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Symmetry Groups of

Differential Equations

=⇒ Sophus Lie (1842–1899)

System of differential equations

∆(x, u(n)) = 0

G — Lie group or Lie pseudo-group acting on the
space of independent and dependent variables:

(x̃, ũ) = g · (x, u)



G acts on functions by transforming their graphs:

u = f(x) ũ = f̃(x̃)

g
!−→

Definition. G is a symmetry group of the system
∆ = 0 if f̃ = g · f is a solution whenever f is.



Infinitesimal Generators

Every one-parameter group can be viewed as the flow of
a vector field v, known as its infinitesimal generator.

In other words, the one-parameter group is realized as the
solution to the system of ordinary differential equations
governing the vector field’s flow:

dz

dε
= v(z)

Equivalently, if one expands the group transformations in
powers of the group parameter ε, the
infinitesimal generator comes from the linear terms:

z(ε) = z + εv(z) + · · ·



Infinitesimal Generators = Vector Fields

In differential geometry, it has proven to be very useful to
identify a vector field with a first order differential operator

In local coordinates (. . . xi . . . uα . . .), the vector field

v = ( . . . ξi(x, u) . . . ϕα(x, u) . . . )

that generates the one-parameter group (flow)

dxi

dε
= ξi(x, u)

duα

dε
= ϕα(x, u)

is identified with the differential operator

v =
p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα



Prolongation

Since G acts on functions, it acts on their derivatives u(n),
leading to the prolonged group action:

(x̃, ũ(n)) = pr(n) g · (x, u(n))

=⇒ formulas provided by implicit differentiation

Prolonged infinitesimal generator:

pr v = v +
∑

α,J

ϕα
J(x, u

(n))
∂

∂uα
J



The Prolongation Formula

The coefficients of the prolonged vector field are given
by the explicit prolongation formula (PJO, 1979):

ϕα
J = DJ Q

α +
p∑

i=1

ξi uα
J,i

where Di =
∑

α,J

uα
J,i

∂

∂uα
J

DJ = Dj1
· · ·Djk

— total derivatives

Q = (Q1, . . . , Qq) — characteristic of v

Qα(x, u(1)) = ϕα
−

p∑

i=1

ξi
∂uα

∂xi

% Invariant functions u = f(x) are solutions to Q(x, u(1)) = 0



Lie’s Infinitesimal Symmetry Criterion

for Differential Equations

Theorem. A connected group of transformations G is a
symmetry group of a nondegenerate system of differential
equations ∆ = 0 if and only if

pr v(∆) = 0 whenever ∆ = 0

for every infinitesimal generator v of G.



Generalized (Higher Order) Symmetries

% Due to Noether (1918)

% NOT Lie or Bäcklund, who only got as far as
contact transformations.

Key Idea: Allow the coefficients of the infinitesimal generator
to depend on derivatives of u, but drop the requirement
that the (prolonged) vector field define a geometrical
transformation on any finite order jet space:

v =
p∑

i=1

ξi(x, u(k))
∂

∂xi
+

q∑

α=1

ϕα(x, u(k))
∂

∂uα



Characteristic :

Qα(x, u
(k)) = ϕα

−

p∑

i=1

ξiuα
i

Evolutionary vector field:

vQ =
q∑

α=1

Qα(x, u
(k))

∂

∂uα

Prolongation formula:

pr v = pr vQ +
p∑

i=1

ξiDi

pr vQ =
∑

α,J

DJQα

∂

∂uα
J

% v is a generalized symmetry of a differential equation if and
only if its evolutionary form vQ is.



Example. Burgers’ equation.

ut = uxx + uux

Characteristics of generalized symmetries:

ux space translations

uxx + uux time translations

uxxx +
3
2 uuxx +

3
2 u

2
x +

3
4 u

2ux

uxxxx + 2uuxxx + 5uxuxx +
3
2 u

2ux + 3uu2
x +

1
2 u

3ux

...



=⇒ See Mikhailov–Shabat–Sokolov and J.P. Wang’s thesis for
long lists of equations with higher order symmetries.

Question: Which systems of PDE possess higher order
generalized symmetries?

• Linear systems of partial differential equations that admit a
nontrivial point symmetry group, as well as systems that
can be linearized by a point or contact transformation or
(in favorable circumstances) a differential substitution

(C integrable systems)

• Integrable systems solvable by inverse scattering
(S integrable systems)

% Underdetermined systems that admit a symmetry generator
depending on an arbitrary function of the independent
variables



=⇒ Almost all equations with one higher order symmetry have
infinitely many.

