
Very Basic MATLAB

Peter J. Olver Marcel Arndt

September 10, 2007

1 Matrices

Type your matrix as follows. Use , or space to separate entries, and ; or
return after each row.

>> A = [4 5 6 -9;5 0 -3 6;7 8 5 0; -1 4 5 1]

or

>> A = [4,5,6,-9;5,0,-3,6;7,8,5,0;-1,4,5,1]

or

>> A = [4 5 6 -9

5 0 -3 6

7 8 5 0

-1 4 5 1]

The output will be:

A =

4 5 6 -9

5 0 -3 6

7 8 5 0

-1 4 5 1

You can identify an entry of a matrix by

>> A(2,3)

ans =

-3

A colon : indicates all entries in a row or column

>> A(2,:)

ans =

5 0 -3 6

>> A(:,3)

ans =

1

6

-3

5

5

You can use these to modify entries

>> A(2,3) = 10

A =

4 5 6 -9

5 0 10 6

7 8 5 0

-1 4 5 1

or to add in rows or columns

>> A(5,:) = [0 1 0 -1]

A =

4 5 6 -9

5 0 10 6

7 8 5 0

-1 4 5 1

0 1 0 -1

or to delete them

>> A(:,2) = []

A =

4 6 -9

5 10 6

7 5 0

-1 5 1

0 0 -1

Accessing Part of a Matrix

>> A = [4,5,6,-9;5,0,-3,6;7,8,5,0;-1,4,5,1]

A =

4 5 6 -9

5 0 -3 6

7 8 5 0

-1 4 5 1

>> A([1 3],:)

ans =

4 5 6 -9

7 8 5 0

>> A(:,2:4)

ans =

2

5 6 -9

0 -3 6

8 5 0

4 5 1

>> A(2:3,1:3)

ans =

5 0 -3

7 8 5

Switching two rows in a matrix

>> A([3 1],:) = A([1 3],:)

A =

7 8 5 0

5 0 -3 6

4 5 6 -9

-1 4 5 1

Special matrices

Zero matrix:

>> zeros(2,3)

ans =

0 0 0

0 0 0

>> zeros(3)

ans =

0 0 0

0 0 0

0 0 0

Identity Matrix:

>> eye(3)

ans =

1 0 0

0 1 0

0 0 1

Matrix of Ones:

>> ones(2,3)

ans =

1 1 1

1 1 1

Random Matrix:

3

>> A = rand(2,3)

A =

0.9501 0.4860 0.4565

0.2311 0.8913 0.0185

Note that the random entries all lie between 0 and 1.

Transpose of a Matrix

>> A = [4,5,6,-9;5,0,-3,6;7,8,5,0;-1,4,5,1]

A =

4 5 6 -9

5 0 -3 6

7 8 5 0

-1 4 5 1

>> transpose(A)

ans =

4 5 7 -1

5 0 8 4

6 -3 5 5

-9 6 0 1

>> A’

ans =

4 5 7 -1

5 0 8 4

6 -3 5 5

-9 6 0 1

Diagonal of a Matrix

>> diag(A)

ans =

4

0

5

1

Vectors

Vectors are matrices of size 1 along one dimension.
Row vector:

>> v = [1 2 3 4 5]

v =

1 2 3 4 5

Column vector:

4

>> v = [1;2;3;4;5]

v =

1

2

3

4

5

or use transpose operation ’

>> v = [1 2 3 4 5]’

v =

1

2

3

4

5

Forming Other Vectors

>> v = 1:5

v =

1 2 3 4 5

>> v = 10:-2:0

v =

10 8 6 4 2 0

>> v = linspace(0,1,6)

v =

0 0.2000 0.4000 0.6000 0.8000 1.0000

Important: To avoid output, particularly of large matrices, use a semicolon ;

at the end of the line:

>> v = linspace(0,1,100);

gives a row vector whose entries are 100 equally spaced points from 0 to 1.

