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Abstract. The equivariant method of moving frames is applied to formulate a
systematic method for explicitly determining general equivariant maps.

1. Introduction.

The equivariant method of moving frames introduced in [10] — see [20] for a recent
survey — provides a systematic method for explicitly constructing generating sets of invari-
ants and differential invariants of smooth Lie group actions on manifolds. In this approach,
a moving frame is defined as an equivariant map from the manifold back to the group. The
equivariant method was extended to Lie pseudo-group actions in [22], and, more recently,
to finite and discrete group actions in [21]. In the latter case, the generating invariants are
piecewise analytic, and, in a sense, “simpler” — meaning in number, in their construction
and/or in their explicit formulas — than the traditional polynomial invariants, [4, 16, 17],
and the less traditional, but better behaved rational invariants, [2, 8, 24, 26].

In this paper, we apply the equivariant method of moving frames to formulate a
similarly systematic method for explicitly determining general equivariant maps. Our
method applies to general Lie group actions and, along similar lines as in [21], to finite
and discrete groups, although we will not explicitly develop the latter here. (See [7] for
an alternative approach to the case of finite groups.) The moving frame method presented
here is both simpler and more direct than those appearing in [1, 12, 29]; moreover it applies
to essentially any (suitably prolonged) Lie group action, while the latter are restricted to
certain classical linear group actions. In particular, the moving frame formulas produce
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a nonlinear generalization of what has been called the Malgrange formula for equivariant
linear maps, [1, 25].

As in the original equivariant moving frame theory, the algorithms in this paper are
formulated in a differential geometric framework, relying on the Implicit Function Theorem,
which, of course, may well be non-constructive. On the other hand, it is a remarkable fact
that the required maps and invariants can be explicitly constructed in the vast majority
of the examples of mathematical and practical importance. Nonetheless, it would be of
great interest to reformulate the constructions here in a fully algebraic manner, based on
the methods developed by Hubert and Kogan, [8, 9].

This paper was motivated by the emerging importance of equivariant maps in machine
learning, [1, 11, 15, 28]. It is expected that these constructions will have significant impact
in this active field of modern research. See also Gatermann, [12], for potential applications
to dynamical systems. Further recent papers on equivariant maps in algebra and geometry
include [7, 6, 14].

2. Equivariant Moving Frames.

We begin by describing the equivariant moving frame construction for Lie group ac-
tions, referring to [10, 18, 20] for details and proofs. Let G be an r-dimensional Lie group
acting smoothly on an m-dimensional manifold M .

Definition 1. A moving frame is a smooth, G-equivariant map ρ :M → G.

There are two principal types of equivariance:

ρ(g · z) =

{
g · ρ(z), left moving frame,

ρ(z) · g−1, right moving frame.
(1)

If ρ(z) is any right-equivariant moving frame then ρ̃(z) = ρ(z)−1 is left-equivariant and
conversely. All classical moving frames, cf. [5], are left-equivariant, but the right versions
are often easier to compute, and will be the ones primarily used here.

It is not difficult to establish the basic requirements for the existence of an equivariant
moving frame, [10].

Theorem 2. A moving frame exists in a neighborhood of a point z ∈M if and only

if G acts freely and regularly near z.

Recall that G acts freely if the isotropy subgroup Gz = { g ∈ G | g · z = z } of each
point z ∈ M is trivial: Gz = {e}. Slightly less restrictively, the group acts locally freely

if the isotropy subgroups Gz are all discrete, or, equivalently, that the orbits all have
the same dimension, r, as G itself. In particular, if dimG > dimM , the action cannot
be (locally) free. Locally free actions lead to locally equivariant moving frames; in fact
most classical moving frames, [5], are only locally equivariant. Regularity requires that,
in addition, the orbits form a regular foliation; the latter is a global restriction that is
satisfied in all examples of practical import. There are two principal intrinsic means of
converting a non-free action into a (locally) free action. Prolonging to a jet space, [10] —
the method used to produce all classical moving frames — leads to differential invariants;
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extending the action to a Cartesian product space, [18], leads to joint invariants, and is
more relevant to machine learning applications; see the examples below.

The explicit construction of a moving frame relies on the choice of a (local) cross-

section to the group orbits, meaning an (m − r)-dimensional submanifold K ⊂ M that
intersects each orbit transversally and at most once. Such cross-sections are plentiful, and,
when dealing with Lie group actions, easy to find.