Bakirov’s Counterexample:

The “triangular system” of evolution equations

ut = uxxxx + v2 vt =
1
5 vxxxx

has one sixth order generalized symmetry, but no further higher
order symmetries.

Bakirov (1991), Beukers–Sanders–Wang (1998),
van der Kamp–Sanders (2002)

% % Non-triangular examples?



Recursion operators

=⇒ PJO (1977)

Definition. An operator R is called a recursion operator for
the system ∆ = 0 if it maps symmetries to symmetries, i.e.,
if vQ is a generalized symmetry (in evolutionary form), and

Q̃ = RQ, then v
Q̃
is also a generalized symmetry.

=⇒ A recursion operator generates infinitely many symmetries
with characteristics

Q, RQ, R
2Q, R

3Q, . . .

Theorem. Given the system ∆ = 0 with Fréchet derivative
(linearization) D∆, if

[D∆,R] = 0

on solutions, then R is a recursion operator.



Example. Burgers’ equation.

ut = uxx + uux

D∆ = Dt −D2
x − uDx − ux

R = Dx +
1
2u+ 1

2uD
−1
x

D∆ · R = DtDx −D3
x −

3
2uD

2
x −

1
2(5ux + u2)Dx +

1
2ut −

− 3
2uxx −

3
2uux +

1
2(uxt − uxxx − uuxx − u2

x)D
−1
x ,

R ·D∆ = DtDx −D3
x −

3
2uD

2
x −

1
2(5ux + u2)Dx − uxx − uux

hence

[D∆,R] = 1
2(ut − uxx − uux) +

1
2(uxt − uxxx − uuxx − u2

x)D
−1
x

which vanishes on solutions.



Linear Equations

Theorem. Let
∆[u] = 0

be a linear system of partial differential equations. Then any
symmetry vQ with linear characteristic Q = D[u] determines a
recursion operator D, since

[D,∆] = D̃ ·∆

If D1, . . . ,Dm determine linear symmetries vQ1
, . . . ,vQm

, then
any polynomial in the Dj’s also gives a linear symmetry.

Question 1: Given a linear system, when are all symmetries
a) linear? b) generated by first order symmetries?

Question 2: What is the structure of the non-commutative
symmetry algebra?



Bi–Hamiltonian systems

=⇒ Magri (1978)

Theorem. Suppose

du

dt
= F1 = J1∇H1 = J2∇H0

is a biHamiltonian system, where J1, J2 form a compatible
pair of Hamiltonian operators. Assume that J1 is nondegen-
erate. Then

R = J2J
−1
1

is a recursion operator that generates an infinite hierarchy
of biHamiltonian symmetries

du

dt
= Fn = RFn−1 = J1∇Hn = J2∇Hn−1.



The Korteweg–deVries Equation

∂u

∂t
= uxxx + uux = J1

δH1

δu
= J2

δH0

δu

J1 = Dx H1[u ] =
∫

( 1
6 u

3
− 1

2 u
2
x ) dx

J2 = D3
x + 2

3uDx + 1
3 ux H0[u ] =

∫
1
2 u

2 dx

% % Bi–Hamiltonian system with recursion operator (Lenard)

R = J2 · J
−1
1 = D2

x +
2
3 u+ 1

3 uxD
−1
x

Hierarchy of generalized symmetries and higher order conservation laws:

∂u

∂t
= uxxxxx +

5
3 uuxxx +

10
3 uxuxx +

5
6 u

2ux = J1
δH2

δu
= J2

δH1

δu

H2[u ] =
∫

( 1
2 u

2
xx −

5
6 u

2
x + 5

72 u
4 ) dx

and so on . . . (Gardner, Green, Kruskal, Miura, Lax)



Underdetermined Systems

We assume that the system of differential equations

∆κ[u ] = 0, κ = 1, . . . , q, (∗)

has the same number of equations as unknowns u = (u1, . . . , uq).

Definition. The system of differential equations (∗) is
underdetermined if there exist differential operators D1, . . . ,Dq

that do not simultaneously vanish on solutions, such that

D1∆1 + · · · +Dq∆q ≡ 0.

For the general case (which is quite subtle) see

W.M. Seiler, Involution, Springer, 2010.

