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Invariants

Definition. Let G be a group acting on a
space M . Then an invariant is a real-
valued function I : M → R that does
not change under the action of G:

I(g ·z) = I(z) for all g ∈ G, z ∈ M

! If G acts transitively, there are no (non-
constant) invariants.



Differential Invariants

Let M be a smooth manifold. Given a smooth submanifold
(curve, surface, . . . )

S ⊂ M

a differential invariant is an invariant I : Jn → R of the
prolonged action of G on its derivatives (jets):

I(g · z(n)) = I(z(n))

Jn = Jn(M,p) — jet space for p-dimensional submanifolds;

Local coordinates: z(n) = (x, u(n)) = (. . . xi . . . uα
J . . .) represent

partial derivatives of the submanifold S = {u = f(x) }.



Applications of Differential Invariants

• Equivalence and signatures of submanifolds
=⇒ image processing, jigsaw puzzles

• Moduli spaces

• Invariant differential equations

• Integration of ordinary differential equations

• Group splitting/foliation of PDEs
— explicit solutions & Bäcklund transformations

• Conservation laws and characteristic classes

• Invariant variational problems
=⇒ Noether’s Two Theorems



Examples of Differential Invariants

Euclidean Group Acting on R3

G = SE(3) = SO(3)! R3

=⇒ group of rigid motions

z &−→ Rz + b R ∈ SO(3)

• Induced action on curves and surfaces.



Euclidean Space Curves C ⊂ R3

• κ — curvature: order = 2

• τ — torsion: order = 3

• κs, τs,κss, . . . — derivatives w.r.t. arc length ds

Theorem. Every Euclidean differential invariant of
a space curve C ⊂ R3 can be written

I = H(κ, τ,κs, τs,κss, . . . )

Thus, κ and τ generate the differential invariants of
space curves under the Euclidean group.



Euclidean Surfaces S ⊂ R3

• κ1,κ2 — principal curvatures: order = 2

• H = 1
2 (κ1 + κ2) — mean curvature

• K = κ1 κ2 — Gauss curvature

• D1H,D2H,D1K,D2K,D2
1H, . . . — derivatives

with respect to the equivariant Frenet frame on S

Theorem. Every Euclidean differential invariant of
a non-umbilic surface S ⊂ R3 can be written

I = Φ(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )

Thus, H,K generate the differential invariant algebra
of (generic) Euclidean surfaces.



Equi-affine Group on R3

G = SA(3) = SL(3)! R3 — volume preserving
z &−→ Az + b, detA = 1

Curves in R3:

• κ — equi-affine curvature: order = 4

• τ — equi-affine torsion: order = 5

• κs, τs,κss, . . . — diff. w.r.t. equi-affine arc length

Surfaces in R3:

• P — Pick invariant: order = 3

• Q0, Q1, . . . , Q4 — fourth order invariants

• D1P,D2P,D1Qν, . . . diff. w.r.t. the equi-affine frame



Basic Framework

G — Lie group (or Lie pseudo-group)
acting on a manifold M

I(G) — “algebra” of all differential invariants for
p-dimensional submanifolds S ⊂ M

Goal: Describe the structure of I(G) in as much
detail as possible.



The Basis Theorem

Theorem. The differential invariant algebra I(G) is locally
generated by a finite number of differential invariants

I1, . . . , I#

and p = dimS invariant differential operators

D1, . . . ,Dp

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

DJIκ = Dj1
Dj2

· · · Djn
Iκ.

! Lie groups: Lie, Ovsiannikov, Fels–PJO

! Lie pseudo-groups: Tresse, Kumpera,

Pohjanpelto–PJO, Kruglikov–Lychagin



GeneralProblems

Determine the structure of the
algebra of differential invariants:

generators, syzygies, commutators, etc.

Find a minimal system of
generating differential invariants.



