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Algebraic Curves over Finite Fields

Fq, @ nite eld containing g elements, wherej is a power of a prime.

Fq is a eld extension;F is an algebraic closure.

qk
Nonsingular Projective Plane Curve (smooth model chosen)

C:f(x;y)=0 plus a single point at in nity :

C(Fq) C(Fgu) C(Fge) C(Fq)

for any sequence of natural numbergkdjksj :::.
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Algebraic Curves over Finite Fields

Fq, @ nite eld containing g elements, wherej is a power of a prime.

Fq is a eld extension;F is an algebraic closure.

qk
Nonsingular Projective Plane Curve (smooth model chosen)

C:f(x;y)=0 plus a single point at in nity :

C(Fq) C(Fgu) C(Fge) C(Fq)

for any sequence of natural numbergkdjksj :::.
The Frobenius map acts on curveC over nite eld Fq via

(xb)y=(a%;b% and (Py)= Py:
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The Frobenius map acts on curveC over nite eld Fq via

(xb)=(a%b% and (Py)= P;:

For point P2 C(Fy),

(P) 2 C(Fy):

For point P2 C(Fy),

“(P)= P:

Let Ny be the number of points on curv€, over nite eld Fqk.

Alternatively, Ny counts the number of points ii€(Fq) which are xed by
the kth power of the Frobenius map,.
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Nk = JC(Fgx)j counts the number of points i€ (Fqy) which are xed by
the kth power of the Frobenius map,.

Using this sequence, we de ne tleeta function of an algebraic variety ,
which can be written several di erent ways, including as atpenential
generating function.

3 Tk X
Z(C;T) = exp Ne— =1+ H TK
k=1 k 1
Y 1 : o
= p 1 Tdap where p is a prime ideal
Y 1 X
S = = -
(s) o 1 ps ns
p prime integer n 1
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Theorem (Rationality - Weil 1948)

(@I aT)A  2T) (@ 29 aT)A  24T)
1 T qaT)

Z(C;T)=

for complex numbers ;'s, where g is the genus of the curve C.
Furthermore, the numerator of ZC; T) has integer coe cients.
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Theorem (Rationality - Weil 1948)

(@I aT)A  2T) (@ 29 aT)A  24T)

Z(&T)= @ T q1)

for complex numbers ;'s, where g is the genus of the curve C.
Furthermore, the numerator of ZC; T) has integer coe cients.

Theorem (Functional Equation - Weil 1948)

Z(C;T)= g 'T? 2Z(C;1=qT)

Nk

pk[l+qg 1 291
1+ q¢ f 5

The Zeta Function of curveC of genusg, hence the entire
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Elliptic Curves, and a Combinatorial InterpretationNgf

Specializing to the case of an elliptic cur&® or a genus one curve, a lot
more is known and there is additional structure.

Facts
@ E can be represented as the zero locuPiof the equation

y>=x3+ Ax+ B

for AJB 2 Fq. (ifp 62; 3)
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Elliptic Curves, and a Combinatorial InterpretationNgf

Specializing to the case of an elliptic cur&® or a genus one curve, a lot
more is known and there is additional structure.

Facts
@ E can be represented as the zero locuPiof the equation

y>=x3+ Ax+ B

for AJB 2 Fq. (ifp 62; 3)
© E has a group structure where two points on E can be added ttyji
another point on the curve.

© The Frobenius map is compatible with the group structure:
P Q= (P) (Q):
Recall that (x;y) = (x9%;y%) and

~

“(P)= P if and only if P 2 E(Fy):
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Elliptic Curve Group Law Geometrically

Draw Chord/Tangent Line and then re ect about horizontal &«
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Elliptic Curve Group Law Algebraically

If P1=(X1;Y¥1); P2 =(X2;¥2), then
P1  Py= P3=(X3;y3) where

1) If x; 6 X, then

X3=m? X3 X and yz= m(xy X3) VY1 with m= Y 1.
X2 X1
2) If Xg = X2 but (y1 6 y2, 0ory; =0 = y,) thenP3 = Py .
3) If PL = P, andy; 6 0, then
2 4
X3= m?> 2 and y3= m(x; X3) VYy; with m= 3X12y A:
1