Theorem 3. Let G act freely and regularly onM , and let K ⊂M be a cross-section.

Given z ∈ M , let g = ρ(z) be the unique group element that maps z to the cross-section:
g · z = ρ(z) · z ∈ K. Then ρ :M → G is a right moving frame.

For simplicity, we will always assume that K is a coordinate cross-section, obtained
by setting r of the coordinates on M to constants. By possibly relabelling, we can assume
that, writing

z = (z1, . . . , zm) = (x1, . . . , xm−r, y1, . . . , yr) = (x, y),

we have

K = {y1 = c1, . . . yr = cr }, (2)

where, as always, r = dimG. In this case, the associated right moving frame g = ρ(z) is
obtained by solving the normalization equations

Y1(g, z) = c1, . . . Yr(g, z) = cr, (3)

for the group parameters g = (g1, . . . , gr) in terms of the coordinates z = (z1, . . . , zm),
where Yj(g, z) denote the final r components of the group transformation formulas

g · z = Z(g, z) = (X(g, z), Y (g, z)) =
(
X1(g, z), . . . , Xm−r(g, z), Y1(g, z), . . . , Yr(g, z)

)
.

Transversality combined with the Implicit Function Theorem implies the existence of a
local solution g = ρ(z) to the algebraic normalization equations (3).

By definition, if ρ is such a right moving frame, ρ(z) · z ∈ K, and hence, separating
into x and y constituents,

ρ(z) · z =
(
I(z), c

)
=

(
I1(z), . . . , Im−r(z), c1, . . . , cr

)
, (4)

where c1, . . . , cr are the normalization constants that defin=e the cross-section (2), while
I1(z), . . . , Im−r(z) form a complete system of functionally independent invariants for the
action. Indeed, if J(z) is any invariant, then it can be explicitly expressed in terms of the
fundamental invariants by the Replacement Rule

J(z1, . . . , zm) = J(I1(z), . . . , Im−r(z), c1, . . . , cr), (5)

obtained by replacing each zi appearing in the formula for J by corresponding fundamental
invariant or normalization constant. (The latter are known as the phantom invariants .)
The proof of formula (5) relies on the fact that any invariant is constant on the orbits of
G and hence uniquely determined by its values on the cross-section.
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3. Equivariant Maps.

Now suppose that our Lie group G also acts on an n-dimensional manifold N .

Definition 4. A function F :M → N is called G-equivariant if

F (g · z) = g · F (z) for all g ∈ G, z ∈M. (6)

Note that a moving frame is a particular example of an equivariant map when N = G
and G acts on itself by right or left multiplication. The goal of this section is to use moving
frames to construct a formula for a general equivariant map.

Consider the Cartesian product action (z, w) 7−→ (g ·z, g ·w) of G on M ×N . Observe
that if the action of G is on M (locally) free, then the Cartesian product action is also
(locally) free. We will concentrate on this case, noting that non-free actions can be dealt
with by similar constructions, perhaps involving partial moving frames, [19].

The first result is immediate.

Lemma 5. A function F :M → N is G-equivariant if and only if its graph ΓF =
{ (z, F (z)) | z ∈M } is a G-invariant m-dimensional submanifold of M ×N .

Given a cross-section K ⊂ M to the action of G on M , let us use the Cartesian
product cross-section K × N ⊂ M × N for the product action. By transversality, the
intersection

ΣF = ΓF ∩ (K ×N) (7)

is an (m − r)-dimensional submanifold of the Cartesian product cross-section. Moreover,
since ΓF is G-invariant, we can reconstruct the graph

ΓF = G ·ΣF = { g · (z, w) | (z, w) ∈ ΣF } (8)

as the union of all the G orbits passing through ΣF . Conversely, given an (m − r)-
dimensional submanifold ΣF ⊂ K × N that is transverse to the vertical fibers, then (8)
allows us to construct a corresponding m-dimensional G-invariant submanifold that locally
agrees with the graph of a G equivariant function F :M → N .

