## Math 4707 Intro to combinatorics and graph theory Spring 2017, Vic Reiner Midterm exam 2- Due Monday April 10, in class

Instructions: There are 5 problems, worth 20 points each, totaling 100 points. This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (20 points total) Recall that a forest is a graph containing no cycles, that a tree is a connected forest, and a leaf is a vertex of degree one.
(a) (10 points) Prove that a tree with at least one degree $d$ vertex has at least $d$ distinct leaves.
(b) (5 points) Prove that a tree $T$ with $n$ vertices has

$$
\sum_{v \in V}\left(\operatorname{deg}_{T}(v)-1\right)=n-2 .
$$

(c) (5 points) Given a forest with $n$ vertices and $c$ connected components, how many edges will it contain (as a function of $n$ and $c$ )?
2. (20 points total) Find (darken) a minimum cost spanning tree $T$ in this graph whose edges have been labeled by their costs. What is its cost? Explain in one line how you know that it achieves the minimum.

3. (20 points) Find a maximum-valued flow from $s$ to $t$ in the flow network shown below, whose arcs have been labeled by their flow capacities. Explain how you know that it achieves the maximum value.

4. (20 points total; 10 points each part)

Let $G=(V, E)$ be bipartite graph, with vertex partition $V=X \sqcup Y$. Assume further that

- every $x$ in $X$ has the same degree $d_{X} \geq 1$, and
- every $y$ in $Y$ has the same degree $d_{Y} \geq 1$.
(a) Prove that $\frac{d_{X}}{d_{Y}}=\frac{|Y|}{|X|}$.
(b) Assuming without loss of generality that $d_{X} \geq d_{Y}$, show that there exists at least one matching $M \subset E$ with number of edges $|M|=|X|$.

5. (20 points) (Problem 7.2 .11 on p .134 of our text)

Prove that a graph $G$ with no multiple edges and no self-loops having $n$ vertices and strictly more than $\binom{n-1}{2}$ edges must be connected.

