The Formula for Curvature

Willard Miller

October 26, 2007

Suppose we have a curve in the plane given by the vector equation

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, \quad a \leq t \leq b
$$

where $x(t), y(t)$ are defined and continuously differentiable between $t=a$ and $t=b$. You can think of t as time. so that we have a particle located at the point $(x(t), y(t))$ at time t and it traces out a trajectory as t goes from a to b. Let's also assume that the particle never stops, i.e. that its speed

$$
\frac{d s}{d t}=\sqrt{\dot{x}^{2}(t)+\dot{y}^{2}(t)}>0
$$

for all times between a and b. The instantaneous velocity vector (or tangent vector) to the curve is

$$
\dot{\mathbf{r}}(t)=\dot{x}(t) \mathbf{i}+\dot{y}(t) \mathbf{j} .
$$

We can also parameterize the curve by using arc length. Thus the arc length of the curve from the point $(x(a), y(a))$ to the point $x(t), y(t))$ is

$$
s(t)=\int_{a}^{t} \sqrt{\dot{x}^{2}(\tau)+\dot{y}^{2}(\tau)} d \tau=\int_{a}^{t}\|\dot{\mathbf{r}}(\tau)\| d \tau
$$

By the fundamental theorem of calculus we have

$$
\begin{equation*}
d s=\|\dot{\mathbf{r}}(t)\| d t=\sqrt{\dot{x}^{2}(t)+\dot{y}^{2}(t)} d t \tag{1}
\end{equation*}
$$

so we can either parameterize the curve by t or by the arc length s, and the equation (1) relates the two variables.

For any value of t the tangent vector $\dot{\mathbf{r}}(t)$ makes an angle $\phi(t)$ with the positive x axis. Thus we can write $\dot{\mathbf{r}}(t)$ in polar coordinates as

$$
\dot{\mathbf{r}}(t)=\|\dot{\mathbf{r}}(t)\|(\cos \phi(t) \mathbf{i}+\sin \phi(t) \mathbf{j})
$$

As the tangent vector moves along the curve it rotates in a counterclockwise or clockwise direction, depending on whether ϕ is increasing or decreasing. It should be clear from this that the derivative

$$
\frac{d \phi}{d t}
$$

gives information about how fast the curve is turning, and whether it is turning in a clockwise or counterclockwise direction. This information is, essentially, what we mean by the curvature of the curve at the point $(x(t), y(t))$.

However, the same curve can be parameterized in many different ways and the value of $\frac{d \phi}{d t}$ will depnd on the parameterization. To get a measure of how fast the curve is turning that depends on the curve alone, and not the specific parameterization, we fix on arc length s as a standard parameterization for the curve. Thus the curvature k at a point (x, y) on the curve is defined as the derivative

$$
k=\frac{d \phi}{d s}=\frac{d \phi}{d t} \frac{d t}{d s}
$$

where we have used the chain rule in the last equality. To compute the curvature from $(x(t), y(t))$ we note that

$$
\tan \phi(t)=\frac{\dot{\dot{y}}(t)}{\dot{x}(t)}
$$

Differentiating both sides of this equation implicitly with respect to t we find

$$
\sec ^{2} \phi \frac{d \phi}{d t}=\frac{d}{d t}\left(\frac{\dot{y}}{\dot{x}}\right)=\frac{\ddot{y} \dot{x}-\dot{y} \ddot{x}}{(\dot{x})^{2}} .
$$

Now

$$
\sec ^{2} \phi=\tan ^{2} \phi+1=\left(\frac{\dot{y}}{\dot{x}}\right)^{2}+1=\frac{\dot{x}^{2}+\dot{y}^{2}}{\dot{x}^{2}}
$$

so we can solve for $\frac{d \phi}{d t}$ to get

$$
\frac{d \phi}{d t}=\frac{\ddot{y} \dot{x}-\dot{y} \ddot{x}}{\dot{x}^{2}+\dot{y}^{2}} .
$$

Finally from (1) we get

$$
\begin{equation*}
k=\frac{d \phi}{d s}=\frac{d \phi}{d t} \frac{d t}{d s}=\left(\frac{\ddot{y} \dot{x}-\dot{y} \ddot{x}}{\dot{x}^{2}+\dot{y}^{2}}\right)\left(\frac{1}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}\right)=\frac{\ddot{y} \dot{x}-\dot{y} \ddot{x}}{\left(\dot{x}^{2}+\dot{y}^{2}\right)^{3 / 2}} . \tag{2}
\end{equation*}
$$

Thus

$$
k=\frac{d \phi}{d s}=\frac{\ddot{y} \dot{x}-\dot{y} \ddot{x}}{\left(\dot{x}^{2}+\dot{y}^{2}\right)^{3 / 2}},
$$

which is the expression for curvature that appears in the course booklet.
Note that if the curve is a straight line $x=x_{0}+a t, y=y_{0}+b t$ then $k=0$ for all points on the line, i.e., the curvature is zero. If the curve is a circle with radius R, i.e.

$$
x=R \cos t, \quad y=R \sin t
$$

then $k=1 / R$, i.e., the (constant) reciprocal of the radius. In this case the curvature is positive because the tangent to the curve is rotating in a counterclockwise direction.

In general the curvature will vary as one moves along the curve. For example, consider the parabola $y=x^{2}$. We can express this curve parametrically in the form

$$
x=t, \quad y=t^{2}
$$

so that we identify the parameter t with x. Then $\dot{x}=1, \ddot{x}=0, \dot{y}=2 t, \ddot{y}=2$, so

$$
k=\frac{2}{\left(1+4 t^{2}\right)^{3 / 2}}=\frac{2}{\left(1+4 x^{2}\right)^{3 / 2}}
$$

at the point $(x, y)=\left(x, x^{2}\right)$ on the curve.