Key Issues

• Basis of generating invariants: I1, . . . , I#

• Commutation formulae for

the invariant differential operators:

[Dj,Dk ] =
p∑

i=1

Y i
jk Di

=⇒ Non-commutative differential algebra

• Syzygies (functional relations) among

the differentiated invariants:

Φ( . . . DJIκ . . . ) ≡ 0

=⇒ Codazzi relations



Curves

Theorem. Let G be an ordinary% Lie group acting on the m-

dimensional manifold M . Then, locally, there exist m − 1

generating differential invariants κ1, . . . ,κm−1. Every other

differential invariant can be written as a function of the

generating differential invariants and their derivatives with

respect to the G-invariant arc length element ds.

% ordinary = transitive + no pseudo-stabilization.



Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for suitably
non-degenerate surfaces is generated by only the mean curvature
through invariant differentiation.

In particular:

K = Φ(H,D1H,D2H, . . . )



Equi-affine Surfaces

Theorem.

The algebra of equi-affine differential invariants for non-
degenerate surfaces is generated by the Pick invariant through
invariant differentiation.

In particular:

Qν = Φν(P,D1P,D2P, . . . )



Further Results

For suitably non-degenerate surfaces S ⊂ R3:

Theorem. G = SO(4, 2)

The algebra of conformal differential invariants is generated by a single
third order differential invariant.

Theorem. G = PSL(4)

The algebra of projective differential invariants is generated by a single
fourth order differential invariant.

=⇒ (with Evelyne Hubert)

Theorem. G = GL(3)

The algebra of differential invariants for ternary forms is generated by a
single third order differential invariant.

=⇒ (with Gülden Gün Polat)



Example. G: (x, y, u) &−→ (x+ a, y + b, u+ P (x, y) )

a, b ∈ R, P is an arbitrary polynomial of degree ≤ n

Differential invariants:

ui,j =
∂i+ju

∂xi∂yj
i+ j ≥ n+ 1

Invariant differential operators:

D1 = Dx D2 = Dy

Minimal generating set:

ui,j i+ j = n+ 1

♠ For submanifolds of dimension p ≥ 2, the number of
generating differential invariants can be arbitrarily large.



For surfaces and higher dimensional

submanifolds, there is as yet

no criterion for determining whether

a given generating set of differential

invariants is minimal!

• Except when there is a single generator.



=⇒ Moving frames furnish constructive

algorithms for determining the full

structure of the differential invariant

algebra I(G) and hence solve the

preceding problems!



EquivariantMoving Frames

Definition. An nth order moving frame is a (locally)
G-equivariant map

ρ(n) : V n ⊂ Jn −→ G

Right equivariance:

ρ(g(n) · z(n)) = ρ(z(n)) · g−1

• Élie Cartan
• Guggenheimer, Griffiths, Green, Jensen
• Fels, Kogan, Pohjanpelto, PJO



Theorem. Given n , 0 sufficiently large, there is a dense
open subset UN ⊂ Jn such that a moving frame exists in a
neighborhood of any jet z(n) ∈ Un.



Geometric Construction

Jn z(n)

Oz(n)



Geometric Construction

Jn z(n)

Oz(n)

Kn

k(n)

Normalization = choice of cross-section to the group orbits



Geometric Construction

Jn z(n)

Oz(n)

Kn

k(n)

g = ρright(z
(n))

Requires that G acts locally freely st z(n)



Algebraic Construction

1. Write out the explicit formulas for the
prolonged group action:

w(n)(g, z(n)) = g(n) · z(n)

=⇒ Implicit differentiation

2. From the components of w(n), choose r = dimG
normalization equations to define the cross-section:

w1(g, z
(n)) = c1 . . . wr(g, z

(n)) = cr



3. Solve the normalization equations for the group parameters
g = (g1, . . . , gr):

g = ρ(z(n)) = ρ(x, u(n))

The solution is the right moving frame.

4. Invariantization: Substitute the moving frame formulas

g = ρ(z(n)) = ρ(x, u(n))

for the group parameters into the un-normalized components
of w(n) to produce a complete system of functionally
independent differential invariants of order ≤ n:

Ik(x, u
(n)) = wk(ρ(z

(n)), z(n))), k = r + 1, . . . , dim Jn



The Fundamental Differential Invariants

Invariantized jet coordinate functions:

Hi(x, u(n)) = ι(xi) IαK(x, u(l)) = ι(uα
K)

• The constant differential invariants Zσ = cσ, σ = 1, . . . , r, as

defined by the chosen cross-section normalizations, are

known as the phantom invariants.

