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Part 1

Higher Order Symmetries of

Underdetermined Systems of

Partial Differential Equations



Symmetry Groups of

Differential Equations

=⇒ Sophus Lie (1842–1899)

System of differential equations

∆(x, u(n)) = 0

G — Lie group or Lie pseudo-group acting on the
space of independent and dependent variables:

(x̃, ũ) = g · (x, u)



G acts on functions by transforming their graphs:

u = f(x) ũ = f̃(x̃)

g
!−→

Definition. G is a symmetry group of the system
∆ = 0 if f̃ = g · f is a solution whenever f is.



Infinitesimal Generators

Every one-parameter group can be viewed as the flow of
a vector field v, known as its infinitesimal generator.

In other words, the one-parameter group is realized as the
solution to the system of ordinary differential equations
governing the vector field’s flow:

dz

dε
= v(z)

Equivalently, if one expands the group transformations in
powers of the group parameter ε, the
infinitesimal generator comes from the linear terms:

z(ε) = z + εv(z) + · · ·



Infinitesimal Generators = Vector Fields

In differential geometry, it has proven to be very useful to
identify a vector field with a first order differential operator

In local coordinates (. . . xi . . . uα . . .), the vector field

v = ( . . . ξi(x, u) . . . ϕα(x, u) . . . )

that generates the one-parameter group (flow)

dxi

dε
= ξi(x, u)

duα

dε
= ϕα(x, u)

is identified with the differential operator

v =
p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα



Prolongation

Since G acts on functions, it acts on their derivatives u(n),
leading to the prolonged group action:

(x̃, ũ(n)) = pr(n) g · (x, u(n))

=⇒ formulas provided by implicit differentiation

Prolonged infinitesimal generator:

pr v = v +
∑

α,J

ϕα
J(x, u

(n))
∂

∂uα
J



The Prolongation Formula

The coefficients of the prolonged vector field are given
by the explicit prolongation formula (PJO, 1979):

ϕα
J = DJ Q

α +
p∑

i=1

ξi uα
J,i

where Di =
∑

α,J

uα
J,i

∂

∂uα
J

DJ = Dj1
· · ·Djk

— total derivatives

Q = (Q1, . . . , Qq) — characteristic of v

Qα(x, u(1)) = ϕα −
p∑

i=1

ξi
∂uα

∂xi

% Invariant functions u = f(x) are solutions to Q(x, u(1)) = 0



Lie’s Infinitesimal Symmetry Criterion

for Differential Equations

Theorem. A connected group of transformations G is a
symmetry group of a nondegenerate system of differential
equations ∆ = 0 if and only if

pr v(∆) = 0 whenever ∆ = 0

for every infinitesimal generator v of G.



Generalized (Higher Order) Symmetries

% Due to Noether (1918)

% NOT Lie or Bäcklund, who only got as far as
contact transformations.

Key Idea: Allow the coefficients of the infinitesimal generator
to depend on derivatives of u, but drop the requirement
that the (prolonged) vector field define a geometrical
transformation on any finite order jet space:

v =
p∑

i=1

ξi(x, u(k))
∂

∂xi
+

q∑

α=1

ϕα(x, u(k))
∂

∂uα



Characteristic :

Qα(x, u
(k)) = ϕα −

p∑

i=1

ξiuα
i

Evolutionary vector field:

vQ =
q∑

α=1

Qα(x, u
(k))

∂

∂uα

Prolongation formula:

pr v = pr vQ +
p∑

i=1

ξiDi

pr vQ =
∑

α,J

DJQα

∂

∂uα
J

% v is a generalized symmetry of a differential equation if and
only if its evolutionary form vQ is.



Example. Burgers’ equation.

ut = uxx + uux

Characteristics of generalized symmetries:

ux space translations

uxx + uux time translations

uxxx +
3
2 uuxx +

3
2 u

2
x +

3
4 u

2ux

uxxxx + 2uuxxx + 5uxuxx +
3
2 u

2ux + 3uu2
x +

1
2 u

3ux

...



=⇒ See Mikhailov–Shabat–Sokolov and J.P. Wang’s thesis for
long lists of equations with higher order symmetries.

Question: Which systems of PDE possess higher order
generalized symmetries?