The preceding cross-section induces a right moving frame ρ̂ :M × N → G such that
ρ̂(z, w) = ρ(z), where ρ :M → G is the right moving frame on M corresponding to K.
Note that, in view of (4),

ρ(z) · (z, w) =
(
I1(z), . . . , Im−r(z), c1, . . . , cr, J1(z, w), . . . , Jn(z, w)

)
=

(
I(z), c, J(z, w)

)
,

(9)
where I = (I1, . . . , Im−r) are the fundamental invariants on M that were derived above,
while J = (J1, . . . , Jn) are further invariants on M ×N , and such that the combined list
forms a complete system of functionally independent invariants on M ×N . In particular,
each Jν must depend explicitly on w as otherwise, in view of the Replacement Rule (5), it
would be function of the Ij ’s and hence not independent.

Now let us explicitly reconstruct the graph of an equivariant function from its inter-
section with the cross-section (7). The latter can be written as

ΣF = { (x, c, w) | w = H(x) } (10)
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for some vector-valued function H(x1, . . . , xm−r). Thus, (z, w) ∈ ΓF if and only if

ρ(z) · (z, w) =
(
I(z), c, J(z, w)

)
∈ ΣF . (11)

Combining the last two equations, we conclude that the equivariant function F with graph
ΓF = {w = F (z)} is defined implicitly by

J(z, w) = H
(
I(z)

)
. (12)

We can then solve (12) for
w = F

(
z,H

(
I(z)

) )
. (13)

Since H(x) is arbitrary, this provides an explicit formula for a general equivariant function
F :M → N . As we will see, (13) reduces to the Malgrange formula for equivariant linear
maps, cf. [1, 25], when G is a classical group acting linearly on a Cartesian product space.

In fact, the equivariant function F can be explicitly determined by using the corre-
sponding left equivariant moving frame ρ̃ :M → G, which can be simply obtained from the
right equivariant moving frame by composing with the group inversion map: ρ̃(z) = ρ(z)−1.
Indeed, given (z0, w0) = (x0, y0, w0) ∈M ×N , let us write out the coordinate formulas for
the action of the corresponding left moving frame ρ̃(z) = ρ(z)−1 explicitly as

ρ(z)−1 · (z0, w0) =
(
ϕ(z; z0), ψ(z; z0, w0)

)
.

Note that these formulas can be obtained by inverting the group transformations and
then substituting for the group parameters g ∈ G using the moving frame g = ρ(z). In
particular, if (z0, w0) = ρ(z) · (z, w) =

(
I(z), c, J(z, w)

)
∈ K, then

ρ(z)−1 ·
(
I(z), c, J(z, w)

)
=

(
ϕ(z; I(z), c), ψ(z; I(z), c, J(z, w))

)
= (z, w). (14)

This implies that we can write (13) in the form

w = ψ
(
z; I(z), c, H

(
I(z)

) )
= F

(
z,H

(
I(z)

) )
. (15)

Observe that ψ is a universal function of its arguments, uniquely prescribed by the group
action on M × N , while H is an arbitrary function of the fundamental invariants on M .
However, in simple contexts, it is easier to just directly solve (12) for w.

Example 6. We start with an almost trivial example. Consider the action of the
n-dimensional abelian group G = R

n on N = R
n by translation: w 7→ w + a for a ∈ G.

Let M be the k-fold Cartesian product space M = N × · · · × N = R
kn, subject to the

diagonal action, consisting of simultaneous translations:

xi 7−→ xi + a for i = 1, . . . , k.

To construct equivariant maps F :M → N , so w = F (x1, . . . , xk), by the preceding
moving frame construction, we use the cross-section K = {xk = 0} ⊂M ×N . Solving the
normalization equation xk + a = 0 produces the right moving frame

ρ(z) = ρ(x1, . . . , xk) = −xk.
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Thus,

ρ(z) · (z, w) = ρ(x1, . . . , xk) · (x1, . . . , xk, w) = (x1 − xk, . . . , xk−1 − xk, 0, w− xk),

whose non-constant entries are the fundamental translation invariants.

A transverse submanifold of dimension kn− r = (k − 1)n of the cross-section can be
written in the form

w = H(x1, . . . , xk−1).

Thus, using formula (12), the corresponding equivariant map w = F (x1, . . . , xk) is given
implicitly by

w − xk = H(x1 − xk, . . . , xk−1 − xk)

and hence, explicitly,

w = F (x1, . . . , xk) = xk +H(x1 − xk, . . . , xk−1 − xk), (16)

where H is an arbitrary function of the invariants.