4) P, acts as the identity element in this addition.
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Rationality (Hasse 1933)
oy (I aT)X  2T) _ 1 (1+qg NyT +qT?
2ED= " e an @ N qn

for complex numbers; and 5. (Infactj 1j=j 2 = P q:)

Functional Equation

Z(E;1=qT)= Z(E;T):
Nk = pfl+qg 1 2]
= 1+ ¢ 1 2

and the Functional Equation implies
1 2= 0

Thus the entire sequence ®y's, for elliptic curveE, only depends om

and N;.
December 3, 2009 10/ 46
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Theorem (Garsia 2004)

For an elliptic curve, we can write Nas a polynomial in terms of Nand
g such that

oo _
Ne= (1) "Pei(@N;
i=1
where each P; is a polynomial in g with positive integer coe cients.

v
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Theorem (Garsia 2004)

For an elliptic curve, we can write Nas a polynomial in terms of Nand
g such that

Xk _ .
Ne= (1) *Pei(@Ng
i=1

where each P; is a polynomial in g with positive integer coe cients.

v

N2 = (2+2q)Ny Nf

N3 = (3+3q+30¢) N1 (3+3q)N{+ N}

Ny = (4+409+49q°+40°)N;  (6+8q+609* )Nf+(@+4 q)N7 Nf

Ns = (5+5q+592+5q°+5qg*)N; (10 +15q+15q2 + 10g%)N?
+ (10+15q+10g%)N3 (5+5q)N7 + N?

What is a combinatorial interpretation of these expressipne. of the
Pk;i'S?
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And now for something completely di erent ...
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And now for something completely di erent ...

Graph Theory Terminology:

Let G =(V;E) be a nite graph. (We allow multiple edges between
vertices, but not loops.)

A spanning tree (of an undirected graph) is a connected subgraph
without cycles that is incident to all vertices.
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And now for something completely di erent ...

Graph Theory Terminology:

Let G =(V;E) be a nite graph. (We allow multiple edges between
vertices, but not loops.)

A spanning tree (of an undirected graph) is a connected subgraph
without cycles that is incident to all vertices.

We now considedirected graphs, edges are oriented.
Single out one of the verticesyp. We call this theroot of G.

A rooted oriented spanning tree of G is a spanning tree of the
underlying undirected graph, and orientations of edgesnglthe tree are
chosen so that all edges point towards the root.
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More Graph Theory Terminology: The Laplacian Matrix

The Laplacian matrix of a graph has diagonal entrie (outdegree ofv;)
and o -diagonal entries d; (number of directed edges from to v;).

Example: letG = with the root vertexvp in red. Then

2 3
1 0 0 O 1
O 1 0 1 o0
L(G)=R O 1 2 1 04%: (Rows=Columns indexed as0; 1;2; 3;4)
O 0 o0 2 2
1 0 0 O 1
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A Family of Examples

We let Wy denote the wheel graph which consistslofvertices on a circle
and a central vertex which is adjacent to every other vertex.

Note that a spanning tree will consist of arcs on the rim andkes.
We construct a family of digraphs (directed with multiple ges allowed)
whose vertex set equal thé/y's.
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We replace each rim edge withh clockwise edges and 1 counter-clockwis
edge.

We replace each spoke withspokes pointing towards the root.

-
/ -
//"'

~

The (q;t)-wheel graphs Wi(q:t) fork 1.
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Wi (a;t) =
The number of rooted oriented spanning trees in graphWy (q;t):

Theorem (M- 2007)

Wi(g;t) can be written as a positive bivariate integer polynomiatisu
that the coe cient of t ' in Wy (q;t) equals R.i(q) in

X« _ .
Ne= (1) *Pi(@N:
i=1

In other words,Wy(q; Ni) = Ng.
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The W(q; t)'s are integer polynomials

Wi(q;t) =
The number of rooted oriented spanning trees in graphWy(q; t):

The Laplacian Matrix forWy(q;t) is

21+q+t q 0 e 0 1 t3

1 1+g+t q 0 e 0 t

e i e i i e t

L = 0 e 1 1+qg+t q 0 t
0 o 0 1 1+qg+t q t

q 0 n 0 1 1+g+t t

t t t Sl t t kt

The last row and column correspond to hub vertex, the root.
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Proof of Integrality by the Matrix-Tree Theorem

By the Matrix-Tree theorem, the number of directed rootedasming trees

is det(Lx)o where ()0 is matrix Ly with the last row and last column
deleted.

