Very Basic MATLAB

Peter J. Olver Marcel Arndt

September 10, 2007

1 Matrices

Type your matrix as follows. Use , or space to separate entries, and ; or return after each row.

```
>> A = [4 5 5 6 -9;5 0 -3 6;7 8 5 0; -1 4 5 5 1]
```

or
$\gg A=[4,5,6,-9 ; 5,0,-3,6 ; 7,8,5,0 ;-1,4,5,1]$
or

$$
>A=\left[\begin{array}{rrrr}
4 & 5 & 6 & -9 \\
5 & 0 & -3 & 6 \\
7 & 8 & 5 & 0 \\
-1 & 4 & 5 & 1
\end{array}\right]
$$

The output will be:
$\mathrm{A}=$

4	5	6	-9
5	0	-3	6
7	8	5	0
-1	4	5	1

You can identify an entry of a matrix by
>> $A(2,3)$
ans =
-3
A colon : indicates all entries in a row or column

```
>> A(2,:)
ans =
    5 0
>> A(:,3)
ans =
```

$$
\begin{array}{r}
6 \\
-3 \\
5 \\
\hline
\end{array}
$$

You can use these to modify entries

$$
\begin{aligned}
& \gg A(2,3)=10 \\
& A=
\end{aligned}
$$

4	5	6	-9
5	0	10	6
7	8	5	0
-1	4	5	1

or to add in rows or columns
> $A(5,:)=\left[\begin{array}{llll}0 & 1 & 0 & -1\end{array}\right]$
$\mathrm{A}=$

4	5	6	-9
5	0	10	6
7	8	5	0
-1	4	5	1
0	1	0	-1

or to delete them
>> $A(:, 2)=[]$
$\mathrm{A}=$

4	6	-9
5	10	6
7	5	0
-1	5	1
0	0	-1

Accessing Part of a Matrix

```
>> A = [4,5,6,-9;5,0,-3,6;7,8,5,0;-1,4,5,1]
A =
\begin{tabular}{rrrr}
4 & 5 & 6 & -9 \\
5 & 0 & -3 & 6 \\
7 & 8 & 5 & 0 \\
-1 & 4 & 5 & 1
\end{tabular}
> A([ll 3],:)
ans =
    4
>> A(:, 2:4)
ans =
```

	5 6 -9 0 -3 6 8 5 0 4 5 1 >> $A(2: 3,1: 3)$	
ans $=$		
5	0	-3
7	8	5

Switching two rows in a matrix

```
>> A([3 1],:) = A([ll 3],:)
A =
\begin{tabular}{rrrr}
7 & 8 & 5 & 0 \\
5 & 0 & -3 & 6 \\
4 & 5 & 6 & -9 \\
-1 & 4 & 5 & 1
\end{tabular}
```


Special matrices

Zero matrix:

```
>> zeros(2,3)
ans =
    0}00
>> zeros(3)
ans =
\begin{tabular}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{tabular}
```

Identity Matrix:

```
>> eye(3)
ans =
\begin{tabular}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{tabular}
```

Matrix of Ones:

```
>> ones(2,3)
ans =
    1 1 1
    1 1 1
```

Random Matrix:

```
>> A = rand(2,3)
A =
\begin{tabular}{lll}
0.9501 & 0.4860 & 0.4565 \\
0.2311 & 0.8913 & 0.0185
\end{tabular}
```

Note that the random entries all lie between 0 and 1 .