• The remaining non-constant differential invariants are

the basic invariants and form a complete system of

functionally independent differential invariants for the

prolonged group action.



Invariantization of general differential functions:

ι [F ( . . . xi . . . uα
J . . . ) ] = F ( . . . Hi . . . IαJ . . . )

The Replacement Theorem: (Rewrite Rule)

If J is a differential invariant, then ι(J) = J .

J( . . . xi . . . uα
J . . . ) = J( . . . Hi . . . IαJ . . . )

Key fact: Invariantization and differentiation do not commute:

ι(DiF ) -= Diι(F )



Recurrence Formulae

Dj ι(F ) = ι(DjF ) +
r∑

κ=1

Rκ
j ι(vκ(F ))

F = F (x, u(n)) — differential function

ι(F ) — invariantization (differential invariant)

Di = ι(Dxi) — invariant differential operators

v1, . . . ,vr — prolonged infinitesimal generators

Rκ
j — Maurer–Cartan invariants



Recurrence Formulae

Dj ι(F ) = ι(DjF ) +
r∑

κ=1

Rκ
j ι(vκ(F ))

♠ If ι(F ) = c is a phantom differential invariant, then the left hand side
of the recurrence formula is zero. The collection of all such phantom
recurrence formulae form a linear algebraic system of equations that can
be uniquely solved for the Maurer–Cartan invariants Rκ

j !

♥ Once the Maurer–Cartan invariants are replaced by their
explicit formulae, the induced recurrence relations completely determine
the structure of the differential invariant algebra I(G)!



Commutator Invariants

[Dj,Dk ] =
p∑

i=1

Y i
jk Di

• As a consequence of the recurrence formulae for the
invariant coframe ωi = ι(dxi):

Y i
jk = −Y i

kj =
r∑

κ=1

[Rκ
k ι(Djvκ(x

i))−Rκ
j ι(Dkvκ(x

i)) ]



The SymbolicMoving Frame Calculus

Thus, remarkably, the structure of I(G) can be determined
without knowing the explicit formulae for either
the moving frame, or the differential invariants, or
the invariant differential operators!

The only required ingredients are the specification of
the cross-section, and the standard formulae for
the prolonged infinitesimal generators.

Theorem. If G acts transitively on M , or if the infinitesimal
generator coefficients depend rationally in the coordinates,
then all recurrence formulae are rational in the basic
differential invariants and so I(G) is a
rational, non-commutative differential algebra.



Generating Differential Invariants

As a consequence of the recurrence formulae:

Theorem. If the moving frame has order s, then the basic
differential invariants I(s+1) of order ≤ s + 1 forms a
generating set.

Theorem. If G acts transitively, then the Maurer–Cartan
invariants form a generating set.

• Typically, these generating sets contain many redundancies,
and are far from minimal.



The Extended Symbolic Invariant Calculus

However, in order to work in the polynomial category,
we introduce symbolic variables to represent both the basic
differential invariants and the Maurer–Cartan invariants.

The recurrence formulae then take the form

D̃i v
α
J = vαJ,i +

r∑

κ=1

wκ
i ι̃(ϕ

α
J,κ)

D̃i — symbolic invariant differential operators,
as defined by these formulas

vαJ = ι̃(uα
J) — symbolic basic differential invariants

ϕα
J,κ = vκ(u

α
J) — prolonged infinitesimal generator coefficients

wκ
i — symbolic Maurer–Cartan invariants

D̃jw
κ
i;K = wκ

i;j,K



Functional Independence

f1(x
1, . . . , xm), . . . , fk(x

1, . . . , xm)

— smooth scalar-valued functions.

Form their k ×m Jacobian matrix :

∇f =

(
∂f i

∂xj

)

.

Theorem. f1, . . . , fk are functionally independent if and only
if their Jacobian matrix has maximal

rank∇f = k



Restricted Functional Dependence

Suppose
M = { x ∈ Rn | c(x) = 0 }

is a submanifold, where c : Rn → Rj and
∇c has constant rank in a neighborhood of M .

