, S) < ε}.

The metric topology is used throughout. For S ⊂ Rn, int(S) and S denote the interior and
closure of S, respectively. A set N is a neighborhood of S if S ⊂ int(N). The following lemma
states that a compact set has arbitrarily close compact neighborhoods; its straightforward proof is
omitted.

Lemma 2.1. If S ⊂ Rn is compact, then for any neighborhood N of S there exists a compact set
K ⊂ int(N) that is also a neighborhood of S.

2.2 Dynamics generated by x′ = f(x)

Consider an autonomous system of ordinary differential equations

x′ = f(x) (1)

where x ∈ Rn, x′ denotes dx
dt , and f maps from an open set U ⊂ Rn to Rn. We assume that the

vector field f in the differential equation eq. (1) is bounded, so that ‖f‖sup ≡ sup
x∈U
‖f(x)‖ exists.

We also take f to be globally Lipschitz on U , so that there exists a unique local solution x(t) in U
to each initial value problem

x′ = f(x), x(0) = x0 ∈ U.

The solutions x(t) generate a local flow ϕ : R × U ⊃ D → U given by ϕ(t, x0) = x(t). Though in
general trajectories may leave U , preventing definition of a global flow ϕ : R× U → U , we assume
that ϕ is defined on any time domain of interest.

Fixing the time coordinate of ϕ yields a time-t map ϕt : U → U , given by x 7→ ϕ(t, x). Functions
such as the flow and the time-t map are extended in the natural way to take sets as arguments.
For example, if T ⊂ R and S ⊂ Rn, then ϕ(T, S) ≡

⋃
t∈T

⋃
x∈S

ϕ(t, x) and ϕt(S) ≡
⋃
x∈S

ϕt(x). We next

put this notation to work in a few definitions that build to attractors, our main object of study.

Definition 2.2. A set S ⊂ U is forward invariant under the flow ϕ if ϕt(S) ⊂ S for all t > 0. S
is invariant if ϕt(S) = S for all t ∈ R.

4



Definition 2.3. The omega limit set of a set S ⊂ U is ω(S) ≡
⋂
T≥0

⋃
t≥T

ϕt(S).

Definition 2.4. An attractor is a compact, nonempty invariant set A such that A = ω(N) for
some neighborhood N of A.

The statement A = ω(N) indicates that the neighborhood N is “attracted” asymptotically to
A in forward time. We call the collection of all points that tend to A in forward time A’s domain
of attraction.

Definition 2.5. The domain of attraction of an attractor A is

D(A) = {x ∈ U | ∅ 6= ω(x) ⊂ A}.

Our primary objective is to quantify what we’ll call the intensity of an attractor A, which should
in some way reflect the strength of transient dynamics over D(A). To test that strength, we probe
the domain of attraction with time-dependent control (section 3).

3 Time-Dependent Control Functions

We introduce time-dependent perturbations to the system eq. (1) via nonautonomous control func-
tions g, yielding a perturbed system

x′ = f(x) + g(t). (2)

The control functions g are integrable and essentially bounded; that is, given a time interval I ⊂ R
we take g ∈ L∞(I,Rn), equipped with the norm ‖g‖∞ ≡ inf{c ≥ 0 : µ ({x ∈ I : ‖g(x)‖ > c}) = 0}.
Note that the value of ‖g‖∞, which plays an important role in sections 4 to 6, depends on the norm
used in Rn.

With g ∈ L∞(I,Rn), the righthand side of eq. (2) satisfies the the Carathéodory conditions on
U × I: the function F (x, t) = f(x) + g(t) is measurable in t for fixed x, continuous in x for fixed t,
and (without loss of generality) bounded on any compact subset of I×U by the constant and hence
integrable function ‖f‖sup + ‖g‖∞. Furthermore, F inhertits f ’s Lipschitz property in x. It follows
(see, e.g. [5, 10]) that for any initial condition x(t0) = x0 there exists a unique local solution x(t)
to eq. (2), in the extended sense that

x(t) = x(t0) +

∫ t

t0

(f(x(s)) + g(s)) ds (3)

and x′(t) = f(x) + g(t) almost everywhere. (4)

The characterization eq. (3) of solutions provides an analytic tool, while equation eq. (4) highlights
the meaning of ‖g‖∞ as a maximum deviation from the vector field f . By default we assume that
a unique local solution x(t) to eq. (2) can be continued on any desired time interval I.

Existence and uniqueness of solutions to eq. (2) permit extension of standard flow notation to
include the control function g in a manner similar to [6]:

Definition 3.1. For a given vector field f and time interval [0, T ], the controlled flow

ϕ :[0, T ]× U × L∞([0, T ],Rn)→ Rn

is given by (t̂, x0, g) 7→ ϕ(t̂, x0, g; f) = x(t̂),

where x(t) is the solution to x′ = f(x) + g(t), x(0) = x0.
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We omit the vector field f when it is clear from context. To emphasize depedence on initial
conditions, we write ϕ(t, ·, g) = ϕtg(·). In what follows, we move fluidly between describing solutions
to eq. (2) with the notation x(t) and with the flow notation of Definition 3.1. The latter has the
advantage of making g visible.

Continuity of ϕ(t, x, g) with respect to t and x is well-known (see [11]). Lemma 3.2 establishes
continuity of ϕ(t, x, g) with respect to control input g.

Lemma 3.2. Fix a vector field f : U → Rn and a time interval [0, T ], and let g and h be control
functions in L∞([0, T ],Rn). Then for any ε, there exists a δ such that ‖g − h‖∞ < δ implies
‖ϕ(t, x, g)− ϕ(t, x, h)‖ < ε for all t ∈ [0, T ] and all x ∈ U .

Proof. Fix ε > 0. We apply Grönwall’s Inequality to the function

u(t) ≡ ‖ϕ(t, x, g)− ϕ(t, x, h)‖ .