Transpose of a Matrix

```
>> A = [4,5,6,-9;5,0,-3,6;7,8,5,0;-1,4,5,1]
A =
\begin{tabular}{rrrr}
4 & 5 & 6 & -9 \\
5 & 0 & -3 & 6 \\
7 & 8 & 5 & 0 \\
-1 & 4 & 5 & 1
\end{tabular}
>> transpose(A)
ans =
\begin{tabular}{rrrr}
4 & 5 & 7 & -1 \\
5 & 0 & 8 & 4 \\
6 & -3 & 5 & 5 \\
-9 & 6 & 0 & 1
\end{tabular}
>> A'
ans =
\begin{tabular}{rrrr}
4 & 5 & 7 & -1 \\
5 & 0 & 8 & 4 \\
6 & -3 & 5 & 5 \\
-9 & 6 & 0 & 1
\end{tabular}
```


Diagonal of a Matrix

>> diag(A)
ans =
4
0
5
1

Vectors

Vectors are matrices of size 1 along one dimension.
Row vector:

```
>> v = [11 2 3 3 4 5
v =
    1 2 3 4 5
```

Column vector:

```
>> v = [1;2;3;4;5]
v =
    1
    2
    3
    4
    5
```

or use transpose operation '

```
>> v = [lllllll}
v =
        1
        2
        3
        4
        5
```


Forming Other Vectors

```
>> v = 1:5
\(\mathrm{v}=\)
    \(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\)
>> \(v=10:-2: 0\)
\(\mathrm{v}=\)
    \(\begin{array}{llllll}10 & 8 & 6 & 4 & 2 & 0\end{array}\)
>> v = linspace \((0,1,6)\)
\(\mathrm{v}=\)
    \(\begin{array}{llllll}0 & 0.2000 & 0.4000 & 0.6000 & 0.8000 & 1.0000\end{array}\)
```

Important: To avoid output, particularly of large matrices, use a semicolon ; at the end of the line:

```
>> v = linspace(0,1,100);
```

gives a row vector whose entries are 100 equally spaced points from 0 to 1 .

Size of a Matrix

```
>> A = [4 5 5 6 -9 7;5 0 -3 6 -2;7 8 5 0 5 ; ; -1 4 5 5 1 -9 ]
A =
\begin{tabular}{lrrrr}
4 & 5 & 6 & -9 & 7 \\
5 & 0 & -3 & 6 & -2 \\
7 & 8 & 5 & 0 & 5 \\
-1 & 4 & 5 & 1 & -9 \\
\\
>> size(A) \\
ans \(=\)
\end{tabular}
```

```
    4 5
>> [m,n] = size(A)
m =
    4
n =
    5
>> size(A,1)
ans =
    4
>> size(A,2)
ans =
    5
```


2 Output Formats

The command format is used to change output format. The default is

```
>> format short
>> pi
ans =
    3.1416
>> format long
>> pi
ans =
    3.14159265358979
>> format rat
>> pi
ans =
    355/113
```

This allows you to work in rational arithmetic and gives the "best" rational approximation to the answer. Let's return to the default.

```
>> format short
>> pi
ans =
    3.1416
```


3 Arithmetic operators

+ Matrix addition.

$\mathrm{A}+\mathrm{B}$ adds matrices A and B . The matrices A and B must have the same dimensions unless one is a scalar (1×1 matrix). A scalar can be added to anything.

```
>> A = [4,5,6,-9;5,0,-3,6;7,8,5,0;-1,4,5,1]
A =
\begin{tabular}{rrrr}
4 & 5 & 6 & -9 \\
5 & 0 & -3 & 6
\end{tabular}
\begin{tabular}{rrrr}
7 & 8 & 5 & 0 \\
-1 & 4 & 5 & 1
\end{tabular}
>> B = [9 2 4 -9;1 4 -2 -6;8 1 7 0; -3 -4 5 9 ]
B =
    9 2 4 -9
            1 4 - -2 -6
            8 1 7 7 0
            -3 
>> A + B
ans =
\begin{tabular}{rrrr}
13 & 7 & 10 & -18 \\
6 & 4 & -5 & 0 \\
15 & 9 & 12 & 0 \\
-4 & 0 & 10 & 10
\end{tabular}
```


- Matrix subtraction.

A - B subtracts matrix A from B. Note that A and B must have the same dimensions unless one is a scalar.

* Scalar multiplication

* Matrix multiplication.