Given f : Rn → Rk and g : Rn → Rl, then, locally, f is
functionally dependent on g when restricted to M , so

f | M = h ◦g | M

for some h : Rl → Rk, if and only if

rank




∇f
∇g
∇c



 = rank

(
∇g
∇c

)

on M .



An Algorithm for

Finding (Minimal) Generating Sets
I(v, w) = ( I1(v, w), . . . , Ik(v, w) )

— a known generating set of differential invariants

J(v) = ( J1(v), . . . , J l(v) )
— proposed generating set.

J (n)(v, w) = ( . . . Jν
K(v, w) = D̃KJν . . . )

— their symbolic derivatives up to level n

0 = C(n)(v, w) = ( . . . Cσ
i;K(v, w) . . . ) — differentiated

cross-section equations Zσ = cσ, σ = 1, . . . , r:

Cσ
i;K = D̃KCσ

i (v, w) = D̃K

(

ι̃ [Di(Z
σ) ] +

r∑

κ=1

wκ
i ι̃ [vκ(Z

σ) ]

)



Jacobian matrices:

J(n) =

(
∇J (n)

∇C(n)

)

, I(n) =




∇I
∇J (n)

∇C(n)



.

Theorem. The differential invariants {J1, . . . , J l} form a
generating set if and only if

rank I(n) = rank J(n)

for some level n ≥ 0.



The Algorithm

(1) Input the level n of the computation and the order k of
the cross-section.

(2) Input the infinitesimal generators of the group action, and
compute their prolongations up to order n+ k + 1.

(3) Input the cross-section normalizations and check their
validity.

(4) Compute the recurrence formulas up to order n + k + 1 in
symbolic form.

(5) Compute the commutators in symbolic form.

(6) Compute the linear constraints induced by the cross-
section up to level n.



(7) Choose a known generating set of differential invariants.

(8) Input the proposed generating differential invariants
in symbolic form, and then compute their invariant
derivatives up to level n.

(9) Compute the relevant Jacobian matrices. If the preceding
rank condition is satisfied, then the chosen differential
invariants form a generating set. If not, then either they
are not generating, or one needs to go to a higher level n.



! ! To compute the ranks of the symbolic matrices in
practice, substitute random integers for the variables they
depend on, and compare the ranks of the corresponding
integer matrices, repeating this computation several times
to be sure. (Although repetition appears to be unnecessary.)

Thus, if successful, the algorithm will confirm that one has a
generating set.

If unsuccessful, one can try a higher level.

Unfortunately, I do not know a bound on the level required to
be sure whether or not the selected differential invariants
are generating; this is a significant and apparently difficult
open problem.



The Algebra of Euclidean Differential Invariants

Principal curvatures:

κ1 = ι(uxx) κ2 = ι(uyy)

Mean curvature and Gauss curvature:

H = 1
2(κ1 + κ2) K = κ1κ2

Invariant differentiation operators:

D1 = ι(Dx) D2 = ι(Dy)

• Differentiation w.r.t. the diagonalizing Darboux frame.



The recurrence formulae enable one to express the higher order
differential invariants in terms of the principal curvatures, or,
equivalently, the mean and Gauss curvatures, and their invariant
derivatives:

Ijk = ι(ujk) = Φ̃jk(κ1,κ2,D1κ1,D2κ1,D1κ2,D2κ2,D
2
1κ1, . . . )

= Φjk(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )



For H and for K:

level size J(k) rank J(k) size I(k) rank I(k)

0 13× 18 13 14× 18 14

1 39× 47 39 40× 47 40

2 91× 101 91 92× 101 92

3 195× 204 195 196× 204 195

4 403× 404 394 404× 404 394

The ranks are equal at level 3 so the level 4 computation is
unnecessary, but was performed as a check on the algorithm.



Consequently, we can write K in terms of the third order
invariant derivatives of H, which is thus generating, in
accordance with a previously known result. Interestingly,
the explicit formula that was found by direct manipulation
of the recurrence formula involves the fourth order deriva-
tives of H, and hence there is an as yet unknown formula
for K involving at most third order derivatives of H.

! ! But this also says that K is generating, and so H can
be expressed in terms of the third order invariant
derivatives of K, which is a new and unexpected result.