Equation eq. (3) gives that for any x ∈ U and any t ∈ [0, T ],

u(t) =

∥∥∥∥∫ t

0

[
f(ϕ(s, x, g)) + g(s)− f(ϕ(s, x, h))− h(s)

]
ds

∥∥∥∥
≤
∫ t

0
‖f(ϕ(s, x, g))− f(ϕ(s, x, h))‖ ds+

∫ t

0
‖g(s)− h(s)‖ ds

≤ L
∫ t

0
u(s)ds+ T‖g − h‖∞

where L is the Lipschitz constant for f . Grönwall’s Inequality implies that
u(t) ≤ T‖g−h‖∞eLt, and it follows that ‖ϕ(t, x, g)− ϕ(t, x, h)‖ ≤ T‖g−h‖∞eLT . Taking δ = ε

TeLT

ensures that ‖g − h‖∞ < δ implies ‖ϕ(t, x, g)− ϕ(t, x, h)‖ < ε for all t ∈ [0, T ] and all x ∈ Rn, as
desired.

4 Reachable Sets

The controlled flow of Definition 3.1 gives outcomes under a single function g ∈ L∞(I,Rn), which
highlights the effect of a known intervention in a controlled system. However, when g represents
an uncertain disturbance, it is natural to consider trajectories corresponding to an entire family of
such functions. We restrict our attention to families of the form

Br(0) ≡ {g ∈ L∞(I,Rn) | ‖g‖∞ ≤ r}.

By using the collection Br(0), we focus on situations in which bounds on disturbances are known,
even though their exact forms are not. This approach is compatible with studies of random dy-
namical systems with bounded noise (e.g. [12, 13, 30]). But in contrast to systems with unbounded
noise such as stochastic differential equations, trajectories cannot necessarily reach any state from
another.

We use Pr;f (S) to denote the collection of states that can be reached in forward time from a
point in S ⊂ U by modifying the vector field f with r-bounded control:

Definition 4.1. Pr;f (S) =
⋃
t≥0

⋃
x∈S

⋃
‖g‖∞≤r

ϕ(t, x, g; f).

When no confusion could result by omitting the vector field f , we write Pr(S). In the present work
we’ll consider sets reachable from an attractor A. These can be found easily for one-dimensional
systems, as the following proposition shows.
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Proposition 4.2. Consider the one-dimensional system x′ = f(x) with f(0) = 0, f > 0 on (−ε, 0),
and f < 0 on (0, ε) for some ε > 0. The reachable set from the attractor A = {0} is Pr(A) = (a, b)
where

a =

{
sup{x < 0 | f(x) = r} if f(x) = r for some x < 0

−∞ otherwise

and b =

{
inf{x > 0 | f(x) = −r} if f(x) = −r for some x > 0

∞ otherwise
.

Proof. We begin with the inclusion (a, b) ⊂ Pr(A). Let c be any point in [0, b) and let −m be the
minimum value of f on [0, c]. This minimum must be strictly greater than −r by construction of
b. Let g be the constant function g(t) = (m+ r)/2, so that 0 < m < g(t) < r. Then ‖g(t)‖∞ < r.
Also, since f(x) ≥ −m on [0, c], g(t) > m implies f(x) + g(t) > 0 on [0, c]. Using separation of
variables, one may confirm that c = ϕtg(0) for the finite, non-negative time t =

∫ c
0

dx
f(x)+(m+r)/2 .

A similar argument gives that any point in (a, 0] is reachable in finite time by a constant control
strictly bounded by r. Definition 4.1 then implies that (a, b) ⊂ Pr(A).

The reverse inclusion follows trivially if a = −∞ and b =∞, but requires more work than one
might expect in the case that a or b is finite. Suppose b < ∞. Since f is continuous, f(b) = −r
and f(b) + r = 0. Therefore, choosing g(t) ≡ r in equation eq. (2) yields an autonomous flow with
b as an equilibrium.

The Lipschitz property of f implies that f(x) + r ≤ −L(x− b) on [0, b] for some L > 0. We use
this fact and a comparison of solutions to the initial value problems

x′ = −L(x− b), x(0) = 0 (5)

and
y′ = f(y) + g(t), y(0) = 0 (6)

to show that ϕtg(0) < b when ‖g‖∞ ≤ r. For brevity, let x(t) denote the solution to eq. (5) and y(t)
denote the solution to eq. (6) for a fixed g.

Assume for the sake of contradiction that there exists a t > 0 and g ∈ L∞([0, t],Rn), ‖g‖∞ ≤ r,
such that y(t) ≥ b. Let T denote the minimum positive time t at which y(t) = b. Since x(t) remains
strictly bounded below b and both paths are continuous, the inequality y(t) ≥ x(t) must hold on
some time interval [t∗, T ] with 0 ≤ t∗ < T . In fact, one may choose t∗ so that x(t∗) = y(t∗). For
s ∈ [t∗, T ], these inequalities must then hold:

f(y(s)) + g(s) ≤ f(y(s)) + r ≤ −L(y(s)− b) ≤ −L(x(s)− b) (7)

The second inequality follows from the Lipschitz property of f(·)+r, which gives that f(y(s))+r ≤
|(f(y(s)) + r)− (f(b) + r)| ≤ L|y(s)− b| = −L(y(s)− b) for s ∈ [t∗, T ].

On the other hand, the assumptions x(T ) < y(T ) and x(t∗) = y(t∗) imply that∫ T

t∗

−L(x(s)− b)ds <
∫ T

t∗

[f(y(s)) + g(s)] ds (8)

Comparing inequalities eq. (7) and eq. (8) yields the desired contradiction. Hence the solution y(t)
to IVP eq. (6) must remain strictly bounded below b in forward time; i.e. ϕtg(0) ∈ (−∞, b) for
‖g‖∞ ≤ r and t ≥ 0. Definition 4.1 implies that Pr(A) ⊂ (−∞, b). In the case that a > −∞,
the inclusion Pr(A) ⊂ (a,∞) follows similarly. Together, the inclusions Pr(A) ⊂ (−∞, b) and
Pr(A) ⊂ (a,∞) imply that Pr(A) ⊂ (a, b) when a, b, or both are finite.
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In the case of a one-dimensional linear system, Proposition 4.2 implies that the set reachable
from the origin scales in direct proportion to the control bound and in inverse proportion to the
eigenvalue magnitude:

Corollary 4.3. For the one-dimensional, linear system x′ = −λx (λ > 0) with global attractor
A = 0, the reachable set from A for r > 0 is Pr(A) = (− r

λ ,
r
λ).

