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Suppose we have a curve in the plane given by the vector equation

r(t) = x(t) i + y(t) j, a ≤ t ≤ b,

where x(t), y(t) are defined and continuously differentiable between t = a
and t = b. You can think of t as time. so that we have a particle located at
the point (x(t), y(t)) at time t and it traces out a trajectory as t goes from a
to b. Let’s also assume that the particle never stops, i.e. that its speed

ds

dt
=

√

ẋ2(t) + ẏ2(t) > 0

for all times between a and b. The instantaneous velocity vector (or tangent
vector) to the curve is

ṙ(t) = ẋ(t) i + ẏ(t) j.

We can also parameterize the curve by using arc length. Thus the arc length
of the curve from the point (x(a), y(a)) to the point x(t), y(t)) is

s(t) =
∫ t

a

√

ẋ2(τ) + ẏ2(τ) dτ =
∫ t

a
||ṙ(τ)|| dτ.

By the fundamental theorem of calculus we have

ds = ||ṙ(t)|| dt =
√

ẋ2(t) + ẏ2(t) dt, (1)

so we can either parameterize the curve by t or by the arc length s, and the
equation (1) relates the two variables.
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For any value of t the tangent vector ṙ(t) makes an angle φ(t) with the
positive x axis. Thus we can write ṙ(t) in polar coordinates as

ṙ(t) = ||ṙ(t)||(cosφ(t) i + sin φ(t) j).

As the tangent vector moves along the curve it rotates in a counterclockwise
or clockwise direction, depending on whether φ is increasing or decreasing.
It should be clear from this that the derivative

dφ

dt

gives information about how fast the curve is turning, and whether it is
turning in a clockwise or counterclockwise direction. This information is, es-
sentially, what we mean by the curvature of the curve at the point (x(t), y(t)).

However, the same curve can be parameterized in many different ways and
the value of dφ

dt
will depnd on the parameterization. To get a measure of how

fast the curve is turning that depends on the curve alone, and not the specific
parameterization, we fix on arc length s as a standard parameterization for
the curve. Thus the curvature k at a point (x, y) on the curve is defined as
the derivative

k =
dφ

ds
=

dφ

dt

dt

ds
,

where we have used the chain rule in the last equality. To compute the
curvature from (x(t), y(t)) we note that

tan φ(t) =
ẏ(t)

ẋ(t)
.

Differentiating both sides of this equation implicitly with respect to t we find

sec2 φ
dφ

dt
=

d

dt

(

ẏ

ẋ

)

=
ÿẋ − ẏẍ

(ẋ)2
.

Now

sec2 φ = tan2 φ + 1 = (
ẏ

ẋ
)2 + 1 =

ẋ2 + ẏ2

ẋ2
,

so we can solve for dφ
dt

to get

dφ

dt
=

ÿẋ − ẏẍ

ẋ2 + ẏ2
.
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Finally from (1) we get

k =
dφ

ds
=

dφ

dt

dt

ds
= (

ÿẋ − ẏẍ

ẋ2 + ẏ2
)(

1√
ẋ2 + ẏ2

) =
ÿẋ − ẏẍ

(ẋ2 + ẏ2)3/2
. (2)

Thus

k =
dφ

ds
=

ÿẋ − ẏẍ

(ẋ2 + ẏ2)3/2
,

which is the expression for curvature that appears in the course booklet.
Note that if the curve is a straight line x = x0 + at, y = y0 + bt then

k = 0 for all points on the line, i.e., the curvature is zero. If the curve is a
circle with radius R, i.e.

x = R cos t, y = R sin t,

then k = 1/R, i.e., the (constant) reciprocal of the radius. In this case
the curvature is positive because the tangent to the curve is rotating in a
counterclockwise direction.

In general the curvature will vary as one moves along the curve. For exam-
ple, consider the parabola y = x2. We can express this curve parametrically
in the form

x = t, y = t2,

so that we identify the parameter t with x. Then ẋ = 1, ẍ = 0, ẏ = 2t, ÿ = 2,
so

k =
2

(1 + 4t2)3/2
=

2

(1 + 4x2)3/2

at the point (x, y) = (x, x2) on the curve.
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