• Linear systems of partial differential equations that admit a
nontrivial point symmetry group, as well as systems that
can be linearized by a point or contact transformation or
(in favorable circumstances) a differential substitution

(C integrable systems)

• Integrable systems solvable by inverse scattering
(S integrable systems)

% Underdetermined systems that admit a symmetry generator
depending on an arbitrary function of the independent
variables



=⇒ Almost all equations with one higher order symmetry have
infinitely many.

Bakirov’s Counterexample:

The “triangular system” of evolution equations

ut = uxxxx + v2 vt =
1
5 vxxxx

has one sixth order generalized symmetry, but no further higher
order symmetries.

Bakirov (1991), Beukers–Sanders–Wang (1998),
van der Kamp–Sanders (2002)

% % Non-triangular examples?



Recursion operators

=⇒ PJO (1977)

Definition. An operator R is called a recursion operator for
the system ∆ = 0 if it maps symmetries to symmetries, i.e.,
if vQ is a generalized symmetry (in evolutionary form), and

Q̃ = RQ, then v
Q̃
is also a generalized symmetry.

=⇒ A recursion operator generates infinitely many symmetries
with characteristics

Q, RQ, R2Q, R3Q, . . .

Theorem. Given the system ∆ = 0 with Fréchet derivative
(linearization) D∆, if

[D∆,R] = 0

on solutions, then R is a recursion operator.



Burgers’ equation.

ut = uxx + uux

D∆ = Dt −D2
x − uDx − ux

R = Dx +
1
2u+ 1

2uD
−1
x

D∆ · R = DtDx −D3
x −

3
2uD

2
x −

1
2(5ux + u2)Dx +

1
2ut −

− 3
2uxx −

3
2uux +

1
2(uxt − uxxx − uuxx − u2

x)D
−1
x ,

R ·D∆ = DtDx −D3
x −

3
2uD

2
x −

1
2(5ux + u2)Dx − uxx − uux

hence

[D∆,R] = 1
2(ut − uxx − uux) +

1
2(uxt − uxxx − uuxx − u2

x)D
−1
x

which vanishes on solutions.



Burgers’ equation.
ut = uxx + uux

Recursion operator:

R = Dx +
1
2u+ 1

2uD
−1
x

Symmetries:
ux

R(ux) = uxx + uux

R2(ux) = uxxx +
3
2 uuxx +

3
2 u

2
x +

3
4 u

2ux

R3(ux) = uxxxx + 2uuxxx + 5uxuxx +
3
2 u

2ux + 3uu2
x +

1
2 u

3ux

...



Linear Equations

Theorem. Let
∆[u] = 0

be a linear system of partial differential equations. Then any
symmetry vQ with linear characteristic Q = D[u] determines a
recursion operator D, since

[D,∆] = D̃ ·∆

If D1, . . . ,Dm determine linear symmetries vQ1
, . . . ,vQm

, then
any polynomial in the Dj’s also gives a linear symmetry.

Question 1: Given a linear system, when are all symmetries
a) linear? b) generated by first order symmetries?

Question 2: What is the structure of the non-commutative
symmetry algebra?



Bi–Hamiltonian systems

=⇒ Magri (1978)

Theorem. Suppose

∂u

∂t
= F1 = J1

δH1

δu
= J2

δH0

δu
is a biHamiltonian system, where J1, J2 form a compatible
pair of Hamiltonian operators. Assume that J1 is nondegen-
erate. Then

R = J2J
−1
1

is a recursion operator that generates an infinite hierarchy
of biHamiltonian symmetries

∂u

∂t
= Fn = RFn−1 = J1

δHn

δu
= J2

δHn−1

δu



The Korteweg–deVries Equation

∂u

∂t
= uxxx + uux = J1

δH1

δu
= J2

δH0

δu

J1 = Dx H1[u ] =
∫

( 1
6 u

3 − 1
2 u

2
x ) dx

J2 = D3
x + 2

3uDx + 1
3 ux H0[u ] =

∫
1
2 u

2 dx

% % Bi–Hamiltonian system with recursion operator (Lenard)

R = J2 · J
−1
1 = D2

x +
2
3 u+ 1

3 uxD
−1
x

Hierarchy of generalized symmetries and higher order conservation laws:

∂u

∂t
= uxxxxx +

5
3 uuxxx +

10
3 uxuxx +

5
6 u

2ux = J1
δH2

δu
= J2

δH1

δu

H2[u ] =
∫

( 1
2 u

2
xx −

5
6 u

2
x + 5

72 u
4 ) dx

and so on . . . (Gardner, Green, Kruskal, Miura, Lax)



Underdetermined Systems

We assume that the system of differential equations

∆κ[u ] = 0, κ = 1, . . . , q, (∗)

has the same number of equations as unknowns u = (u1, . . . , uq).