Reachable sets are, in general, harder to compute than in Proposition 4.2 and Corollary 4.3.
The following example shows that the computation can be non-trivial even for a diagonal, two-
dimensional linear system.

Example 4.4. The system

x′ = −x (9)

y′ = −2y (10)

on R2 has global attractor A = (0, 0). Considering each variable separately, Corollary 4.3 indicates
that P1(A) is contained in the rectangular region R = (−1, 1) × (−1

2 ,
1
2). Furthermore, the family

of constant control functions {gθ,c(t) = c cos θ + c sin θ | θ ∈ [0, 2π), 0 ≤ c ≤ 1} sends the origin
asymptotically to points on ellipses x2 + 4y2 = c2. Therefore, the reachable set P1(A) contains
the open region O enclosed by the ellipse E = {(x, y) | x2 + 4y2 = 1}. Control functions with
magnitude 1 directed opposite to the vector field also drive trajectories asympototically from O to
E.

x1-1

1/2

-1/2

E

y

𝒪

R

p

Figure 2: Inexact bounds on a 2D reachable set. The set in question consists of points reachable
from the origin in the linear system x′ = −x, y′ = −2y with control bound r = 1. This set must
be nested between the open set O and the rectangle R. Piecewise-constant control that shifts
directions from v1 to v2 drives a trajectory (blue) outside of O.

Because the vector field has magnitude 1 on E, one might expect that P1(A) = O. But the
vector field is not normal to E except at the vertices of the ellipse. Therefore, adjusting a control
function’s direction to push perpendicular to E can drive a solution outside O. Figure 2 illustrates
this phenomenon for piecewise constant control

g(t) =

{
v1 if 0 ≤ t < 10

v2 if 10 ≤ t
(11)

where v1 = 0.99

[ √
3/2

1/2

]
and v2 = 0.99

[ √
3/7

2/
√

7

]
have magnitude 0.99 but different directions.

We therefore have the bounds O ( P1(A) ⊂ R. Athough these bounds follow directly from analytic
computation of trajectories and Corollary 4.3, a closed form for P1(A) does not. //
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Numerical algorithms for computing reachable sets are an active topic of research in the fields
of control systems, differential inclusions, and optimization. The introductory piece [14] outlines
fundamental discretization challenges nicely. Existing approaches include set-valued Euler schemes
[3, 23, 24, 26], optimal control algorithms [22, 2], and level-set methods ([9] and references therein).

Though the approximation of reachable sets can be involved, analytically they obey nice nesting
properties. The following lemma, which follows immediately from Definition 4.1, states that the
real number ordering of control bounds induces an order by inclusion on reachable sets:

Lemma 4.5. If r < r′ then Pr(S) ⊂ Pr′(S).

A stronger statement holds when the set S is an attractor A:

Proposition 4.6. For A an attractor, Pr(A)↘ A as r ↘ 0, in the sense that

(1) r < r′ implies Pr(A) ⊂ Pr′(A)

(2) for any neighborhood V of A, there is an r > 0 such that Pr(A) ⊂ V , and

(3) A =
⋂
r>0 Pr(A).

We delay the proof of Proposition 4.6 until section 6.4, where it follows from existence of attractor
blocks introduced in section 6.1 and supports a new proof of the semicontinuity of attractors.

5 Intensity of Attraction

Intensity of attraction, introduced by McGehee for maps [17], carries over naturally to the flow
setting by replacing sets reachable from an attractor under ε pseudo-orbits with sets reachable
from an attractor under r-bounded control.

Definition 5.1. The intensity of attraction of an attractor A is

µ(A) = sup{r ≥ 0 : Pr(A) ⊂ K ⊂ D(A) for some compact K ⊂ Rn} (12)

In other words, intensity of attraction reflects the control magnitude ‖g‖∞ necessary to escape from
every compact subset of an attractor’s domain.

Proposition 5.2. For A an attractor, µ(A) > 0.

Our proof of Proposition 5.2 relies on attractor blocks and Proposition 4.6 and appears in section 6.4.
The following two examples, though somewhat synthetic, serve to illustrate two points about

attractor intensity: it is independent of eigenvalues and basin size (Example 5.3), and its value
depends on the norm ‖·‖ in play on Rn (Example 5.4).

Example 5.3. It is possible for two vector fields that share the same attracting equilibrium A, the
same eigenvalues at A, and the same domain of attraction D(A) to nonetheless exhibit different
intensities of attraction µ(A). Consider the pair of C1(R,R) vector fields plotted in Figure 1:

f(x) = x− x2 (13)

and f̂(x) =


x if x < 0

π−1 sin(πx) if 0 ≤ x < 1

1− x if x ≥ 1

(14)

9



The equilibrium 1 is an attractor for both f and f̂ , with eigenvalue −1. Its domain of attraction
is (0,∞) in each case. In fact, the eigenvalue at the repelling equilibrium 0 that consitutes the
boundary of D(A) is also 1 for both f and f̂ . Yet µ(A) = 1/4 under f while µ̂(A) = π−1 ≈ 0.318
under f̂ . This example alerts us that eigenvalues and size of a domain of attraction—two common
measures of resilience in engineering and ecology [18]—can neglect differences in the strength of
transient dynamics over D(A)—a feature that intensity of attraction detects. //

Example 5.4. To easily see how µ(A) depends on norm choice, consider the system

x′ =

√
2

4
(x+ y)2 − x (15)

y′ =

√
2

4
(x+ y)2 − y (16)

whose phase portrait is given in Figure 3(a). Rotating coordinates by π/4 to u =
√
2
2 (x + y) and

v =
√
2
2 (y − x) gives

u′ = u(u− 1) (17)

v′ = −v. (18)

In these coordinates it is clear that A = (0, 0) is an attractor with domain of attraction D(A) =
{(u, v) | u < 1}. The uncoupled form of equations eq. (17) and eq. (18) and the geometry of D(A)
allow us to restrict attention to the invariant line v = 0 when calculating µ(A). On the interval
0 ≤ u ≤ 1, the maximum strength of the vector field in the direction of the origin is 1/4, achieved
by the vector m at u = 1/2. A control function must push with magnitude greater than 1/4 in
the direction of −m to steer a trajectory from A to D(A)C . The critical control bound needed for
this push, µ(A), depends on the norm on (x, y) space. Under the Euclidean norm (the 2-norm),
the intensity is µ2(A) = 1/4 (Figure 3(c)). The intensity of A under the 1-norm is µ1(A) =