Gregg Musiker (MIT/MSRI)
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Proof of Integrality by the Matrix-Tree Theorem

By the Matrix-Tree theorem, the number of directed rootedasming trees
is det(Lx)o where ()0 is matrix Ly with the last row and last column
deleted.

1+qg+t 1 g
1 g 1+qg+t
k-by-k \three-line" circulant matrix

Let M1 =[t], My = ,and fork 3, let My be the

2
1+q+t q 0 N 0 1
1 1+q+t q 0 T 0
0 Tl 1 1+q+t q 0
0 Tl 0 1 l1+qg+t q
q 0 B 0 1 1+qg+t

Theorem (M- 2007)

Wi (q;t) = det My and Ne(q;t) = detMyji= N,
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The W\'s also are the cardinalities of a sequence of grc

Consider thequotient group

K(Gvo) = ZVOI Y 1m (Lo

where (k)¢ is the Laplacian matrix of grapls with the row and column
corresponding tovg deleted.

JK(G;vo)j = # Spanning Trees in GraphG
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The W\'s also are the cardinalities of a sequence of grc

Consider thequotient group

K(Gvo) = ZVOI Y 1m (Lo

where (k)¢ is the Laplacian matrix of grapls with the row and column
corresponding tovg deleted.

JK(G;vo)j = # Spanning Trees in GraphG

This group goes by many namesstical group of graph G (w.r.t. vp)
from Biggs. Also known as thdacobian of a graph, studied by
Baker-Norine,Group of components by Lorenzini, andSandpile group
by Dhar, Gabrielov, among others.

Alternative de nition with explicit coset representatives shortly.
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Critical Group of The Complete Graph

The complete graptK,, hasn vertices and 2 edges, one between each
pair of vertices.
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The complete graptK,, hasn vertices and 2 edges, one between each
pair of vertices. The number of spanning treeskf is n" 2.
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Theorem (Lorenzini 1991)
The critical group K(K,,) decomposes a&=nz)" 2.

For a given family of graphs (e.dWg, Cn, Pn, products (such as
hypercubeQy) ), can be nontrivial to nd K(G).
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Critical Group of The Complete Graph

The complete graptK,, hasn vertices and 2 edges, one between each
pair of vertices. The number of spanning treeskf is n" 2.

Theorem (Lorenzini 1991)
The critical group K(K,,) decomposes a&=nz)" 2.

For a given family of graphs (e.dWg, Cn, Pn, products (such as
hypercubeQy) ), can be nontrivial to nd K(G).

For example, decomposition & (W) involves Fibonacci numbers
(Biggs).
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Chip-Firing: (Berner, Lovasz, Shor 1991)

@ Assign a nonnegative integer val@ to each vertexv;
(number of chips).

Q@ Start with vertexv;.

© If G, the number of chips omw;, is greater than or equal to the
outdegree ofv;, then vertexv; res. Otherwise move on ti.; .

Q If vertexv; res, then we taked; chips o of v; and distribute them to
v;'s neighbors.

@ NowG := G d andC = G + dj if vj is a neighbor ofy.
© We continue until we get tov,.
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Chip-Firing: (Berner, Lovasz, Shor 1991)

@ Assign a nonnegative integer val@ to each vertexv;
(number of chips).

Q@ Start with vertexv;.

© If G, the number of chips omw;, is greater than or equal to the
outdegree ofv;, then vertexv; res. Otherwise move on ti.; .

Q If vertexv; res, then we taked; chips o of v; and distribute them to
v;'s neighbors.

@ NowG := G d andC = G + dj if vj is a neighbor ofy.
© We continue until we get tov,.

@ We then start over withv; and repeat.

© We continue forever or terminate when &} < d;.
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We consider a variant due to Norman Biggs known as Dellar Game:
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We consider a variant due to Norman Biggs known as Dellar Game:

@ We designate one vertexy to be the bank, and allowC, to be
negative. All the otherCi's still must be nonnegative.
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We consider a variant due to Norman Biggs known as Dellar Game:

@ We designate one vertexy to be the bank, and allowC, to be
negative. All the otherCi's still must be nonnegative.