Example 7. Using the same notation as in Example 6, we consider the diagonal
action of the orthogonal group G = O(n) on M ×N :

xi 7−→ Qxi, w 7−→ Qw, x1, . . . , xk, w ∈ N = R
n, Q ∈ O(n).

Freeness of the diagonal action requires that k ≥ n, and that the vectors x1, . . . , xk span
R

n. To compute a moving frame, we work in the dense open subset M0 ⊂ M where the
first n vectors x1, . . . , xn form a basis for Rn. Note that if x1, . . . , xk lie in the open dense
subset of the Cartesian product space where G acts freely, we can relabel, i.e., permute,
the vectors to ensure that we are in M0. Assembling the vectors into the corresponding
n × k data matrix † X = (x1, . . . , xk) = (X0, X1), where X0 is square, of size n × n, and,
by our assumption, invertible, while X1 has size n× (k − n).

A convenient cross-section is obtained through use of the QR factorization of X0,
cf. [13, 23]. Namely, we choose as cross-section the subset K ⊂ M containing all vectors
r1, . . . , rn ∈ R

n such that rii > 0 and rji = 0 when i < j ≤ n. In other words, the
corresponding n × n matrix R0 = (r1, . . . , rn) is upper triangular with positive entries on
the main diagonal. The normalization equations take the matrix form QX0 = R0, or,
equivalently, X0 = QTR0, which is thus its QR factorization. The right moving frame is
given by

ρ(x1, . . . , xk) = ρ(X) = Q,

and the nonzero entries of
R = (R0, R1) = ρ(X) ·X

form a complete system of functionally independent invariants of the action of O(n) on
M , while the zero entries lying below the diagonal in R0 are the phantom invariants.

† In applications, the transpose of X is more commonly referred to as the “data matrix”,
cf. [23].
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Remark : The classical dot product orthogonal invariants Iij = xi · xj generate the
algebra of orthogonal invariants, [29], but are not functionally independent. Moreover, the
Replacement Rule (5) allows us to easily rewrite any invariant function J = J(x1, . . . , xk) =
J(X) in terms of the fundamental invariants, namely, J = J(r1, . . . , rk) = J(R). In
particular, Iij = ri · rj are the entries of the positive definite Gram matrix XTX = RTR.
Thus, the entries of R are functions of the entries of the Gram matrix, i.e., the dot product
invariants. Using this and the Replacement Rule allows us to conclude that any invariant
can be written as a (non-unique) function of the dot product invariants Iij .

To construct equivariant functions, we use the moving frame formula to construct the
additional invariants on M ×N , which are the components of

v = ρ(X)w = Qw,

or, equivalently, the columns of the extended factorization

QX̂ = R̂ = (R, v), where X̂ = (X,w) = (QTR,QTv).

Consider a submanifold of the cross-section of the form

v = H(R), so that H(R) =
(
H1(R), . . . , Hn(R)

)T

is a vector-valued invariant function, i.e., its entries are functions of the nonzero entries of
R. This implies that

w = QTH(R) = XR−1
0 H(R) =

n∑

i=1

hi(R) xi, (17)

depending on the invariant functions

h(R) =
(
h1(R), . . . , hk(R)

)
= R−1

0 H(R). (18)

Malgrange’s representation of O(n) equivariant functions, cf. [25], has the form (17), but
with the sum extending from 1 to k. However, we can write xn+1, . . . , xk as orthogo-
nally invariant linear combinations of the basis vectors x1, . . . , xn, and hence Malgrange’s
formula can be easily converted into the reduced moving frame formula (17).

Example 8. Combining Examples 6 and 7, let us consider the diagonal action of
the Euclidean group G = E(n) = O(n)⋉R

n on M ×N , where N = R
n and M = R

(k+1)n

is the (k + 1)-fold Cartesian product of N . We assume k ≥ n and the first n + 1 points†

x0, . . . , xn do not lie on an affine hyperplane or, equivalently, the volume of the simplex of
which they are vertices is nonzero.