√
2/4

(Figure 3(b)) and the intensity under the max norm is µmax(A) = 1/4
√

2 (Figure 3(d)). More
generally, a straightforward calculation gives that under the p-norm ‖(x, y)‖p = (xp + yp)1/p, the

intensity of A is µp(A) = 2
( 1
p
− 1

2
) · 14 . //

v
=
0u

=
1

u
=
0

r = 1
4

r =
√
2
4 r = 1

4
√
2

‖(x, y)‖1 = |x|+ |y| ‖(x, y)‖2 = (x2 + y2)
1
2 ‖(x, y)‖max = max{x, y}

A

m m

Br(m) Br(m)

x

y

Br(m)

m
m

µ1(A) =
√
2
4 µ2(A) =

1
4

µmax(A) =
1

4
√
2

(a) (b) (c) (d)

D(A)

Figure 3: Intensity depends on norm / metric. (a) Phase portrait for the system eqs. (15) and (16).
A is an attracting equilibrium and the dashed line marks the boundary of its domain of attraction,
shaded grey. Analysis in rotated coordinates (equations eqs. (17) and (18)) reveals that the intensity
of A is the norm of the vector m. (b), (c), (d): The 1-norm, 2-norm, and max norm each yield
different values of intensity of attraction for A.
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In specific applications, one should choose a norm compatible with the relevant notions of
disturbance or uncertainty. We anticipate that the max norm will be appropriate when bounds
on vector field perturbations are known componentwise rather than jointly. As in Example 5.4,
one expects µp(A) ≤ µq(A) when p > q. Therefore, choosing a max norm may also give the most
conservative estimate of attractor intensity.

We next compare intensity to a closely related concept examined by Colonius and Kliemann [6]:
the lowest point of discontinuity in a map from control bound to the reachable set (control set) of
an attractor. Example 5.5 demonstrates that this first discontinuity may differ from the intensity
of the attractor.

Example 5.5. The one-dimensional system with vector field f(x) = 3
4x

4 − x3 − 3x2 − 1 has
an attractor A = x0 and repeller R = x1 corresponding to the roots x0 and x1 of the quartic
(Figure 4(a)). The domain of attraction of A is D(A) = (−∞, x1). Consider the map C : [0,∞)→
P(R) given by r 7→ Pr(A). Figure 4(b) depicts the graph of C. As the control bound r increases
from zero, the first discontinuity in C occurs at r = 2.25, corresponding to the local minimum of f
at (−1,−2.25). However, reachable sets remain bounded within D(A) for small enough r > 2.25. It
is not until the second discontinuity at r = 9, corresponding to the global minimum of f at (2,−9),
that reachable sets escape D(A). Hence the intensity µ(A) = 9 exceeds the value of r at the first
discontinuity (ρ∗ = 2.25 in the notation of [6]). //

(a)

f(x)

x
2.25

xP2.25(A)

lim
r↘2.25

Pr(A)

−9

A

−2.25

µ(A) = 9ρ∗ = 2.25

R

0
r

∂D(A)

(b)

R

A

Pr(A)

x

Figure 4: Intensity versus first discontinuity. (a) The vector field f of Example 5.5 yields an
attractor A and repeller R. As the control bound r increases, the first discontinuity in the map C
that sends r to Pr(A) occurs at ρ∗ = 2.25. (b) The graph of C illustrates that the first discontinuity
at ρ∗ = 2.25 occurs well below the intensity µ(A) = 9.

Example 5.5 shows that it is possible for reachable sets to expand discontinuously without
escaping a domain of attraction. Whether the reverse is possible—reachable sets escaping a domain
of attraction without expanding discontinuously—is an interesting question not pursued further
here.

We close this section with an ecological application that illustrates attractor intensity for a
stable limit cycle, and the information about resilience it carries.

Example 5.6. Consider the following model of predator (y) and prey (x) dynamics, the details of
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which can be found in [16, 25]:

dx

dt
= ax

(
1− x

K

)
− ky(1− e−cx) (19)

dy

dt
= −by + βy(1− e−fx). (20)

As the prey carrying capacity K grows from 3 to 4, a Hopf bifurcation in the first quadrant
transforms the stable equilibrium A1 (Figure 5(a)) into an unstable equilibrium and a stable limit
cycle A2 (Figure 5(c)). Rosenzweig used this predator-prey system to illustrate a “paradox of en-
richment” in which adding nutrients to an ecosystem (thus increasing K) destabilizes the ecosystem
[25]. His analysis was restricted to the dynamics near the rest point in the first quadrant, which
indeed turns from stable to unstable as K increases. But in what sense is the periodic orbit A2 in
Figure 5c “destabilized” relative to the spiral sink A1 in Figure 5(a)? Both invariant sets are stable
by standard mathematical definitions. In present vocabulary we might say adding nutrients lowered
the resilience of the populations. Intensity of attraction provides one measure of this change in
resilience.

Figure 5 plots the result of reachable set computations for both the spiral sink (panel b) and
stable limit cycle (panel d). Reachable sets were computed using a fixed-grid set-valued Euler

Figure 5: Phase portraits (a,c) and reachable sets (b,d) for a predator-prey equilibrium (a,b) and
limit cycle (c,d) corresponding to equations eqs. (19) and (20). Parameters, in arbitrary units, are
K = 3 (a, b), K = 4 (c,d), and a = 1, k = 0.5, c = 1.5, b = 0.5, β = 1, f = 0.5 (all panels).
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method at a spatial resolution of 10−3. Sets reachable from the spiral sink remain bounded within
its domain of attraction (the first quadrant) for r ≤ 0.06. For r = 0.08, the reachable set spills
over the x-axis. From Figure 5(b), we estimate 0.6 < µ(A1) < 0.8. Figure 5(d) illustrates sets
reachable from the periodic orbit A2. These remain bounded within its domain of attraction (the
first quadrant minus the unstable rest point) for r ≤ 0.02; for r = 0.03, the reachable set includes
the unstable rest point. Hence 0.02 < µ(A2) < 0.03. If we instead consider the attractor A3,
consisting of the periodic orbit A2 and the region it encloses, we get a slightly higher intensity
0.03 < µ(A3) < 0.04. Regardless of whether we consider A2 or A3, the intensity estimates agree
with Rosenzweig’s argument that nutrient enrichment lowers stability (resilience): the attractor in
the first quadrant has a lower intensity of attraction in the “enriched” scenario K = 4 compared
to K = 3. As a result, we might expect that environmental variability is more likely to drive the
predator and/or prey population to extinction from the cycle A2 than from the equilibrium A1. //