Q Eo limit extraneous con gurations, we presume that the sum
#¥ 1C =0. (Thus in particular, Cy will be non-positive.)
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We consider a variant due to Norman Biggs known as Dellar Game:

@ We designate one vertexy to be the bank, and allowC, to be
negative. All the otherCi's still must be nonnegative.

Q Eo limit extraneous con gurations, we presume that the sum
#¥ 1C =0. (Thus in particular, Cy will be non-positive.)
© The bank, i.e. vertexy, is only allowed to re if no other vertex can
re. Note that since we now allowCy to be negative,v, is allowed to

re even when it is smaller than its outdegree.
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A con guration is stable if v is the only vertex that can re

A con guration C is recurrent if there is ring sequence which will lead
back to C.

(Note that this will necessarily require the use wf ring.)

We call a con gurationcritical if it is both stable and recurrent.
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A con guration is stable if v is the only vertex that can re

A con guration C is recurrent if there is ring sequence which will lead
back to C.

(Note that this will necessarily require the use wf ring.)

We call a con gurationcritical if it is both stable and recurrent.

Theorem (Gabrielov 1993)

For any initial con guration C with !‘:O C=0and G O for all

1 i Kk, there exists ainique critical con guration that can be reached
by an allowable ring sequence.
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Coset Representatives for Critical Group

We can de neK(G;vp) to be the set ofcritical con gurations with
addition given byC; G, = C; + C,.

Here + signi es the usual pointwise vector addition ar@ represents the
unique critical con guration in the same coset &, modulo the Laplacian.

When vy is understood, we will abbreviate this group as the critigabup
of graphG, and denote it aK (G).
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Coset Representatives for Critical Group

We can de neK(G;vp) to be the set ofcritical con gurations with
addition given byC; G, = C; + C,.

Here + signi es the usual pointwise vector addition ar@ represents the
unique critical con guration in the same coset &, modulo the Laplacian.

When vy is understood, we will abbreviate this group as the critigabup
of graphG, and denote it aK (G).

Corollary (Gabrielov 1993)
K(G) is an abelian (associative) group.
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For example, consider the following two wheels with chiptritisitions as
given. These are both critical con gurations.

We do not label the number of chips on the hub vertex sinceddtc

o . 4,,7//

If we add these together pointwise we obtain
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This is not a critical con guration, but by the theorem, redes to a
unique critical con guration.
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This last one is critical.
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Critical Groups ofd; t)-Wheel Graphs

We want to analogize theory of elliptic curves: For exampleere is a
tower of groups

E(Fq) E(Fga) E(Fgo) E(Fo)
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Critical Groups ofd; t)-Wheel Graphs

We want to analogize theory of elliptic curves: For exampleere is a
tower of groups

E(F)) E(Fgu) E(Fge) E(Fq)
Understanding the sequence of Critical Groups:
K(Wa(g;1)); K(Wa(q;t)); K(Ws(a;t)); :::

The set Elements of the critical grougk (W (q;t)) is a subset of the
set of lengthk words in alphabet0; 1;2;:::;q+ tg.
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Example: [24;2] [0;4;1] [1;0;4] in W3(q=3;t =2) versus
4 4 (@]

T T o

[2,4,2,2,4,2] [0;4;1,0;4;1] [1,0;4;1,0;4] in We(q = 3;t =2)
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Proposition

Themap :w! www:::w is an injective group homomorphism
between KWy, (q;t)) and K(W,,(q;t)) whenever kjk,. Here map
replaces w with k=k; copies of w.
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Themap :w! www:::w is an injective group homomorphism
between KWy, (q;t)) and K(W,,(q;t)) whenever kjk,. Here map
replaces w with k=k; copies of w.

De ne to be the counter-clockwise rotation map df(Wy(Qq;t)).

Proposition

The kernel of(1 k1) acting on K(W,(q;t)) is isomorphic to the
subgroup KWy, (q;t)) whenever kka.
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Proposition

The kernel of(1 k1) acting on K(Wk,(q;t)) is isomorphic to the
subgroup KW, (q;t)) whenever kjks.