Examples of underdetermined systems arising in basic physics
include Maxwell’s equations for electromagnetism and
Einstein’s equations for general relativity.



The Main Theorem

Theorem. Suppose that a system of differential equations
admits an infinitesimal symmetry vQ whose characteristic

Q[u, h ] = Q( . . . xi . . . uα
J . . . hK(x) . . . )

depends on finitely many derivatives hK = ∂Kh of an arbitrary
function h(x) of the independent variables. Let F [u ] be an
arbitrary differential function. Then the characteristic

Q̂[u ] = Q( . . . xi . . . uα
J . . . DKF . . . )

obtained by replacing the derivatives of h by the corresponding
total derivatives of F is also the characteristic of an infinitesimal
symmetry v

Q̂
of the system.



Thus, any such underdetermined system of differential
equations automatically admits an infinite family of higher
order symmetries depending upon an arbitrary function F of
the independent variables, the dependent variables, and their
derivatives of arbitrarily high order.

% % Systems that satisfy the hypothesis of the Theorem are
necessarily underdetermined, although, as we will see, not
every underdetermined system will admit such a symmetry
generator.



Proof :

First: note that the partial derivatives of h coincide with its total deriva-
tives: ∂Kh(x) = DKh.

Second: Suppose
R( . . . xi . . . uα

J . . . ∂Kh(x) . . . ) = 0

where h(x) is an arbitrary function of all the independent variables.
Then, since its partial derivatives ∂Kh(x) can assume any values, we
can replace them by any quantities and still have equality. In particular,

R( . . . xi . . . uα
J . . . DKF . . . ) = 0

where F [u ] be an arbitrary differential function.

=⇒ Kiselev’s Substitution Principle:

https://preprints.ihes.fr/2012/M/M-12-13.pdf



Third: according to the prolongation formula for evolutionary vector fields,
the coefficients of prvQ are obtained by total differentiation, so

DIQα = Rα,I( . . . xi . . . uα
J . . . ∂Kh(x) . . . ),

where Rα,I are certain functions of the jet coordinates and the partial
(total) derivatives of h, then, replacing h by F in Q leads, via the
substitution principle, to the same algebraic expressions for its total
derivatives

DIQ̂α = Rα,I( . . . xi . . . uα
J . . . DKF . . . ),

in terms of the jet coordinates and the total derivatives of F . By the
preceding remarks, we can thus replace each partial derivative hK(x)
appearing in the determining equations by the corresponding total
derivative DKF without affecting their validity. We conclude that
the evolutionary vector field v

Q̂
with characteristic Q̂ also satisfies

the symmetry determining equations for the system of differential
equations. Q.E.D.



Variational Symmetries

Definition. A (strict) variational symmetry is a transformation
(x̃, ũ) = g · (x, u) which leaves the variational problem in-
variant: ∫

Ω̃
L(x̃, ũ(n)) dx̃ =

∫

Ω
L(x, u(n)) dx

Infinitesimal invariance criterion:

pr v(L) + LDiv ξ = 0

Divergence symmetry (Bessel–Hagen):

pr v(L) + LDiv ξ = DivB

=⇒ Every divergence symmetry has an equivalent
strict variational symmetry



Theorem. Every symmetry of a variational problem is a
symmetry of the Euler–Lagrange equations.

% % But not conversely!

% Almost all examples of non-variational symmetries are scal-
ing symmetries. One known exception is the equations
of 3D linear isotropic elasticity which admits the non-
variational generalized symmetry whose flow is equiva-
lent to Maxwell’s equations! (PJO, 1984)



Noether’s Second Theorem

Theorem. A system of Euler-Lagrange equations is
underdetermined if and only if it admits an infinite
dimensional variational symmetry group depending on
an arbitrary function of the independent variables.
The associated conservation laws are trivial.

% Noether’s First Theorem gives a one-to-one correspondence
between non-trivial symmetries and non-trivial
conservation laws. (Martinez Alonso, 1979; PJO, 1986)

Open Question: Are there over-determined systems of
Euler–Lagrange equations for which trivial symmetries
give non-trivial conservation laws?



Generalized Noether’s Second Theorem
Theorem. If E(L) = 0 is any underdetermined system of

Euler–Lagrange equations, then it admits generalized
symmetries of arbitrarily high order depending upon
one or more arbitrary differential functions.