In this case, we can construct a cross-section by first translating the points to positions
yi = xi−xk. Let Y = (Y0, Y1) = (y1, . . . , yk) be the corresponding translated data matrix,
omitting the first column y0 = 0, and where Y0 is square and nonsingular. We then use
the orthogonal transformation so that QY0 = R0 is upper triangular, as before, and the

† Here we label the points starting at 0.
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nonzero entries of R = (R0, R1) = QY are the fundamental invariants. An alternative is to
translate the points so that they have zero mean, so yi = xi−x, where x = (x1+· · ·+xk)/k,
and then perform the QR factorization of the resulting normalized data matrix Y , with
the nonzero entries of R providing a slightly different set of fundamental invariants. Let
us focus on the latter version, which is more computationally stable, in the rest of the
construction.

Applying the moving frame to w ∈ N produces the additional invariants

v = ρ(z) · w = Q(w − x).

The submanifold v = H(R) of the cross-section produces the Euclidean analog of the
orthogonal Malgrange formula (17), namely that every Euclidean equivariant map has the
form

w = QTH(R) + x = Y0R
−1
0 H(R) + x = x+

n∑

i=1

hi(R) (xi − x), (19)

where, as in (18), the hi(R) are functions of the fundamental invariants. Alternatively,
one can write the hi as functions of the interpoint distances ‖ xi − xj ‖, keeping in mind
that the latter invariants are not functionally independent; see [18]. As in Example 7,
we can also take the sum to be from 1 to n because the latter vectors yn+1, . . . , yk are
Euclidean-invariant linear combinations of y1, . . . , yn.

Example 9. Consider the standard action x 7→ Ax of the general linear group of
invertible n×n matrices A ∈ GL(n) on x ∈ N = R

n. As above, we consider the Cartesian
product action on k ≥ n copies of N , denoted by M , and seek equivariant functions from
M → N . To compute a moving frame, we work in the dense open subset M0 ⊂M defined
above, using the n × k data matrix X = (x1, . . . , xk) = (X0, X1), where X0 is invertible.
The action of GL(n) is then given by X 7→ AX .

We choose the cross-section K = {X0 = I } ⊂ M0. The normalization equations
are simply AX0 = I, and hence the right equivariant moving frame is ρ(X) = X−1

0 .
The invariants are the entries of X−1

0 X1. We can view the rows a1, . . . , an of the inverse
matrix X−1

0 as the dual basis vectors for the basis x1, . . . , xn, meaning aixj = δij for
i, j = 1, . . . , n. Thus, the joint GL(n) invariants I = ( . . . Iij . . . ) are the products
Iij = aixj for i = 1, . . . , n, j = n + 1, . . . , k, between the dual basis vectors and the
remainder.

To construct equivariant maps, we work as above. Now v = ρ(X)w = X−1
0 w. Given a

submanifold of the cross-section defined by v = H(Y ), the corresponding equivariant map
is implicitly given by X−1

0 w = H(X−1
0 X1) = H(I), or, in explicit form,

w = X0H(I) =
n∑

i=1

hi(I)xi, (20)

where the hi are scalar invariant functions, thus establishing the corresponding (reduced)
Malgrange representation.
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Example 10. Consider next the special linear group SL(n) consisting of all uni-
modular (unit determinant) n×n matrices, and corresponding to volume-preserving maps
x 7→ Ax for x ∈ N = R

n and A ∈ SL(n). let M be as before, and we again assume the
first n vectors x1, . . . , xn form a basis.

Now the cross-section can be taken to be K = {X0 = c I } ⊂ M0 where c ∈ R

is arbitrary. The corresponding right moving frame is ρ(X) = (detX0)X
−1
0 = cofX0,

the latter denoting the cofactor matrix. The invariants are the non-constant entries of
ρ(X)X = (detX0)( I , X

−1
0 X1), namely† I = (I0 . . . Iij . . . ), where I0 = detX0 and

Iij = aixj are the entries of X−1
0 X1.

Given a submanifold of the cross-section defined by v = H(c, Y ), the corresponding
equivariant map is implicitly given by (detX0)X

−1
0 w = H(I), or, in explicit form,

w = (detX0)
−1X0H(I) =

n∑

i=1

h̃i(I)xi, (21)

where h̃i(I) = hi(I)/I0 are scalar invariants, which is again the Malgrange formula.