Definition. The system of differential equations (∗) is
underdetermined if there exist differential operators D1, . . . ,Dq

that do not simultaneously vanish on solutions, such that

D1∆1 + · · · +Dq∆q ≡ 0.

For the general case (which is quite subtle) see

W.M. Seiler, Involution, Springer, 2010.

Examples of underdetermined systems arising in basic physics
include Maxwell’s equations for electromagnetism and
Einstein’s equations for general relativity.



The Main Theorem

Theorem. Suppose that a system of differential equations
admits an infinitesimal symmetry vQ whose characteristic

Q[u, h ] = Q( . . . xi . . . uα
J . . . hK(x) . . . )

depends on finitely many derivatives hK = ∂Kh of an arbitrary
function h(x) of the independent variables. Let F [u ] be an
arbitrary differential function. Then the characteristic

Q̂[u ] = Q( . . . xi . . . uα
J . . . DKF . . . )

obtained by replacing the derivatives of h by the corresponding
total derivatives of F is also the characteristic of an infinitesimal
symmetry v

Q̂
of the system.



Thus, any such underdetermined system of differential
equations automatically admits an infinite family of higher
order symmetries depending upon an arbitrary function F of
the independent variables, the dependent variables, and their
derivatives of arbitrarily high order.

% % Systems that satisfy the hypothesis of the Theorem are
necessarily underdetermined, although, as we will see, not
every underdetermined system will admit such a symmetry
generator.



Proof :

First: note that the partial derivatives of h coincide with its total deriva-
tives: ∂Kh(x) = DKh.

Second: Suppose
R( . . . xi . . . uα

J . . . ∂Kh(x) . . . ) = 0

where h(x) is an arbitrary function of all the independent variables.
Then, since its partial derivatives ∂Kh(x) can assume any values, we
can replace them by any quantities and still have equality. In particular,

R( . . . xi . . . uα
J . . . DKF . . . ) = 0

where F [u ] be an arbitrary differential function.

=⇒ Kiselev’s Substitution Principle:

https://preprints.ihes.fr/2012/M/M-12-13.pdf



Third: according to the prolongation formula for evolutionary vector fields,
the coefficients of prvQ are obtained by total differentiation, so

DIQα = Rα,I( . . . xi . . . uα
J . . . ∂Kh(x) . . . ),

where Rα,I are certain functions of the jet coordinates and the partial
(total) derivatives of h, then, replacing h by F in Q leads, via the
substitution principle, to the same algebraic expressions for its total
derivatives

DIQ̂α = Rα,I( . . . xi . . . uα
J . . . DKF . . . ),

in terms of the jet coordinates and the total derivatives of F . By the
preceding remarks, we can thus replace each partial derivative hK(x)
appearing in the determining equations by the corresponding total
derivative DKF without affecting their validity. We conclude that
the evolutionary vector field v

Q̂
with characteristic Q̂ also satisfies

the symmetry determining equations for the system of differential
equations. Q.E.D.



Variational Symmetries

Definition. A (strict) variational symmetry is a transformation
(x̃, ũ) = g · (x, u) which leaves the variational problem in-
variant: ∫

Ω̃
L(x̃, ũ(n)) dx̃ =

∫

Ω
L(x, u(n)) dx

Infinitesimal invariance criterion:

pr v(L) + LDiv ξ = 0

Divergence symmetry (Bessel–Hagen):

pr v(L) + LDiv ξ = DivB

=⇒ Every divergence symmetry has an equivalent
strict variational symmetry



Theorem. Every symmetry of a variational problem is a
symmetry of the Euler–Lagrange equations.

% % But not conversely!