We therefore can de ne a direct limit

_ 5
KW(a;t)) = K(Wk(a;t))
k=1

where provides the transition maps.
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Proposition

The kernel of(1 k1) acting on K(Wx,(q;t)) is isomorphic to the
subgroup KW, (q;t)) whenever kjks.

We therefore can de ne a direct limit

_ 5
KW(a;t)) = K(Wk(a;t))
k=1

where provides the transition maps.
In particular we obtain

K(Wg(g;t)) = Ker(  *): K(W(q;t)) ! K(W(g;t)):
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Shift map is the wheel graph-analogue of the Frobenius mapn
elliptic curves.
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2 There is a characteristic equation 2 (1+qg Ni) +g=0o0n
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Ker( *):E(Fgq)! E(Fy):

K (Wk(q;t))
E(Fqk)

2 There is a characteristic equation 2 (1+qg Ni) +g=0o0n
E(Fq), an elliptic curve over the algebraic closure.

We get an analogous equation 2 (1+qg+t) +g=0o0n
K(W(a;1)).

Gregg Musiker (MIT/MSRI) Elliptic Curves and Chip-Firing December 3, 2009 32/ 46



Shift map is the wheel graph-analogue of the Frobenius mapn
elliptic curves.

1

Ker(l X):K(W(q;t))! K(W(q;t)) justas
Ker( *):E(Fgq)! E(Fy):

K (Wk(q;t))
E(Fqk)

2 There is a characteristic equation 2 (1+qg Ni) +g=0o0n
E(Fq), an elliptic curve over the algebraic closure.

We get an analogous equation 2 (1+ g+ t) + =0 on
K(W (q;t)). (Linear Algebraic Techniques su ce)

Gregg Musiker (MIT/MSRI) Elliptic Curves and Chip-Firing December 3, 2009 32/ 46



Shift map is the wheel graph-analogue of the Frobenius mapn
elliptic curves.

1

Ker(l X):K(W(q;t))! K(W(q;t)) justas
Ker( *):E(Fgq)! E(Fy):
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E(Fqk)

2 There is a characteristic equation 2 (1+qg Ni) +g=0o0n
E(Fq), an elliptic curve over the algebraic closure.

We get an analogous equation 2 (1+ g+ t) + =0 on
K(W (q;t)). (Linear Algebraic Techniques su ce)

3 Both the collection ofE(Fq)'s and K(Wk(q;t))'s are abelian groups
which decompose into at most two cyclic subgroups.
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Ker( *):E(Fgq)! E(Fy):

K (Wk(q;t))
E(Fqk)

2 There is a characteristic equation 2 (1+qg Ni) +g=0o0n
E(Fq), an elliptic curve over the algebraic closure.

We get an analogous equation 2 (1+ g+ t) + =0 on
K(W (q;t)). (Linear Algebraic Techniques su ce)

3 Both the collection ofE(Fq)'s and K(Wk(q;t))'s are abelian groups

which decompose into at most two cyclic subgroups. (Prod the
Smith normal form of Laplacian matrix.)
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Shift map is the wheel graph-analogue of the Frobenius mapn
elliptic curves.

1

Ker(l X):K(W(q;t))! K(W(q;t)) justas
Ker( *):E(Fgq)! E(Fy):

K (Wk(q;t))
E(Fqk)

2 There is a characteristic equation 2 (1+qg Ni) +g=0o0n
E(Fq), an elliptic curve over the algebraic closure.

We get an analogous equation 2 (1+ g+ t) + =0 on
K(W (q;t)). (Linear Algebraic Techniques su ce)

3 Both the collection ofE(Fq)'s and K(Wk(q;t))'s are abelian groups
which decompose into at most two cyclic subgroups. (Prod the
Smith normal form of Laplacian matrix.)

4 One last surprising connection ...
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Behavior of Torsion Subgroups I6{W (q;t))

4 The GroupK (W (q;t)) (the direct limit of the K (W (q;t))'s)
contains the subgrouZ=nzZ for alln 1, and

K (W (q;t)) contains the subgrouz=nZ Z=nZ if and only ifn and
g are coprime.
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Behavior of Torsion Subgroups I6{W (q;t))

4 The GroupK (W (q;t)) (the direct limit of the K (W (q;t))'s)
contains the subgrouZ=nzZ for alln 1, and

K (W (q;t)) contains the subgrouz=nZ Z=nZ if and only ifn and
g are coprime.