Remark : Both of the preceding actions can be extended by including translations,
leading to the affine group A(n) = GL(n)⋉R

n and the equi-affine group SA(n) = SL(n)⋉
R

n. These are treated in the same fashion as the Euclidean group. One uses the translation
to normalize the data points x1, . . . , xk so that they have mean zero, and then the invariants
are the general or special linear invariants of the normalized data matrix. In both cases,
the reduced Malgrange representation takes the form

w = x+

n∑

i=1

hi(I) (xi − x), (22)

where I denotes, respectively, the preceding general or special linear invariants of the
normalized data matrix.

Example 11. Finally, let us study the projective group action

x 7−→ y =
Ax+ b

cTx+ d
, where

(
A b
cT d

)
∈ GL(n+ 1,R), x ∈ R

n. (23)

Here A is an n× n matrix, b, c ∈ R
n, and d ∈ R. The most important case for image pro-

cessing is when n = 2 in which the action comes from the projection of three-dimensional
objects onto a camera plane, [3].

The Cartesian product action will be free on a suitable dense open subset of M
provided k ≥ n+2. The joint invariants are found, using moving frames, in [18; Example
3.9]. Define

V (x1, . . . , xn+1) =
1

n !
det(x2 − x1, . . . , xn+1 − x1) (24)

† One can, of course, drop the I0 factor from all but the first invariants; however, the resulting
invariants ˜

I = (I0 . . . Iij . . . ) will not satisfy the moving frame Replacement Rule.

9



to be the volume of the simplex with the indicated vertices, which is assumed to be
nonzero. Then a complete system of fundamental joint invariants are given by the volume

cross ratios

Iij(x1, . . . , xk) =
V (x1, . . . , xn+1)V (x1, . . . , xi−1, xi+1, . . . , xn, xn+2, xj)

V (x1, . . . , xn, xn+2)V (x1, . . . , xi−1, xi+1, . . . , xn, xn+1, xj)
,

i = 1, . . . , n, j = n+ 3, . . . , k.

(25)

We note that all volume cross ratios are projectively invariant, cf. [27], and the particular
ones listed in (25) are functionally independent. Syzygies among the various cross ratios
can be readily found using the Replacement Rule (5); see [18]. For example, when n = 1,
so we are dealing with the projective line N = R ⊂ RP

1, the volume cross ratios (25)
reduce to the standard cross ratio invariants

Ij =
(x2 − x1) (xj − x3)

(x3 − x1) (xj − x2)
, j = 4, . . . , k. (26)

Similarly, in the planar case n = 2, the fundamental projective invariants are the area
cross ratios

I1j =
V (x1, x2, x3)V (x2, x4, xj)

V (x1, x2, x4)V (x2, x3, xj)
, I2j =

V (x1, x2, x3)V (x1, x4, xj)

V (x1, x2, x4)V (x1, x3, xj)
, j = 5, . . . , k. (27)

To construct projectively equivariant maps F :M → N on the k fold Cartesian prod-
uct, we work as before, producing them in implicit form

Ji(x1, . . . , xk, w) = Hi(I), i = 1, . . . , n, (28)

where Ji = Iiw denotes the volume cross ratio invariant (25) in which w replaces xj , while
I represents the complete systems of projective invariants (25) depending on x1, . . . , xk.
The implicit form (28) can be readily solved for w as a function of the xj ’s and the Hi(I)’s.
Indeed, each Ji is a linear fractional function of w, and hence, clearing denominators, (28)
is equivalent to an inhomogeneous linear system of equations in w whose coefficients and
right hand side depend on x1, . . . , xk and the projective invariants I. The explicit solution
to this system, w = F (x1, . . . , xk, I), even in the two-dimensional case, does not look
particularly enlightening. We will interpret (28), or its explicit solution, as the nonlinear
analog of the Malgrange formula in this case.

Acknowledgments : I would like to thank Soledad Villar, George Kevrekidis, and Ben
Blum-Smith for thought-provoking discussions that inspired me to write this paper. I also
thank Evelyne Hubert for her helpful comments on an earlier draft.

10



References

[1] Blum–Smith, B., and Villar, S., Machine learning and invariant theory, preprint,
2022, arXiv:2209.14991.

[2] Burnside, W., Theory of Groups of Finite Order, 2nd ed., Cambridge Univ. Press,
1911; reprinted, Dover, New York, 1955.

[3] Cipolla, R., and Giblin, P., Visual Motion of Curves and Surfaces, Cambridge
University Press, Cambridge, 2000.