% Almost all examples of non-variational symmetries are scal-
ing symmetries. One known exception is the equations
of 3D linear isotropic elasticity which admits the non-
variational generalized symmetry whose flow is equiva-
lent to Maxwell’s equations! (PJO, 1984)



Noether’s Second Theorem

Theorem. A system of Euler-Lagrange equations is
underdetermined if and only if it admits an infinite
dimensional variational symmetry group depending on
an arbitrary function of the independent variables.
The associated conservation laws are trivial.

% Noether’s First Theorem gives a one-to-one correspondence
between non-trivial symmetries and non-trivial
conservation laws. (Martinez Alonso, 1979; PJO, 1986)

Open Question: Are there over-determined systems of
Euler–Lagrange equations for which trivial symmetries
give non-trivial conservation laws?



Generalized Noether’s Second Theorem

Theorem. If E(L) = 0 is any underdetermined system
of Euler–Lagrange equations, then it admits generalized sym-
metries of arbitrarily high order depending upon one or more
arbitrary differential functions.

This result resolves a mystery concerning Noether’s Second Theorem,
which relies on infinitesimal symmetries that involve one or more arbitrary
functions of the p independent variables. But what about the functions of
the dependent variables, and hodograph and reciprocal transformations
that interchange independent and dependent variables, etc.? According to
the Theorem, once the system admits variational symmetries depending on
an arbitrary function of any p jet variables, then it automatically admits
variational symmetries depending on an arbitrary differential function!



Relativity

Noether’s Second Theorem effectively resolved Hilbert’s
dilemma regarding the law of conservation of energy in Ein-
stein’s field equations for general relativity.

Namely, the time translational symmetry that ordinarily
leads to conservation of energy in fact belongs to an infinite-
dimensional symmetry group, and thus, by Noether’s Second
Theorem, the corresponding conservation law is trivial, meaning
that it vanishes on all solutions.

=⇒ Higher order symmetries of Einstein’s equations:
Anderson and Torre, 1993



A Simple Example:

Variational problem:

I[u, v ] =
∫ ∫

(ux + vy)
2 dx dy

Variational symmetry group:

(u, v) &−→ (u+ ϕy, v − ϕx)

Evolutionary generator:

vQ = −
∂h

∂y

∂

∂u
+

∂h

∂x

∂

∂v



Euler-Lagrange equations:

∆1 = Eu(L) = uxx + vxy = 0

∆2 = Ev(L) = uxy + vyy = 0

Differential relation:

Dy∆1 −Dx∆2 ≡ 0

The Main Theorem implies that, for any differential function
F [u, v ] depending on x, y and u, v and their derivatives, the
evolutionary vector field

v̂ = −DyF
∂

∂u
+DxF

∂

∂v

is also a variational symmetry, and thus a higher order symmetry
of the underdetermined Euler–Lagrange equations.



For example, the second order variational problem

Ĩ[u, v ] =
∫ ∫

[ 12 (uxx + vxy)(uxy + vyy) +
1
6 (ux + vy)

3 ] dx dy,

with underdetermined nonlinear fourth order Euler–Lagrange
equations

uxxxy + vxxyy = (ux + vy)(uxx + vxy),

uxxyy + vxyyy = (ux + vy)(uxy + vyy),

possesses the aforementioned properties.



Systems of differential equations or variational problems for curves, surfaces,
etc., that do not depend on any underlying parametrization thereof are
called parameter-independent . The symmetry pseudo-group consisting of all
local diffeomorphisms of the base space X has infinitesimal generators

v =
p∑

i=1

ξi(x)
∂

∂xi
,

where ξi(x) are arbitrary functions.

Theorem. A system of differential equations ∆[u ] = 0 is parameter-indepen-
dent if and only if it admits all generalized infinitesimal symmetry generators
of the form

vQ =
q∑

α=1

( p∑

i=1

uα
i Fi[u ]

∂

∂uα

)

,

where F1[u ], . . . , Fp[u ] are arbitrary differential functions.



Part 2

Divergence Invariant

Variational Problems



One of the most remarkable methodological

trends in modern physics has been the a priori use of

symmetry principles to constrain the action principles

of the non-gravitational interactions in quantum

electrodynamics (QED) and particle physics.