(Analogous toE(F_q) whenE is an ordinary elliptic curve.)

What does the proof use? ....

Given an integer n 1, does there exist a k 1 such that n divides the
kth Fibonacci number?
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Behavior of Torsion Subgroups I6{W (q;t))

4 The GroupK (W (q;t)) (the direct limit of the K (W (q;t))'s)
contains the subgrouZ=nzZ for alln 1, and

K (W (q;t)) contains the subgrouz=nZ Z=nZ if and only ifn and
g are coprime.

(Analogous toE(F_q) whenE is an ordinary elliptic curve.)

What does the proof use? ....

Given an integer n 1, does there exist a k 1 such that n divides the
kth Fibonacci number?

Answer provided by a result of D.D Wall from 1960.
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Lemma (Wall 1960)

The sequencéFy, modn:k 2 Zgis periodic, and g 0 modn for
some k 1.

Proof. Finite number (i) of possibilities for a window of length two, and
an in nite number ofk. Thus there will be two identical windows.
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Proof. Finite number (i) of possibilities for a window of length two, and
an in nite number ofk. Thus there will be two identical windows.

Using linear recurrence in both directions, we obtain pdraity.
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Lemma (Wall 1960)

The sequencéFy, modn:k 2 Zgis periodic, and g 0 modn for
some k 1.

Proof. Finite number (i) of possibilities for a window of length two, and
an in nite number ofk. Thus there will be two identical windows.

Using linear recurrence in both directions, we obtain pdraity.

Letting F; = F, = 1 and running recurrence backwardBg = 0. Thus
Fi, O modn for somekp, 1 too.
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Application to Torison Groups

Theorem (M- 2009)

For k 3, the Smith normal form of(Ly)o is equivalent to a direct sum of
the identity matrix and

aFx 4+1 qgFx 2 di 0

: dqjd
Fo 2 Fa 1 0 d e

whereF, denotes a bivariate analogue of the Fibonacci numbers:

We let S range over all subsetd; 2;:::; 2kg with no two consecutive
elements, and de ne

X .
IeZk(q;t) = q# even elements in S tk #S:

S
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Application to Torison Groups

Theorem (M- 2009)

For k 3, the Smith normal form of(Ly)o is equivalent to a direct sum of
the identity matrix and

aFx 4+1 qgFx 2 di 0

: dqjd
Fo 2 Fa 1 0 d e

whereF, denotes a bivariate analogue of the Fibonacci numbers:

We let S range over all subsetd; 2;:::; 2kg with no two consecutive
elements, and de ne

X .
IeZk(q;t) = q# even elements in S tk #S:

S

The Fi's satisfy the reccurenc€ar = (1+ q+ t)Fay  qFx 2
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Factorizations ofNy and Elliptic Cyclotomic Polynomials
Wi(a;t) = N o ¢ = P K Pri(a) t' forall k 1

My be thek-by-k \three-line" circulant matrix

2
1+q+t q 0 N 0 1
1 1+q+t q 0 i 0
0 T 1 1+q+t q 0
0 B 0 1 1+q+t q
q 0 0 1 1+qg+t

Let My = M_kjt: Ny~

Corollary (M- 2007)

The sequence of integersyN= # E(Fqx) satis es the relation

Ny = detMg for all k  1:

Gregg Musiker (MIT/MSRI)
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Elliptic Cyclotomic Polynomials

We have a determinantal formula fd«,, and

Combinatorial interpretations for the summands when weta, as an
alternating sum in powers dfl;
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Elliptic Cyclotomic Polynomials

We have a determinantal formula fd«,, and

Combinatorial interpretations for the summands when weta, as an
alternating sum in powers dfl;

We now look at factorizations oNy into Z[q; N1] polynomials.

eg: N2=N; 2+29 N

Motivates a combinatorial interpretation of(Fg«) as Cartesian Product
of smaller subsets.
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N2

N3

Na

+

N1

N1

N1

N1

(10 + 15 q + 10g?)N?