=⇒ Fulp-Lada-Stasheff, 2003; Anco, S.C., 2017 (co-symmetries)



Generalized Noether’s Second Theorem
Theorem. If E(L) = 0 is any underdetermined system of

Euler–Lagrange equations, then it admits generalized
symmetries of arbitrarily high order depending upon
one or more arbitrary differential functions.

This result resolves a mystery concerning Noether’s Second
Theorem, which relies on infinitesimal symmetries that involve
one or more arbitrary functions of the p independent variables.
But what about the functions of the dependent variables, and
hodograph and reciprocal transformations that interchange
independent and dependent variables, etc.? According to the
Theorem, once the system admits variational symmetries
depending on an arbitrary function of any p jet variables, then
it automatically admits variational symmetries depending on an
arbitrary differential function!



Relativity

Noether’s Second Theorem effectively resolved Hilbert’s
dilemma regarding the law of conservation of energy in Ein-
stein’s field equations for general relativity.

Namely, the time translational symmetry that ordinarily
leads to conservation of energy in fact belongs to an infinite-
dimensional symmetry group, and thus, by Noether’s Second
Theorem, the corresponding conservation law is trivial, meaning
that it vanishes on all solutions.

=⇒ Higher order symmetries of Einstein’s equations:
Anderson and Torre, 1993



A Simple Example:

Variational problem:

I[u, v ] =
∫ ∫

(ux + vy)
2 dx dy

Variational symmetry group:

(u, v) '−→ (u+ ϕy, v − ϕx)

Evolutionary generator:

vQ = −
∂h

∂y

∂

∂u
+

∂h

∂x

∂

∂v



Euler-Lagrange equations:

∆1 = Eu(L) = uxx + vxy = 0

∆2 = Ev(L) = uxy + vyy = 0

Differential relation:

Dy∆1 −Dx∆2 ≡ 0

The Main Theorem implies that, for any differential function
F [u, v ] depending on x, y and u, v and their derivatives, the
evolutionary vector field

v̂ = −DyF
∂

∂u
+DxF

∂

∂v

is also a variational symmetry, and thus a higher order symmetry
of the underdetermined Euler–Lagrange equations.



For example, the second order variational problem

Ĩ[u, v ] =
∫ ∫

[ 12 (uxx + vxy)(uxy + vyy) +
1
6 (ux + vy)

3 ] dx dy,

with underdetermined nonlinear fourth order Euler–Lagrange
equations

uxxxy + vxxyy = (ux + vy)(uxx + vxy),

uxxyy + vxyyy = (ux + vy)(uxy + vyy),

possesses the aforementioned properties.



While the Theorem implies the existence of higher order symmetries of any
underdetermined system of Euler–Lagrange equations, this result does not
extend to general underdetermined systems of nonlinear partial differential
equations. Indeed, in the present context, if H[u, v ] is any differential
function, then the underdetermined system

∆1 = DxH = 0, ∆2 = DyH = 0,

satisfies the same linear dependency:

Dy∆1 −Dx∆2 = 0.

An evolutionary infinitesimal generator v = Q[u, v ]∂u + R[u, v ]∂v will be an
infinitesimal symmetry of provided

Dx[pr v(H) ] = Dy[pr v(H) ] = 0

whenever holds. It is clear that, by making H[u, v ] sufficiently complicated,
one can ensure that there are no symmetries. Thus, such an underdeter-
mined system does not admit an infinite-dimensional symmetry algebra of
the required form, and hence the Theorem does not apply.



Systems of differential equations or variational problems for curves, surfaces,
etc., that do not depend on any underlying parametrization thereof are
called parameter-independent . The symmetry pseudo-group consisting of all
local diffeomorphisms of the base space X has infinitesimal generators

v =
p∑

i=1

ξi(x)
∂

∂xi
,

where ξi(x) are arbitrary functions.

Theorem. A system of differential equations ∆[u ] = 0 is parameter-indepen-
dent if and only if it admits all generalized infinitesimal symmetry generators
of the form

vQ =
q∑

α=1

( p∑

i=1

uα
i Fi[u ]

∂

∂uα

)

,

where F1[u ], . . . , Fp[u ] are arbitrary differential functions.
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Anco, S.C., Generalization of Noether’s theorem in modern form to non-
variational partial differential equations, in: Recent Progress and Modern
Challenges in Applied Mathematics, Modeling and Computational Science,
vol. 79, Fields Institute Communications, Toronto, Canada, 2017, pp.
119–182.