— Harvey Brown



TheModernManual for Physics

as envisioned by E. Noether (1918)

As Hilbert expresses his assertion, the lack of a proper law
of energy constitutes a characteristic of the “general theory of
relativity.” For that assertion to be literally valid, it is necessary
to understand the term “general relativity” in a wider sense
than is usual, and to extend it to the aforementioned groups that
depend on n arbitrary functions.27

27 This confirms once more the accuracy of Klein’s remark
that the term “relativity” as it is used in physics should be
replaced by “invariance with respect to a group.”



TheModernManual for Physics
♠ To construct a physical theory:

Step 1: Determine the allowed group of symmetries:

• translations

• rotations

• conformal (angle-preserving) transformations

• Galilean boosts

• Poincaré transformations: SO(4, 2) (special relativity)

• gauge transformations

• CPT (charge, parity, time reversal) symmetry

• supersymmetry

• SU(3), G2, E8 × E8, SO(32), . . .

• etc., etc.



Step 2: Construct a variational principle (“energy”) that
admits the given symmetry group.

Step 3: Invoke Nature’s obsession with minimization to
construct the corresponding field equations (Euler–Lagrange
equations) associated with the variational principle.

Step 4: Use Noether’s First and Second Theorems to write
down (a) conservation laws, and (b) differential identities
satisfied by the field equations.

Step 5: Try to solve the field equations.

Even special solutions are of immense interest

=⇒ black holes.



!""#$%&'%#()*+,-+#

=⇒ Neil Turok (Perimeter Institute)



Characterization of
Invariant Variational Problems

According to Lie, any strictly invariant variational problem
can be written in terms of the differential invariants:

I[u ] =
∫
L(x, u(n)) dx =

∫
P ( . . . DKIα . . . ) ω

I1, . . . , I# — fundamental differential invariants

D1, . . . ,Dp — invariant differential operators

DKIα — differentiated invariants

ω = ω1 ∧ · · · ∧ ωp — invariant volume form



If the variational problem is G-invariant, so

I[u ] =
∫
P ( . . . DKIα . . . ) ω

then its Euler–Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the
differential invariants:

E(L) + F ( . . . DKIα . . . ) = 0

Problem: Construct F directly from P .

=⇒ Solved in general by Irina Kogan & PJO (2001) using

moving frames



APhysical Conundrum

Since all Lie groups and most Lie pseudo-groups admit

infinitely many differential invariants, there are an infinite

number of distinct invariant variational principles

I[u ] =
∫
L(x, u(n)) dx =

∫
P ( . . . DKIα . . . ) ω

% % Physicists are extraordinarily talented at finding the

“simplest” such invariant variational principle, even

for very complicated physical symmetry groups. Such a

principle then forms the basis of fundamental physics.



APhysical Conundrum

I[u ] =
∫
L(x, u(n)) dx =

∫
P ( . . . DKIα . . . ) ω

On the other hand, physicists seem to be mostly unaware of

the theory of differential invariants and the consequent

existence of infinitely many alternative invariant variational

principles, hence:

Does the underlying physics depend upon which of these

invariant variational principles is used and, if so, how does

one select the “correct” physical variational principle?



Variational Symmetries

Definition. A strict variational symmetry is a transformation

(x̃, ũ) = g · (x, u) which leaves the variational problem

invariant:
∫

Ω̃
L(x̃, ũ(n)) dx̃ =

∫

Ω
L(x, u(n)) dx

Infinitesimal invariance criterion:

pr v(L) + LDiv ξ = 0

Divergence symmetry (Bessel–Hagen):

pr v(L) + LDiv ξ = DivB

=⇒ Every divergence symmetry has an equivalent

strict variational symmetry



Noether’s First Theorem

Theorem. If v generates a one-parameter group of variational

symmetries of a variational problem, then the characteristic

Q of v is the characteristic of a conservation law of the

Euler-Lagrange equations:

DivP = QE(L)



Noether’s Example

% % See Noether, p. 245.

The one-dimensional free particle (unit mass)

I[u ] =
∫

1
2 u

2
t dt,

Euler–Lagrange equation:

utt = 0.

One-parameter group of Galilean symmetries

(t, u) &−→ (t, u+ ε t), ε ∈ R.

Prolonged action:

ut &−→ ut + ε, utt &−→ utt, . . . .



I[u ] =
∫

1
2 u

2
t dt

(t, u, ut, utt, . . . ) &−→ (t, u+ ε t, ut + ε, utt, . . . )

The Lagrangian is divergence invariant since

1
2 u

2
t &−→ 1

2 (ut + ε)2 = 1
2 u

2
t + εut +

1
2 ε

2

= 1
2 u

2
t +Dt( εu+ 1

2 ε
2t ).