6 Continuation of Attractors

We now turn from time-dependent to time-independent perturbations of a vector field. Section 6.1
introduces basic definitions and results regarding isolated invariant sets in general and attractors
in particular. Section 6.2 establishes a connection between reachable sets and attractor blocks,
which we exploit in section 6.3 to show that intensity of attraction gives a lower bound on attractor
continuation distance in the space of vector fields. Theorem 6.12, our main result, grounds the
abstract question of attractor persistence in infinite dimensional vector field space to the study of
a single system’s reachable sets. We conclude in section 6.4 with a proof of the semicontinuity of
attractors based on reachable sets.

6.1 Attractors as Isolated Invariant Sets

Attractors are a special type of isolated invariant set, a useful object introduced by Conley for
studying robust qualitative features of flows [7, 8]. The theory of isolated invariant sets has been
developed in the settings of flows on smooth manifolds [8, 29] and locally compact metric spaces
[20]. Definitions 6.1 and 6.2 tailor those of [20] to flows on Rn.

Definition 6.1. An isolating neighborhood for a flow ϕ is a compact set N ⊂ Rn whose invariant
part Inv(N,ϕ) ≡ {x ∈ N | ϕ(R, x) ⊂ N for all t ∈ R} lies in the interior of N .

Definition 6.2. A set I ⊂ Rn is an isolated invariant set if I = Inv(N) for some isolating
neighborhood N .

Remark. Definitions 2.4 and 6.2 imply that an attractor A is an isolated invariant set; the isolating
neighborhood N can be constructed via Lemma 2.1 as a compact set nested between A and N̂ ,
where N̂ is a neighborhood of A such that A = ω(N̂).

An important consequence of Definition 6.1 is that isolating neighborhoods continue as such
under sufficiently small perturbations to the flow, though the maximal invariant set in the interior
may change [20]. Homotopic and homological Conley indices built from an isolating neighborhood
can yield coarse information about the isolated invariant set inside. These allow one to deduce
topological features of an isolated invariant set that persist as it continues in nearby systems.

When the flow interacts nicely with the boundary of an isolating neighborhood, that neighbor-
hood earns the name isolating block. Various definitions of “nicely” have been used in [7, 8, 20, 29].
Here we restrict our attention to isolating blocks associated with attractors, henceforth called at-
tractor blocks. Roughly, the vector field should point inward to the interior of an attractor block
at each point along its boundary. The following definition generalizes this notion slightly.
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Definition 6.3. An attractor block B for a flow ϕ : R× Rn → Rn is a nonempty, compact subset
of Rn satisfying ϕt(B) ⊂ int(B) for all t > 0.

Any attractor block is associated with an attractor in its interior:

Lemma 6.4. For B an attractor block, ω(B) is an attractor.

Proof. ω(B) must lie interior to B because ϕt(B) ⊂ int(B) for all t > 0. Therefore ω(B) is the
omega limit set of its neighborhood B. Further, it follows directly from Definition 2.3 that ω(B) is
invariant and closed; as a subset of compact B it must also be compact. By Definition 2.4, ω(B)
is an attractor.

Definition 6.5. If B is an attractor block and ω(B) = A, we call B an attractor block associated
with A.

We have already seen in Lemma 6.4 that any attractor block is associated with an attractor.
Lemma 6.6 states that the converse also holds.

Lemma 6.6. For any attractor A and any neighborhood V of A, there exists an attractor block
B ⊂ int(V ) associated with A.

We sketch a construction of such an attractor block using a Lyapunov function. Fix a neighbor-
hood V of A. Let N be another neighborhood of A such that A = ω(N) and let N̂ be an isolating
neighborhood with Inv(N̂) = A and N̂ ⊂ N (see Remark 6.1). Wilson and Yorke have shown there
is an open neighborhood Ω of A in N̂ and a smooth, monotone Lyapunov function L : Ω→ R such
that L(x) = 0 if x ∈ A and d

dtL(x(t)) < 0 if x ∈ Ω − A ([29], Theorem 2.2). By Lemma 2.1 there
exists a compact neighborhood W of A that lies inside int(V ∩ Ω). Let ε = minx∈∂W {L(x)}. Let
B = L−1([0, ε]). Strict monotonicity of the Lyapunov function implies both that B is an attractor
block (ϕt(B) ⊂ int(B) for all t > 0) and that B ⊂ W ⊂ int(V ∩ Ω). It follows that B ⊂ int(V ).
Finally, the attractor block B is associated with A because A ⊂ B ⊂ N , implying ω(B) = A.

6.2 Persistent Attractor Blocks from Reachable Sets

In this subsection we show that one can construct attractor blocks from certain reachable sets;
furthermore, these blocks persist as such not just for sufficiently small perturbations to the vector
field, but for perturbations smaller than r, the metric bound on control. Before stating these results
we establish a definition and technical lemma.

Fixing all but the third argument in the controlled flow function ϕ(t, x, g; f) of Definition 3.1
yields a map from control functions to trajectory endpoints:

Definition 6.7. Let GT,x0;f : L∞([0, T ],Rn)→ Rn be given by g 7→ ϕ(T, x0, g; f). The subscripts
on G may be omitted when f , T , and x0 are clear from context, or general.

Lemma 6.8. G is an open map.

Proof. It suffices to show that G maps any basis element in the metric topology on L∞([0, T ],Rn)—
an open ball Br(g) ≡ {h ∈ L∞([0, T ],Rn) : ‖h − g‖∞ < r}—to an open set in Rn. To show that
G(Br(g)) is open, we will show that for any h ∈ Br(g) there exists an εh sufficiently small so that
the open εh-ball around G(h) is also in the image G(Br(g)).