Size of a Matrix

>> A = [4 5 6 -9 7;5 0 -3 6 -2;7 8 5 0 5 ; -1 4 5 1 -9]

A =

4 5 6 -9 7

5 0 -3 6 -2

7 8 5 0 5

-1 4 5 1 -9

>> size(A)

ans =

5

4 5

>> [m,n] = size(A)

m =

4

n =

5

>> size(A,1)

ans =

4

>> size(A,2)

ans =

5

2 Output Formats

The command format is used to change output format. The default is

>> format short

>> pi

ans =

3.1416

>> format long

>> pi

ans =

3.14159265358979

>> format rat

>> pi

ans =

355/113

This allows you to work in rational arithmetic and gives the “best” rational
approximation to the answer. Let’s return to the default.

>> format short

>> pi

ans =

3.1416

3 Arithmetic operators

+ Matrix addition.

A + B adds matrices A and B. The matrices A and B must have the same
dimensions unless one is a scalar (1 × 1 matrix). A scalar can be added to
anything.

6

>> A = [4,5,6,-9;5,0,-3,6;7,8,5,0;-1,4,5,1]

A =

4 5 6 -9

5 0 -3 6

7 8 5 0

-1 4 5 1

>> B = [9 2 4 -9;1 4 -2 -6;8 1 7 0; -3 -4 5 9]

B =

9 2 4 -9

1 4 -2 -6

8 1 7 0

-3 -4 5 9

>> A + B

ans =

13 7 10 -18

6 4 -5 0

15 9 12 0

-4 0 10 10

- Matrix subtraction.

A - B subtracts matrix A from B. Note that A and B must have the same
dimensions unless one is a scalar.

>> A - B

ans =

-5 3 2 0

4 -4 -1 12

-1 7 -2 0

2 8 0 -8

∗ Scalar multiplication

>> 3*A - 4*B

ans =

-24 7 2 9

11 -16 -1 42

-11 20 -13 0

9 28 -5 -33

∗ Matrix multiplication.

A*B is the matrix product of A and B. A scalar (a 1-by-1 matrix) may multiply
anything. Otherwise, the number of columns of A must equal the number of
rows of B.

>> A * B

7

ans =

116 70 3 -147

3 -17 29 9

111 51 47 -111

32 15 28 -6

Note that two matrices must be compatible before we can multiply them.
The order of multiplication is important!

>> v = [1 2 3 4]

v =

1 2 3 4

>> w = [1;2;3;4]

w =

1

2

3

4

>> v * w

ans =

30

>> w * v

ans =

1 2 3 4

2 4 6 8

3 6 9 12

4 8 12 16

.∗ Array multiplication

A.*B denotes element-by-element multiplication. A and B must have the same
dimensions unless one is a scalar. A scalar can be multiplied into anything.

>> a = [3 4 5 6 7 8 9]

a =

3 4 5 6 7 8 9

>> b = [8 6 2 4 5 6 -1]

b =

8 6 2 4 5 6 -1

>> a .* b

ans =

24 24 10 24 35 48 -9

∧ Matrix power.

C = A∧n is A to the n-th power if n is a scalar and A is square. If n is an integer
greater than one, the power is computed by repeated multiplication.

8

>> A = [4 5 6 -9;5 0 -3 6;7 8 5 0; -1 4 5 1]

A =

4 5 6 -9

5 0 -3 6

7 8 5 0

-1 4 5 1

>> A^3

ans =

501 352 351 -651

451 169 -87 174

1103 799 533 -492

445 482 413 -182

.∧ Array power.

C = A.∧B denotes element-by-element powers. A and B must have the same
dimensions unless one is a scalar. A scalar can go in either position.