Noether conservation law:

Dt(tut − u) = tutt = 0.



(t, u, ut, utt, . . . ) &−→ (t, u+ ε t, ut + ε, utt, . . . )

Differential invariants:

t, v = ut −
u

t
, utt, uttt, . . . .

Invariantized variational principle:

J [u ] =
∫

1
2 v

2 dt =
∫

1
2 (ut − u/t)2 dt,

% % The invariantized Lagrangian is strictly Galilean invariant.

Since

1

2

(
ut −

u

t

)
2 = 1

2 u
2
t −

uut

t
+

u2

2 t2
= 1

2 u
2
t −Dt

(
u2

2 t

)

,

the variational problems are equivalent and have the same free
particle Euler–Lagrange equation.



According to Lie’s Theorem, the most general strictly Galilean
invariant variational problem has the form

K[u ] =
∫

F (t, v, utt, uttt, . . . , unt) dt

=
∫

F (t, ut − u/t, utt, uttt, . . . , unt) dt

Suppose F = F (v). The Euler–Lagrange equation is

−F ′′(ut − u/t)utt +
B(ut − u/t)

t
= 0,

where
B(v) = v F ′′(v)− F ′(v).

We can integrate once:
∫ F ′′(v)

F ′(v)
dv = −

∫ dt

t
, and hence F ′(v) =

1

c t
, c ∈ R.



F ′(v) = F ′

(
ut −

u

t

)
=

1

c t
, c ∈ R.

Solving for

v = ut −
u

t
= G(ct), where G(x) = F ′−1(1/x).

the resulting first order ordinary differential equation is linear,
and its general solution is nonlinear in time:

u(t) = t (a+H(ct)), where H ′(x) =
G(x)

x
, a ∈ R.

In particular, for Noether’s variational principle, F (v) = 1
2 v

2, so
that G(x) = 1/x, H(x) = −1/x, and so

u(t) = a t− 1/c = a t+ b,

recovering the standard linear motion of a free particle.



% % Note that the nonlinear motion induced by the general
Galilean-invariant Lagrangian is mathematically quite
different from the linear free particle motion, and there is
no obvious relationship between the two,
neither mathematical nor physical.



Full Galilean group

(t, u) &−→ (t+ a, u+ ε t+ b), a, b, ε ∈ R.

% % The free particle Lagrangian is strictly invariant under the
translations, but divergence invariant under the Galilean
boost. On the other hand, Noether’s Lagrangian is strictly
invariant under the Galilean boost, but only divergence
invariant under the translations.

The conservation laws corresponding to the translation symme-
tries are momentum and energy:

Dt(ut) = utt = 0, Dt(
1
2 u

2
t ) = ututt = 0.

Differential invariants: utt, uttt, . . .



Strictly Galilean-invariant variational problem:

K̃[u ] =
∫

F (utt, uttt, . . . , unt) dt.

There are no non-constant strictly Galilean-invariant first order
Lagrangians!

Divergence-invariant Lagrangians:

K̂[u ] =
∫

[ 12mu2
t + f u+ F (utt, uttt, . . . , unt) ] dt,

where m ∈ R is mass and f ∈ R a uniform external force.

If F depends nonlinearly on the nth order derivative unt, the
corresponding Euler–Lagrange equation has order 2n, and
its solutions appear to have very little to do with physical
free particle motion.



Divergence-invariant first order Lagrangians:

K̂1[u ] =
∫

[ 12mu2
t + f u ] dt.

Galilean-invariant Euler–Lagrange equations:

mutt = f, with solution u(t) =
f t2

2m
+ at+ b.

Noether conservation laws:

Dt(mut − f t) = mutt − f = 0,

Dt

(
1
2mu2

t − f u
)
= ut(mutt − f) = 0,

Dt

(
m(tut − u)− 1

2 f t
2
)
= t(mutt − f) = 0.

% % momentum, energy, and quadratic time dependence of the
particle’s motion.



General Considerations

Let v be a generalized vector field and vQ its evolutionary
representative.