Fix h ∈ Br(g) and consider a point G(h) + v in Rn. We derive an εh so that ‖v‖ < εh implies
there exists k ∈ Br(g) such that G(k) = G(h) + v. First construct a path from x0 to G(h) + v: let
xh(t) = ϕ(t, x0, h) and let

x̃(t) = xh(t) + t
v

T
.
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Then x̃(0) = xh(0) = x0 and x̃(T ) = xh(T ) + v = G(h) + v, so x̃ is a path from x0 to G(h) + v.
The velocity along the path x̃ (defined almost everywhere) is

d

dt
x̃(t) =

d

dt
[xh(t)] +

v

T
= f(xh(t)) + h(t) +

v

T
.

The control k(t) required to achieve the path x̃(t) as a solution to x′ = f(x) + k(t) is the difference
between the velocity vectors along the path and the underlying vector field, so

k(t) =
d

dt
x̃(t)− f(x̃(t)) = f(xh(t)) + h(t) +

v

T
− f(x̃(t)).

We will show that for ‖v‖ sufficiently small ‖k − g‖∞ < r. Let L be the Lipschitz constant for f .
For almost every t ∈ [0, T ],

‖k(t)− g(t)‖ = ‖f(xh(t)) + h(t) +
v

T
− f(x̃(t))− g(t)‖

≤ ‖f(xh(t))− f(x̃(t))‖+ ‖h(t)− g(t)‖+
‖v‖
T

≤ L‖xh(t)− x̃(t)‖+ ‖h(t)− g(t)‖+
‖v‖
T

≤ L ‖v‖+ ‖h− g‖∞ +
‖v‖
T

= ‖v‖ (L+
1

T
) + ‖h− g‖∞

Let εh = r−‖h−g‖∞
L+1/T . Then ‖v‖ < εh implies that ‖k − g‖∞ < r. Because there exists an εh-ball

about any point in G(Br(g)) that is also in the image G(Br(g)), the image of any basis element
under G is open, and the proof is complete.

With Lemma 6.8 in hand, we’re ready to construct attractor blocks from reachable sets and
prove their persistence properties.

Proposition 6.9. If S is a nonempty subset of Rn and if Pr;f (S) is bounded, then for any globally

Lipchitz and bounded vector field f̂ : U → Rn satisfying ‖f − f̂‖sup < r, the set Pr;f (S) (defined

using f) is an attractor block for the flow ϕ̂ generated by f̂ .

Before proving Proposition 6.9, we note that in particular it says that boundedness of Pr;f (S)

implies that Pr;f (S) is an attractor block for the flow generated by f . Intuitively, one can interpret
this result as follows: whenever adding bounded control g results in a bounded reachable set, the
underlying vector field f must be counteracting the control at the boundary of the reachable set,
“pulling inwards” as required for an attractor block. The strength of this inwards pull reflects
the control bound r used to construct the block, and feeds the persistence of the block through
autonomous vector field perturbations.

Proof. (Proposition 6.9) Pr;f (S) is compact since it is closed and bounded; it is nonempty since

it contains S. To confirm that Pr;f (S) is an attractor block for ϕ̂, it will suffice to show that for
any T > 0,

ϕ̂T (Pr;f (S))

(I)︷︸︸︷
⊂

⋃
x0∈Pr;f (S)
‖g‖∞<r

ϕTg (x0)

(II)︷︸︸︷
⊂ int(Pr;f (S)) (21)
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where the controlled flow in the middle term is generated by the vector field f ; that is, ϕTg (x0) =

ϕ(T, x0, g; f). Fix T > 0. For inclusion (I), we first establish that ϕ̂T (x0) ∈
⋃

‖g‖∞<r
ϕTg (x0) for any

point x0 ∈ Rn. Let the path x̂ : [0, T ] → Rn be given by x̂(t) = ϕ̂t(x0); in other words, x̂ solves
the initial value problem [x′ = f̂(x), x(0) = x0]. Note that x̂ also solves the initial value problem
[x′ = f(x) + g(t), x(0) = x0], where g : [0, T ] → Rn is given by g(t) = f̂(x̂(t)) − f(x̂(t)). In the
notation of controlled flow for the vector field f , x̂(T ) = ϕTg (x0). Since by hypothesis ‖g‖∞ ≤
‖f(x)− f̂(x)‖sup < r, it follows that ϕ̂T (x0) = x̂(T ) ∈

⋃
‖g‖∞<r

ϕTg (x0). Inclusion (I) follows directly

by taking the union over x0 ∈ Pr;f (S). We argue inclusion (II) by contradiction. Suppose there

exists x∗ ∈ Pr;f (S) and g∗ ∈ L∞([0, T ],Rn), ‖g∗‖∞ < r, such that ϕTg∗(x
∗) 6∈ int

(
Pr;f (S)

)
. Because

‖g∗‖∞ is strictly bounded below r, taking s =
r−‖g∗‖∞

2 implies Bs(g
∗) ⊂ Br(0) ⊂ L∞([0, T ],Rn).

The map GT,x∗;f is open (Lemma 6.8) so it sends Bs(g
∗) to an open neighborhood O of ϕTg∗(x

∗).

Because ϕTg∗(x
∗) 6∈ int

(
Pr;f (S)

)
, it must be that O ∩

(
Pr;f (S)

)c
6= ∅. Therefore, there exists a

control h ∈ Bs(g) such that ϕTh (x∗) ∈
(
Pr;f (S)

)c
, an open set. Continuity of ϕTh (x) with respect

to x implies that the inverse image of
(
Pr;f (S)

)c
under ϕTh (·) is an open neighborhood V of x∗. V

must intersect Pr;f (S) nontrivially because x∗ ∈ Pr;f (S). Let b ∈ Pr;f (S) ∩ V , so that b ∈ Pr;f (S)
but ϕTh (b) 6∈ Pr;f (S). The contradiction comes from concatenating controls to move from S to b to
outside Pr;f (S). In particular, b ∈ Pr;f (S) implies by Definition 4.1 that there exists τ ≥ 0, a ∈ S,
and j ∈ L∞([0, τ ],Rn), ‖j‖∞ ≤ r, such that b = ϕτj (a). Let k ∈ L∞([0, τ + T ],Rn) be given by

k(t) =

{
j(t) if 0 ≤ t < τ

h(t− τ) if τ ≤ t ≤ τ + T.