>> A = [8 6 2 4 5 6 -1]

A =

8 6 2 4 5 6 -1

>> A.^3

ans =

512 216 8 64 125 216 -1

Length of a Vector, Norm of a Vector, Dot Product

>> u = [8 -7 6 5 4 -3 2 1 9]

u =

8 -7 6 5 4 -3 2 1 9

>> length(u)

ans =

9

>> norm(u)

ans =

16.8819

>> v = [9 -8 7 6 -4 5 0 2 -4]

v =

9 -8 7 6 -4 5 0 2 -4

>> dot(u,v)

ans =

135

>> u’*v

ans =

135

9

4 Complex Numbers

>> u = [2-3i, 4+6i,-3,+2i]

u =

2.0000- 3.0000i 4.0000+ 6.0000i -3.0000 0+ 2.0000i

>> conj(u)

ans =

2.0000+ 3.0000i 4.0000- 6.0000i -3.0000 0- 2.0000i

Hermitian transpose:

>> u’

ans =

2.0000+ 3.0000i

4.0000- 6.0000i

-3.0000

0- 2.0000i

Other operations:

>> norm(u)

ans =

8.8318

>> dot(u,u)

ans =

78

>> sqrt(ans)

ans =

8.8318

>> u’*u

ans =

78

5 Solving Systems of Linear Equations

The best way of solving a system of linear equations

Ax = b

in MatLab is to use the backslash operation \ (backwards division)

>> A = [1 2 3;-1 0 2;1 3 1]

A =

1 2 3

-1 0 2

1 3 1

>> b = [1; 0; 0]

10

b =

1

0

0

>> x = A \ b

x =

0.6667

-0.3333

0.3333

The backslash is implemented by using Gaussian elimination with partial piv-
oting. An alternative, but less accurate, method is to compute inverses:

>> B = inv(A)

B =

0.6667 -0.7778 -0.4444

-0.3333 0.2222 0.5556

0.3333 0.1111 -0.2222

or

>> B = A^(-1)

B =

0.6667 -0.7778 -0.4444

-0.3333 0.2222 0.5556

0.3333 0.1111 -0.2222

>> x = B * b

x =

0.6667

-0.3333

0.3333

Another method is to use the command rref:
To solve the following system of linear equations:

x1 + 4x2 − 2x3 + x4 = 2

2x1 + 9x2 − 3x3 − 2x4 = 5

x1 + 5x2 − x4 = 3

3x1 + 14x2 + 7x3 − 2x4 = 6

we form the augmented matrix:

>> A = [1,4,-2,3,2; 2,9,-3,-2,5; 1,5,0,-1,3; 3,14,7,-2,6]

A =

1 4 -2 3 2

2 9 -3 -2 5

1 5 0 -1 3

11

3 14 7 -2 6

>> rref(A)

ans =

1.0000 0 0 0 -5.0256

0 1.0000 0 0 1.6154

0 0 1.0000 0 -0.2051

0 0 0 1.0000 0.0513

The solution is: x1 = −5.0256, x2 = 1.6154, x3 = −0.2051, x4 = 0.0513.
Case 1: Infinitely many solutions:

>> A = [-2 2 -2;1 -1 1; 2 -2 2]

A =

-2 2 -2

1 -1 1

2 -2 2

>> b = [-8; 4; 8]

b =

-8

4

8

>> A \ b

Warning: Matrix is singular to working precision.

ans =

NaN

NaN

NaN

MatLab is unable to find the solutions. In this case, we can apply rref to the
augmented matrix.

>> C = [A b]

C =

-2 2 -2 -8

1 -1 1 4

2 -2 2 8

>> rref(C)

ans =

1 -1 1 4

0 0 0 0

0 0 0 0

Conclusion: There are infinitely many solutions since row 2 and row 3 are all
zeros.
Case 2: No solutions:

>> A = [-2 1; 4 -2]

A =

12

-2 1

4 -2

>> b = [5; -1]

b =

5

-1

>> A \ b

Warning: Matrix is singular to working precision.

ans =

Inf

Inf

>> C = [A b]

C =

-2 1 5 4 -2 -1

>> rref(C)

ans =

1.0000 -0.5000 0

0 0 1.0000

Conclusion: Row 2 is not all zeros, and the system is incompatible.
Important: If the coefficient matrix A is rectangular (not square) then A \ b
gives the least squares solution (relative to the Euclidean norm) to the system
Ax = b. If the solution is not unique, it gives the least squares solution x with
minimal Euclidean norm.