N1 2+29 N;

(a

2+2q N,
(3+3g+309?
2+2q N;

(5+5q+509?+5q3+5q%

2

q+1)

Gregg Musiker (MIT/MSRI)

(292 +2)

(3+3q+309?

(q+1)Ny + N2

Elliptic Curves and Chip-Firing

(3+3q)Ng + N?

(29 +2) Ny + N?

(5+5q)N3 + N

(3+3q)Ny + N?

December 3, 2009
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Factoring Ny in general:

Theorem (M- 2007)

There exists integral polynomials, which we will denote &yg, in Ny
and g, only depending on d such that

Y
Nk(N1; Q) = ECyq:
djk

Compare with 1 xX = dek Cyg(X).
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Factoring Ny in general:

Theorem (M- 2007)

There exists integral polynomials, which we will denote &yg, in Ny
and g, only depending on d such that

Y
Nk(N1; Q) = ECyq:
djk

Compare with 1 xX = dek Cyg(X).

We call theseElliptic Cyclotomic Polynomials .

ECyG (d; N1) = Cyq( 1)Cyq( 2) where ; and , are the two complex
roots of quadratic 7 (1+ g Ni)T + ¢, and

Y
Cya()= (1 x°) @
ejd
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ECya
ECyce
ECyq
ECya
ECyg

ECyg

N1

2+2q N;

3+3q+30¢%) (3+3q)Ny+ N7

29°+2) (29+2)Ny+ Nf
(5+5q+5q°+509>+5q%) (10 +15q+ 15q° + 10G°)N;
(10 +15q+109%)N? (5+5q)NJ + N

(0 g+1) (g+1)Ny+ N?

Proposition (M- 2007)

ECyq = Cyw(1) Cyw(a)
N1=0

where Cyg(1) =0; Cyg(1) = p if d = pX and Cyg(1) equalsil
otherwise.
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X&)

Ford 2 ECya(a;Ni1)= Cyq(l) Cya(a)+  ( 1)'Qia(q)Ni
i=1

where Q.4 is a univariate polynomial with positive integer coe ciesit
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XD . .
Ford 2 ECyg(g;N1) = Cyaw(l) Cyw(a)+  ( 1)'Qia(g)N;
i=1

where Q.4 is a univariate polynomial with positive integer coe ciesit

Truefor2 d 104.
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XD . .
Ford 2 ECyg(g;N1) = Cyaw(l) Cyw(a)+  ( 1)'Qia(g)N;
i=1

where Q.4 is a univariate polynomial with positive integer coe ciesit

Truefor2 d 104.

However, Conjecture fails fat = 105.
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Nonetheless, we can give a geometric interpretation of tladues
ECy(q; Ny) for a giveng and N1 = JE(Fq)j.
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Nonetheless, we can give a geometric interpretation of tladues
ECy(q; Ny) for a giveng and N1 = JE(Fq)j.

Theorem (M- 2007)

ECyq(q;N1) = Ker Cyg( ) : E(Fq)

where Cyg( ) denotes the isogeny obtained from the dth Cyclotomic
polynomial of the Frobenius map.

KerM = fP 2 E(Fg): M(P)= P1 g
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From Chip-Firing to Tropical Geometry

Variant of earlier discussion: L& = (V; E) be anyundirected graph.

A chip con guration C is an assignment of integers to each vertex.
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Variant of earlier discussion: L& = (V; E) be anyundirected graph.
A chip con guration C is an assignment of integers to each vertex.

A chip-ring move is a choice of a vertex;. v; givesd; chips to each of
its neighborsv;. Such chip con gurations are also calletivisors.

(Like algebraic geometric de nition where a divisor is arfal Z-linear
combination of points on a curve.)
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A chip con guration C is an assignment of integers to each vertex.

A chip-ring move is a choice of a vertex;. v; givesd; chips to each of
its neighborsv;. Such chip con gurations are also calletivisors.

(Like algebraic geometric de nition where a divisor is arfal Z-linear
combination of points on a curve.)

The degree of a divisor D= L, G is ., Gi.

D iseective ifC; Oforalli.