Then by construction ϕτ+Tk (a) = ϕTh (ϕτj (a)) = ϕTh (b) 6∈ Pr;(S). Yet since ‖k‖∞ ≤ r, Definition 4.1

implies that ϕτ+Tk (a) ∈ Pr;f (S). This contradiction completes the proof.

Proposition 6.9 does not guarantee any relationship between the set S used to construct the attrac-
tor block Pr;f (S) and the attractor associated with Pr;f (S). For example, if f : R→ R is given by
f(x) = −x(x− 1)(x− 2) and we take a control bound r = 0.5 > supx∈[0,2] ‖f(x)‖, then any subset

S ⊂ [0, 2] will yield the attractor block P0.5;f (S) depicted in light blue in Figure 6, with associated

attractor A = ω(Pr;f (S)) = [0, 2].

On the other hand, if we construct the attractor block Pr;f (A) from an attractor A, we recover
A as the associated attractor under one further condition.

Corollary 6.10. If A is an attractor and if Pr(A) is contained in a compact subset K of D(A),
then Pr(A) is an attractor block associated with A.

Proof. Proposition 6.9 gives that Pr(A) is an attractor block. It follows directly from Definition 2.3
that the omega limit set preserves inclusion, and so ω(A) ⊂ ω(Pr(A)) ⊂ ω(K). By invariance of
A, ω(A) = (A). Further, an open cover argument gives that for K a compact subset of D(A),
ω(K) ⊂ A. It follows that ω(Pr(A)) = A, so the attractor block Pr(A) is associated with the
attractor A.

6.3 Intensity and Continuation Distance

In this subsection we leverage the persistent attractor blocks of Proposition 6.9 and Corollary 6.10
to derive bounds on attractor continuation distance. First, we make precise the notion of contin-
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1 2

-0.5
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Figure 6: Relationship between reachable sets and attractors. For S any subset of [0, 2], the
reachable set under control bound r = 0.5 is the light blue interval, and the associated attractor is
the dark blue interval [0, 2].

uation. Suppose that when a vector field f is perturbed to f̂ , the original attractor A shifts to
another attractor Â, with qualitatively similar features. In what sense has A continued through
the perturbation? We use the following definition, adapted from [17].

Definition 6.11. Given an attractor A for vector field f and an attractor Â for vector field f̂ ,
we say A continues immediately to Â if there exists a set B that is an attractor block associated
with A under the flow generated by f and is an attractor block associated with Â under the flow
generated by f̂ .

Remark. Because A and its immediate continuation Â share a common attractor block, they must
also share any topological properties gleaned from the attractor block.

The next theorem gives our central result: an attractor’s intensity bounds from below the
distance in vector field space over which that attractor continues immediately.

Theorem 6.12. If A is an attractor for vector field f with intensity µ(A), then for any second
vector field f̂ satisfying ‖f − f̂‖sup < µ(A), A continues immediately to an attractor Â for f̂ .

Proof. If ‖f−f̂‖sup < µ(A), then there exists a real number r > 0 such that ‖f−f̂‖sup < r < µ(A).
It follows from Definition 5.1 and Lemma 4.5 that Pr(A) ⊂ K ⊂ D(A) for some compact set
K ⊂ Rn. This implies, by Corollary 6.10, that Pr(A) is an attractor block associated with A for
vector field f . Proposition 6.9 gives that Pr(A) is also an attractor block for vector field f̂ . Defining
Â to be the omega limit set of Pr(A) under f̂ , we have that Pr(A) is an attractor block associated
with attractors A and Â under their respective flows. Hence A continues immediately to Â, as
claimed.

The following example illustrates continuation of the predator-prey limit cycle from Exam-
ple 5.6.

Example 6.13. Consider the predator-prey system eqs. (19) and (20), which for suitable param-
eters features a stable limit cycle A in the first quadrant (see Figure 5(c)). Based on reachable
set computations with the Euclidean norm, we estimated 0.02 < µ(A) < 0.03 in Example 5.6. By
Theorem 6.12, A should continue immediately to an attractor Â for any second vector field that
differs from the original by up to 0.02 in Euclidean sup-norm. Figure 7 illustrates the immediate
continuation Â for three such vector field perturbations: (a) adding 0.02 to dx/dt, (b) subtracting
0.02 from dy/dt, and (c) changing the prey carrying capacity parameter from K = 4 to K = 0.39801
(this parameter change perturbs the vector field by less than 0.02 in a neighborhood of the attractor
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block P0.02(A)). The original cycle A is shown with a solid line, the perturbed attractor Â is shown
with a dashed line, and their common attractor block P0.02(A) is shaded in green. //

Figure 7: Continuation of a predator-prey limit cycle through three time-independent pertubations
to the vector field f . The perturbed vector field f̂ is given above each panel. Solid and dashed
lines give the original and perturbed limit cycle, respectively. The reachable set from the original
limit cycle with control bound r = 0.02 is shaded in green.

Example 6.13 highlights the strength of Theorem 6.12 in guaranteeing attractor continuation
across a variety of perturbation forms, rather than perturbation of a specific parameter.

The closing example in this subsection demonstrates that attractors may continue for vector
field perturbations that exceed intensity of attraction. This does not contradict Theorem 6.12, but
indicates that intensity does not give an upper bound on attractor continuation distance.

Example 6.14. Let x′ = f(x) = x(1 − x). Then A = 1 is an attractor for f with intensity
µ(A) = 0.25. The set B =

[
1
2 ,

3
2

]
is an attractor block associated with A. Consider a second system

x′ = f̂(x) = cx(1 − x) with c > 0. B remains an attractor block associated with {1} for any
such system. Yet the distance ‖f − f̂‖sup may exceed 0.25 by taking c sufficiently large. Thus the

attractor A = 1 continues immediately to Â = 1 despite ‖f − f̂‖sup exceeding µ(A). //

6.4 Upper Semicontinuity of Attractors

Without too much extra effort, the present framework yields a new proof that attractors are upper
semicontinuous—roughly, they do not expand suddenly in response to changes in a vector field.
Formally,

Definition 6.15. An attractor A corresponding to the vector field f is upper semicontinuous if
for any neighborhood V of A there exists a δ > 0 such that any for any second vector field f̂ with
‖f − f̂‖sup < δ, A continues to an attractor Â ⊂ V .