A*B is the matrix product of A and B. A scalar (a 1-by-1 matrix) may multiply anything. Otherwise, the number of columns of A must equal the number of rows of B .
>> A * B

```
ans =
\begin{tabular}{rrrr}
116 & 70 & 3 & -147 \\
3 & -17 & 29 & 9 \\
111 & 51 & 47 & -111 \\
32 & 15 & 28 & -6
\end{tabular}
```

Note that two matrices must be compatible before we can multiply them.
The order of multiplication is important!

```
>> v = [lllll
v =
    1 2 3
>> w = [1;2;3;4]
W =
    1
    2
    3
    4
>> v * w
ans =
    30
>> w * v
ans =
\begin{tabular}{rrrr}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12 \\
4 & 8 & 12 & 16
\end{tabular}
```


.* Array multiplication

A.*B denotes element-by-element multiplication. A and B must have the same dimensions unless one is a scalar. A scalar can be multiplied into anything.

```
>> a = [lllllllll
a =
\begin{tabular}{llllllll}
3 & 4 & 5 & 6 & 7 & 8 & 9
\end{tabular}
>> b = [llllllllll
b =
\begin{tabular}{lllllll}
8 & 6 & 2 & 4 & 5 & 6 & -1
\end{tabular}
>> a .* b
ans =
    24
```


\wedge Matrix power.

$\mathrm{C}=\mathrm{A} \wedge \mathrm{n}$ is A to the n -th power if n is a scalar and A is square. If n is an integer greater than one, the power is computed by repeated multiplication.

```
>> A = [4 5 6 -9;5 0 -3 6;7 8 5 0; -1 4 5 1 ]
A =
\begin{tabular}{rrrrrr}
4 & 5 & 6 & -9 & & \\
5 & 0 & -3 & 6 & & \\
7 & 8 & 5 & 0 & & \\
-1 & 4 & 5 & 1 & & \\
>> A~3 & & & & & \\
ans = & & & & & \\
& 501 & & 352 & 351 & -651 \\
& 451 & & 169 & -87 & 174 \\
& 1103 & 799 & 533 & -492 \\
& 445 & & 482 & 413 & -182
\end{tabular}
```


.^ Array power.

$C=A . \wedge B$ denotes element-by-element powers. A and B must have the same dimensions unless one is a scalar. A scalar can go in either position.

```
>> A = [llllllllll
A =
    8 6 % 2 % 4 % 5 % 6
>> A.^3
ans =
    512 216 
```

Length of a Vector, Norm of a Vector, Dot Product
$\gg u=\left[\begin{array}{lllllllll}8 & -7 & 6 & 5 & 4 & -3 & 2 & 1 & 9\end{array}\right]$
u =
8 -7
>> length (u)
ans =
9
>> norm(u)
ans =
16.8819
>> v = $\left[\begin{array}{lllllllll}9 & -8 & 7 & 6 & -4 & 5 & 0 & 2 & -4\end{array}\right]$
v =
$\begin{array}{lllllllll}9 & -8 & 7 & 6 & -4 & 5 & 0 & 2 & -4\end{array}$
>> $\operatorname{dot}(u, v)$
ans =
135
>> $u^{\prime} * v$
ans =
135

4 Complex Numbers

```
>> u = [2-3i, 4+6i,-3,+2i]
u =
    2.0000-3.0000i 4.0000+6.0000i -3.0000 0+ 2.0000i
>> conj(u)
ans =
    2.0000+3.0000i 4.0000-6.0000i -3.0000 0- 2.0000i
Hermitian transpose:
```

```
>> u'
```

>> u'
ans =
ans =
2.0000+3.0000i
2.0000+3.0000i
4.0000-6.0000i
4.0000-6.0000i
-3.0000
-3.0000
0- 2.0000i

```
        0- 2.0000i
```

Other operations:

```
>> norm(u)
ans =
    8.8318
>> dot(u,u)
ans =
    7 8
>> sqrt(ans)
ans =
    8.8318
>> u'*u
ans =
    78
```