[4] Derksen, H., and Kemper, G., Computational Invariant Theory, Encyclopaedia of
Math. Sci., vol. 130, Springer–Verlag, New York, 2002.

[5] Guggenheimer, H.W., Differential Geometry, McGraw–Hill, New York, 1963.

[6] Hong, H., and Kogan, I.A., Equi-affine minimal-degree moving frames for
polynomial curves, preprint, 2024, arXiv:2402.06610.

[7] Hubert, E., and Bazan, E.R., Algorithms for fundamental invariants and
equivariants of finite groups, Math. Comp. 91 (2022), 2459–2488.

[8] Hubert, E., and Kogan, I.A., Rational invariants of a group action. Construction
and rewriting, J. Symb. Comp. 42 (2007), 203–217.

[9] Hubert, E., and Kogan, I.A., Smooth and algebraic invariants of a group action.
Local and global constructions, Found. Comput. Math. 7 (2007), 455–493.

[10] Fels, M., and Olver, P.J., Moving coframes. II. Regularization and theoretical
foundations, Acta Appl. Math. 55 (1999), 127–208.

[11] Finzi, M., Welling, M., and Wilson, A.G., A practical method for constructing
equivariant multilayer perceptrons for arbitrary matrix groups, in: Proceedings
of the 38th International Conference on Machine Learning, vol. 139, M. Meila
and T. Zhang, eds, Proceedings of Machine Learning Research, Cambridge MA,
2021, pp. 3318–3328.

[12] Gatermann, K., Computer Algebra Methods for Equivariant Dynamical Systems,
Lecture Notes in Math., vol. 1728 Springer, New York, 2000.

[13] Golub, G.H, and Van Loan, C.F., Matrix Computations, 3rd ed., Johns Hopkins
Univ. Press, Baltimore, 1996.

[14] Görlach, P., Hubert, E., and Papadopoulo, T., Rational invariants of even
ternary forms under the orthogonal group, Found. Comput. Math. 19 (2019),
1315–1361.

[15] Lim, L.–H., and Nelson, B.J., What is an equivariant neural network?, Notices
Amer. Math. Soc. 70 (2023), 619–624.

[16] Neusel, M.D., and Smith, L., Invariant Theory of Finite Groups, Math. Surveys and
Monographs, vol. 94, American Mathematical Society, Providence, R.I., 2002.

[17] Noether, E., Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann.

77 (1916), 89–92.

[18] Olver, P.J., Joint invariant signatures, Found. Comput. Math. 1 (2001), 3–67.

[19] Olver, P.J., Recursive moving frames, Results Math. 60 (2011), 423–452.

11



[20] Olver, P.J., Modern developments in the theory and applications of moving frames,
London Math. Soc. Impact150 Stories 1 (2015), 14–50.

[21] Olver, P.J., Invariants of finite and discrete group actions via moving frames, Bull.
Iranian Math. Soc. 49 (2023), 11.

[22] Olver, P.J., and Pohjanpelto, J., Moving frames for Lie pseudo–groups, Canadian J.

Math. 60 (2008), 1336–1386.

[23] Olver, P.J., and Shakiban, C., Applied Linear Algebra, Second Edition,
Undergraduate Texts in Mathematics, Springer, New York, 2018.

[24] Popov, V.L., and Vinberg, E.B., Invariant Theory, in: Algebraic Geometry IV,
A.N. Parshin and I.R. Shafarevich, eds., Encyclopedia of Math. Sci., vol. 55,
Springer-Verlag, New York, 1991, pp. 123–278.

[25] Schwarz, G., Lifting smooth homotopies of orbit spaces, Publ. Math. I.H.E.S. 51

(1980), 37–135.

[26] Swan, R., Invariant rational functions and a problem of Steenrod, Invent. Math. 7

(1969), 148–158.

[27] Veblen, O., and Young, J.W., Projective Geometry, Blaisdell Publ. Co., New York,
1946.

[28] Villar, S., Hogg, D.W., Storey–Fisher, K., Yao, W., and Blum–Smith, B., Scalars
are universal: equivariant machine learning, structured like classical physics,
in: Advances in Neural Information Processing Systems, vol. 34, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J.W. Vaughan, eds, Curran
Associates, Inc., Red Hook, NY, 2021, pp. 28848–28863.

[29] Weyl, H., Classical Groups, Princeton University Press, Princeton, N.J., 1946.

12