In this subsection we clear some debts by proving Propositions 4.6 and 5.2, then combine
Proposition 4.6 with results on attractor continuation to prove upper semicontinuity of attractors
in our setting (Theorem 6.16).

Proof. (Proposition 4.6) Property (1) is a direct instance of Lemma 4.5. Towards property (2),
fix a neighborhood V of A. Lemma 6.6 gives existence of an attractor block B ⊂ int(V ) associated
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with A. Let δ1 = dist(B, V C) and δ2 = dist(ϕ1(B), BC). Let δ = min{δ1, δ2} and note δ > 0.
By Lemma 3.2 there exists an r̂ > 0 such that for all x ∈ Rn and all t ∈ [0, 1], ‖g‖∞ < r̂ ensures∥∥ϕtg(x)− ϕt(x)

∥∥ < δ/2. Let r = r̂/2. Then ‖g‖∞ ≤ r implies that for t ∈ [0, 1],

ϕtg(B) ⊂ Nδ/2(ϕt(B)) ⊂ Nδ/2(B) ⊂ V (22)

where the second inclusion follows from forward invariance of B and the third from the construction
of δ. Additionally, at time 1 we have

ϕ1
g(B) ⊂ Nδ/2(ϕ1(B)) ⊂ B (23)

with the final inclusion again following from construction of δ. A simple inductive argument based
on inclusions eq. (22) and eq. (23) implies that ϕtg(B) ⊂ V for all t ≥ 0. Since A ⊂ B, this implies
ϕtg(A) ⊂ V for all t ≥ 0 and all ‖g‖∞ ≤ r. By Definition 4.1 we have Pr(A) ⊂ V , establishing
property (2). The inclusion A ⊂

⋂
r>0 Pr(A) of property (3) is immediate. The reverse inclusion

follows from property (2): any point not in A can be excluded from some neighborhood of A and
hence from Pr(A) for some r > 0. Hence any point in Pr(A) for all r > 0 must be in A. This
completes the proof.

Proof. (Proposition 5.2) We wish to show that µ(A) > 0 for any attractor A. Lemma 6.6 gives an
attractor block B associated with A. One can readily verify that B ⊂ D(A). By Proposition 4.6,
there exists an r > 0 such that Pr(A) ⊂ B ⊂ D(A). Definition 5.1 then implies that µ(A) > 0.

Theorem 6.16. Attractors in the present setting are upper semicontinuous in the sense of Defini-
tion 6.15.

Proof. Fix a neighborhood V of an attractor A for x′ = f(x). We will show that there exists a δ
such that ‖f − f̂‖sup < δ implies that A continues immediately to an attractor Â ⊂ V for f̂ . Using
Lemma 2.1, let K be a compact set with A ⊂ int(K) ⊂ K ⊂ V ∩ D(A). Part 2 of Proposition 4.6
gives an r > 0 such that Pr(A) ⊂ int(K). Then Pr(A) ⊂ K ⊂ D(A). Let δ = r. By Proposition 6.9,
‖f − f̂‖sup < r implies that Pr(A) is an attractor block for f̂ . Let Â be the omega limit set of

Pr(A) under f̂ . Then Â is an attractor under f̂ (Lemma 6.4), is an immediate continuation of A
(Definition 6.11), and is contained in V, as desired.

7 Conclusions

We have defined a quantity, intensity of attraction, which gives a lower bound on the magnitude of
vector field perturbations through which an attractor continues to structure the long-term behavior
of trajectories. Intensity is an inherently metric property of an attractor, and its value depends on
the metric used on Rn. Provided that time-dependent perturbations to a vector field are essentially
bounded below the intensity of an attractor, trajectories that start at the attractor remain within
its domain of attraction. And when one autonomous vector field is perturbed to a second one,
an attractor for the first continues immediately to the second as long as the time-independent
perturbation does not meet or exceed its intensity.

An attractor and its immediate continuation share the topological properties encoded in their
common attractor block—and these properties are generally more coarse than the details treated in
earlier works on structural stability [1, 21, 28]. By accepting this coarser lens on system structure
we get attractor persistence not just for “sufficiently small” vector field perturbations, as in [8, 7],
but specifically for perturbations smaller than the attractor’s intensity.
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We envision several extensions of the present work in both applied and theoretical directions.
Efficient numerical algorithms will be an important bridge between intensity theory and the real-
world modeling problems that motivated its development. To compute the intensity of an attractor
we need information about both the domain of attraction and a nested collection of sets reachable
from the attractor. Delineating a domain of attraction in a nonlinear system can be a non-trivial
problem in its own right, and a variety of computational approaches have been developed (see [15]
and references therein). To compute reachable sets quickly, one could pursue numerical strategies
described in [27]. To achieve rigorous bounds on reachable sets, one could use methods based on
interval arithmetic ([9]).

Applying intensity theory to a real-world system will require selecting a metric that best reflects
the perturbations of interest. Here we have considered homogenous, translation-invariant metrics,
carrying the same information as a norm. However, the relevant scale of perturbations might vary
across state space, requiring a metric in its full generality. Furthermore, in certain settings one may
want to restrict perturbations to a single coordinate while leaving others unperturbed. This could
be accomplished with an extended metric. Whether intensity theory goes through for general or
extended metrics remains to be determined.

Another theoretical question with practical implications concerns the relationship between in-
tensity of attraction for discrete [17] and continuous-time dynamics. We conjecture that µ(A) =
lim
t→0

µt(A)/t, where µ gives intensity of an attractor under a flow ϕ (Definition 5.1) and µt gives

intensity of the attractor under the map ϕt (defined in [17], section 5). Proving this connection
would provide a theoretical justification for discretizing time in numerical computations of intensity
µ.

Lastly, we aim to extend the theory of intensity to measure persistence properties of repellers
and other isolated invariant sets. If we can achieve bounds on the persistence of local dynamic
structures, it might be possible to describe how the global structure changes, in stages, under
perturbations of increasing magnitude. We conjecture that this series of changes will reveal a
Morse decomposition of the dynamical system.
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