5 Solving Systems of Linear Equations

The best way of solving a system of linear equations

$$
A x=b
$$

in MatLab is to use the backslash operation
(backwards division)

```
>> A = [1 2 3;-1 0 2;1 3 1]
A =
    1 2 3
    -1 0
    1 3 1
>> b = [1; 0; 0]
```

```
b =
    1
    0
        0
>> x = A \ b
x =
    0.6667
    -0.3333
    0.3333
```

The backslash is implemented by using Gaussian elimination with partial pivoting. An alternative, but less accurate, method is to compute inverses:

```
>> B = inv(A)
B =
    0.6667 -0.7778 -0.4444
    -0.3333 0.2222 0.5556
    0.3333 0.1111 -0.2222
or
>> B = A^(-1)
B =
\begin{tabular}{rrr}
0.6667 & -0.7778 & -0.4444 \\
-0.3333 & 0.2222 & 0.5556 \\
0.3333 & 0.1111 & -0.2222
\end{tabular}
>> x = B * b
x =
    0.6667
    -0.3333
    0.3333
```

Another method is to use the command rref:
To solve the following system of linear equations:

$$
\begin{array}{r}
x_{1}+4 x_{2}-2 x_{3}+x_{4}=2 \\
2 x_{1}+9 x_{2}-3 x_{3}-2 x_{4}=5 \\
x_{1}+5 x_{2}-x_{4}=3 \\
3 x_{1}+14 x_{2}+7 x_{3}-2 x_{4}=6
\end{array}
$$

we form the augmented matrix:

```
>> A = [1,4,-2,3,2; 2,9,-3,-2,5; 1,5,0,-1,3; 3,14,7,-2,6]
A =
\begin{tabular}{rrrrr}
1 & 4 & -2 & 3 & 2 \\
2 & 9 & -3 & -2 & 5 \\
1 & 5 & 0 & -1 & 3
\end{tabular}
```

3 3 14	7	-2	6		
>ref(A)					
ans =					
1.0000					
0	1.0000	0	0	-5.0256	
0	0	1.0000	0	1.6154	
0	0	0	1.0000	-0.2051	
	0.0513				

The solution is: $x_{1}=-5.0256, x_{2}=1.6154, x_{3}=-0.2051, x_{4}=0.0513$.
Case 1: Infinitely many solutions:

```
>> A = [-2 2 -2;1 -1 1; 2 -2 2]
A =
    -2 2 -2
    1 
    2 -2 2
>> b = [-8; 4; 8]
b =
    -8
    4
    8
>> A \ b
Warning: Matrix is singular to working precision.
ans =
    NaN
    NaN
    NaN
```

MatLab is unable to find the solutions. In this case, we can apply rref to the augmented matrix.

C =			
-2	2	-2	-8
1	-1	1	4
2	-2	2	8
>> rref (C)			
ans =			
1	-1	1	4
0	0	0	0
0	0	0	0

Conclusion: There are infinitely many solutions since row 2 and row 3 are all zeros.
Case 2: No solutions:

```
>> A = [-2 1; 4 -2]
A =
```

```
    -2 1
    4 -2
>> b = [5; -1]
b =
    5
    -1
>> A \ b
Warning: Matrix is singular to working precision.
ans =
    Inf
    Inf
>> C = [ll b}
C =
    -2 1
>> rref(C)
ans =
    1.0000 rrorer
```

Conclusion: Row 2 is not all zeros, and the system is incompatible.
Important: If the coefficient matrix A is rectangular (not square) then $A \backslash b$ gives the least squares solution (relative to the Euclidean norm) to the system $A x=b$. If the solution is not unique, it gives the least squares solution x with minimal Euclidean norm.

```
>> A = [1 1;2 1;-5, -1]
A =
    1 1
    2 1
    -5 -1
>> b = [1;1;1]
b =
    1
    1
    1
>> A \ b
ans =
    -0.5385
        1.7692
```