Divergence invariance under v if and only if vQ is also a
variational symmetry and hence satisfies

E[ pr vQ(L) ] = pr vQ[E(L) ] +D∗

QE(L) = 0,

where D∗

Q denotes the adjoint of the Fréchet derivative of Q.

v — distinguished symmetry of the Euler–Lagrange equations.

Lemma. A Lagrangian L is divergence invariant under
v if and only if v is a distinguished symmetry of the Euler–
Lagrange equations E(L) = 0.



The Euler–Lagrange Complex

p = # independent variables

R −→ Ω0 −→
Grad

Ω1 −→ · · ·

· · · −→ Ωp−1 −→
Div

Ωp −→
E

F1 −→
δ

F2 −→ · · ·

=⇒ Total deRham complex

Ωp−1 — Conservation laws

Ωp — Lagrangians

F1 — Source forms (PDEs)

F2 — Helmholtz conditions

% % The Euler–Lagrange complex is exact.



The Invariant Euler–Lagrange Complex

A differential form ω is g-invariant if and only if

v(ω) = 0 for all v ∈ g.

% % The g-invariant Euler–Lagrange complex is not exact —
there can be nontrivial cohomology.

Theorem. (Anderson-Pohjanpelto, Thompson-Valiquette)
If dim g < ∞, then the cohomology of the g-invariant
Euler–Lagrange complex is isomorphic to the Lie algebra
cohomology H∗(g).



Divergence Invariance and Cohomology

% A Lagrangian form is g-invariant if and only if the variational
problem is strictly invariant

% The Euler–Lagrange source form is g-invariant if and only
if g is a distinguished symmetry algebra, and hence the
Lagrangian form is divergence invariant.

Theorem. A divergence g-invariant Lagrangian form λ is
equivalent to a strictly g-invariant Lagrangian form if and
only if the cohomology class of its Euler–Lagrange source
form vanishes:

0 = [E(λ) ] ∈ Hp+1(g).

Thus, Hp+1(g) = {0} is necessary and sufficient for every
divergence-invariant Lagrangian to be strictly invariant.



If dim g ≤ p, then Hp+1(g) = {0} automatically.

In Noether’s example, there is one independent variable t,
and hence p = 1. Thus, in this situation, Noether’s
“trick” of replacing the free particle Lagrangian with an
equivalent strictly invariant Lagrangian can be applied to
any one-parameter symmetry group, and hence divergence
inequivalence is a multi-parameter phenomenon.



Example. Translations

g2 : (x, u) &−→ (x+ a, u+ b)

Differential invariants:

ut, utt, uttt, . . .

Lie algebra cohomology:

H2(g2) = R

Divergence invariant variational problem

I[u ] =
∫

[ f u+ F (ut, utt, . . . , unt) ] dt,

where f ∈ R and the second term is strictly invariant.



Example. Galilean group plus time and space scalings:

g5 : (t, u) &−→ (λ t+ a, µu+ ε t+ b)

Differential invariants:

I4 =
uttutttt

u2
ttt

, I5 =
u2
ttuttttt

u3
ttt

, . . . In =
un−3
tt unt

un−2
ttt

,

Strictly invariant variational problem:

I[u ] =
∫

F (I4, I5, . . . , In)
uttt

utt

dt



g5 : (t, u) &−→ (λ t+ a, µu+ ε t+ b)

Lie algebra cohomology: H2(g5) = R

Divergence (but not strictly) invariant variational problem:

J [u ] =
∫ uttt log uttt − uttt

utt

dt,

Euler–Lagrange equation:

D2
t

(
uttutttt − u2

ttt

u2
ttuttt

)

= 0.



Final Remarks on the Foundations of Physics

Let us close with a wild speculation that our Theorem may provide an
answer to the original question. Namely, we propose that variational principles
of physical relevance are distinguished by arising from nonzero cohomology
classes of the underlying physical symmetry group, or, equivalently, are based
on divergence invariant Lagrangians that are not equivalent to any strictly
invariant Lagrangian.

In particular, if the relevant cohomology space is one-dimensional, such a
variational principle is unique up to constant multiple.

Thus, divergence invariance or, equivalently, cohomological considerations
may be fundamental to the symmetry-driven formulation of physical theories.

It would be of great interest to determine the cohomology for the infinite-
dimensional group underlying the standard model, although this will be a very
challenging computation.
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