Two divisorsD1 and D, are said to bdinearly equivalent (D1 Dy) if
D, can be reached frond;, by a sequence of chip- ring moves.
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From Chip-Firing to Tropical Geometry

Variant of earlier discussion: L& = (V; E) be anyundirected graph.
A chip con guration C is an assignment of integers to each vertex.

A chip-ring move is a choice of a vertex;. v; givesd; chips to each of
its neighborsv;. Such chip con gurations are also calletivisors.

(Like algebraic geometric de nition where a divisor is arfal Z-linear
combination of points on a curve.)

The degree of a divisor D= L, G is ., Gi.

D iseective ifC; Oforalli.

Two divisorsD1 and D, are said to bdinearly equivalent (D1 Dy) if
D, can be reached frond;, by a sequence of chip- ring moves.

Equivalently,D; D5 is aZ-sum of columns of the Laplacian matri(G).
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From Chip-Firing to Tropical Geometry

The Linear System of D, denoted agDj, is the set
fD°: D° D and D%is e ective:g.

The following de nitions are from Baker-Norine.

O LetK(G)=[(deg v) 2(deg ) 2Z:::;(degw) 2] the
canonical divisor of G.
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The Linear System of D, denoted agDj, is the set
fD°: D° D and D%is e ective:g.

The following de nitions are from Baker-Norine.
O LetK(G)=[(deg ) 2;(deg w) 2;:::;(deg w) 2], the
canonical divisor of G.
Q@ 9(G) = jEj j Vj+1, the genus of G. Also the 1st Betti number of
the graph as a 1-complex.
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From Chip-Firing to Tropical Geometry

The Linear System of D, denoted agDj, is the set
fD°: D° D and D%is e ective:g.

The following de nitions are from Baker-Norine.

O LetK(G)=[(deg v) 2(deg ) 2Z:::;(degw) 2] the
canonical divisor of G.

Q@ 9(G) = jEj j Vj+1, the genus of G. Also the 1st Betti number of
the graph as a 1-complex.

© Therank of D, r(D), is the biggestk 0 such that for all e ective
E of degreek, D Ej & ; if such ak exists.
(By conventionr(D) = 1ifjDj=;.)
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From Chip-Firing to Tropical Geometry

The Linear System of D, denoted agDj, is the set
fD°: D° D and D%is e ective:g.

The following de nitions are from Baker-Norine.

O LetK(G)=[(deg v) 2(deg ) 2Z:::;(degw) 2] the
canonical divisor of G.

Q@ 9(G) = jEj j Vj+1, the genus of G. Also the 1st Betti number of
the graph as a 1-complex.

© Therank of D, r(D), is the biggestk 0 such that for all e ective
E of degreek, D Ej & ; if such ak exists.
(By conventionr(D) = 1ifjDj=;.)

Theorem (Baker-Norine 2006 - Riemann-Roch Theorem forhS)a

r(b) r(K D)=degD g+1:

Gregg Musiker (MIT/MSRI)
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From Chip-Firing to Tropical Geometry

This has motivated search for further analogies betweerebigic curve
theory and graph theory.
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certain balancing conditons)
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From Chip-Firing to Tropical Geometry

This has motivated search for further analogies betweerebigic curve
theory and graph theory.

Gathmann-Kerber and Mikhalkin-Zharkov showed

Riemmann-Roch Theorem for Tropical Curves (Metric grapbhsisying
certain balancing conditons)

With Christian Haase and Josephine Yu:

@ We explictly describe cell structures fddj as a polyhedral cell
complex

@ Show how to embedDj into tropical projective space.

© Also get generalization of chip- ring to metric graphs, ¢edl weighted
chip- ring games.

http://arxiv.org/pdf/0909.3685.pdf
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Thanks For Coming

http://math.mit.edu/ musiker/CGs.pdf

G. Musiker,Combinatorial aspects of elliptic curveSeminaire
Lotharingien de Combinatoire 56 (2007), Article B56f, 1-31

G. Musiker,The critical groups of a family of graphs and elliptic curves
over nite elds, Journal of Algebraic Combinatorics: Vol. 30, Issue 2
(2009), 255{276

C. Haase, G. Musiker, and J. Yljnear systems on tropical curves
http://arxiv.org/pdf/0909.3685.pdf
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