If you want the least squares solution in the square case, one trick is to add an extra equation $0=0$ to make the coefficient matrix rectangular:

```
>> A = [-2 2 -2;1 -1 1; 2 -2 2]
A =
    -2 2 -2
    1 
```

```
2 -2 2
>> b=[-8; 4; 8]
b =
    -8
    4
    8
>> A \ b
Warning: Matrix is singular to working precision.
ans =
    Inf
    Inf
    Inf
>> A(4,:) = 0
A =
            -2 2 -2
            1 -1 1
            2 -2 2
            0 0 0
>> b(4) = 0
b =
    -8
            4
            8
            0
>> A \ b
Warning: Rank deficient, rank = 1 tol = 2.6645e-15.
ans =
            4 . 0 0 0 0
                0
                0
```


6 Plotting Functions

Functions can be stored as vectors. Namely, a vector x and a vector y of the same length correspond to the sampled function values $\left(x_{i}, y_{i}\right)$.
To plot the function $y=x^{2}-.5 x$ first enter an array of independent variables:
>> $\mathrm{x}=\operatorname{linspace}(0,1,25)$
>> $\mathrm{y}=\mathrm{x} .{ }^{\wedge} 2-.5 * \mathrm{x}$;
>> plot (x, y)
The plot shows up in a new window. To plot in a different color, use
>> $\operatorname{plot}(\mathrm{x}, \mathrm{y}$, 'r')
where the character string 'r' means red. Use the helpwindow to see other options.

To plot graphs on top of each other, use hold on.

```
>> hold on
>> z = exp(x);
>> plot(x,z)
>> plot(x,z,'g')
```

hold off will stop simultaneous plotting. Alternatively, use
>> plot($\left.x, y, ' r ', x, z, g^{\prime}\right)$

Surface Plots

Here x and y must give a regtangular array, and \mathbf{z} is a matrix whose entries are the values of the function at the array points.

```
>> x =linspace(-1,1,40); y = x;
>> z = x' * (y.^2);
>> surf(x,y,z)
```

Typing the command

```
>> rotate3d
```

will allow you to use the mouse interactively to rotate the graph to view it from other angles.

7 Functions, Subroutines, M-Files

Simple functions can be declared as anonymous functions:

```
>> f = @(x) 1./x
f =
    @(x)1./x
>> f(5)
ans =
    0.2000
>> f(1:5)
ans =
\begin{tabular}{lllll}
1.0000 & 0.5000 & 0.3333 & 0.2500 & 0.2000
\end{tabular}
```

For more complex functions or subroutines, use M-Files. Create a file with the name of the subroutine and the suffix .m. For the trapezoidal rule

$$
T_{n}:=\frac{h}{2}\left[f(a)+2 \sum_{i=1}^{n-1} f(a+i h)+f(b)\right]
$$

use

```
>> edit trapezoidal.m
```

An editor pops up. Enter the code of the subroutine:

```
function integral = trapezoidal(f, a, b, n)
h = (b-a)/n;
integral = 0;
for i=1:(n-1)
    integral = integral + f(a+i*h);
end
integral = 0.5 * h * ( f(a) + 2*integral + f(b) );
```

Save the file.

```
>> trapezoidal(f, 1, 2, 4)
ans =
    0.6970
```

The subroutine gets much faster for large numbers n by avoiding the loop in your M-File. Save this code as trapezoidal2.m:

```
function integral = trapezoidal2(f, a, b, n)
h = (b-a)/n;
integral = sum(f(a+(1:(n-1))*h));
integral = 0.5 * h * ( f(a) + 2*integral + f(b) );
```

Multiple values can be returned as follows. Each entry can be a matrix itself. Save this code as multreturn.m:

```
function [a,b,c] = multreturn(x,y)
a = x+y;
b = x-y;
c = rand(2,3);
```

Then

```
>> [u,v,w] = multreturn(6,2)
u =
    8
v =
    4
W =
    0.6557 0.8491 0.6787
    0.0357 0.9340 0.7577
```