>> A = [1 1;2 1;-5, -1]

A =

1 1

2 1

-5 -1

>> b = [1;1;1]

b =

1

1

1

>> A \ b

ans =

-0.5385

1.7692

If you want the least squares solution in the square case, one trick is to add an
extra equation 0 = 0 to make the coefficient matrix rectangular:

>> A = [-2 2 -2;1 -1 1; 2 -2 2]

A =

-2 2 -2

1 -1 1

13

2 -2 2

>> b=[-8; 4; 8]

b =

-8

4

8

>> A \ b

Warning: Matrix is singular to working precision.

ans =

Inf

Inf

Inf

>> A(4,:) = 0

A =

-2 2 -2

1 -1 1

2 -2 2

0 0 0

>> b(4) = 0

b =

-8

4

8

0

>> A \ b

Warning: Rank deficient, rank = 1 tol = 2.6645e-15.

ans =

4.0000

0

0

6 Plotting Functions

Functions can be stored as vectors. Namely, a vector x and a vector y of the
same length correspond to the sampled function values (xi, yi).
To plot the function y = x2 − .5 x first enter an array of independent variables:

>> x = linspace(0,1,25)

>> y = x.^2 - .5*x;

>> plot(x,y)

The plot shows up in a new window. To plot in a different color, use

>> plot(x,y,’r’)

where the character string ’r’ means red. Use the helpwindow to see other
options.

14

To plot graphs on top of each other, use hold on.

>> hold on

>> z = exp(x);

>> plot(x,z)

>> plot(x,z,’g’)

hold off will stop simultaneous plotting. Alternatively, use

>> plot(x,y,’r’,x,z,’g’)

Surface Plots

Here x and y must give a regtangular array, and z is a matrix whose entries are
the values of the function at the array points.

>> x =linspace(-1,1,40); y = x;

>> z = x’ * (y.^2);

>> surf(x,y,z)

Typing the command

>> rotate3d

will allow you to use the mouse interactively to rotate the graph to view it from
other angles.

7 Functions, Subroutines, M-Files

Simple functions can be declared as anonymous functions:

>> f = @(x) 1./x

f =

@(x)1./x

>> f(5)

ans =

0.2000

>> f(1:5)

ans =

1.0000 0.5000 0.3333 0.2500 0.2000

For more complex functions or subroutines, use M-Files. Create a file with the
name of the subroutine and the suffix .m. For the trapezoidal rule

Tn :=
h

2

[

f(a) + 2
n−1
∑

i=1

f(a + ih) + f(b)

]

use

15

>> edit trapezoidal.m

An editor pops up. Enter the code of the subroutine:

function integral = trapezoidal(f, a, b, n)

h = (b-a)/n;

integral = 0;

for i=1:(n-1)

integral = integral + f(a+i*h);

end

integral = 0.5 * h * (f(a) + 2*integral + f(b));

Save the file.

>> trapezoidal(f, 1, 2, 4)

ans =

0.6970

The subroutine gets much faster for large numbers n by avoiding the loop in
your M-File. Save this code as trapezoidal2.m:

function integral = trapezoidal2(f, a, b, n)

h = (b-a)/n;

integral = sum(f(a+(1:(n-1))*h));

integral = 0.5 * h * (f(a) + 2*integral + f(b));

Multiple values can be returned as follows. Each entry can be a matrix itself.
Save this code as multreturn.m:

function [a,b,c] = multreturn(x,y)

a = x+y;

b = x-y;

c = rand(2,3);

Then

>> [u,v,w] = multreturn(6,2)

u =

8

v =

4

w =

0.6557 0.8491 0.6787

0.0357 0.9340 0.7577

16

