Math 5285 Honors fundamental structures of algebra Fall 2018, Vic Reiner
 Final exam - Due Wednesday December 12, in class

Instructions: There are 4 problems. This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (55 points total, 5 points each) Prove, or disprove the following assertions.
(a) For any prime $p \geq 3$, let $H:=\left\{A \in\left(\mathbb{F}_{p}\right)^{n \times n}: \operatorname{det}(A)^{2}=1\right.$ in $\left.\mathbb{F}_{p}\right\}$. Then H is a subset of $G L_{n}\left(\mathbb{F}_{p}\right)$.
(b) The set H described in part (a) is a subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$.
(c) The set H described in part (a) is a normal subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$.
(d) For all positive integers n, the only group homomorphism $(\mathbb{Z} / n \mathbb{Z})^{+} \longrightarrow \mathbb{Z}^{+}$is the homomorphism sending all elements to 0 .
(e) The only group homomorphism $\mathbb{Q}^{+} \longrightarrow \mathbb{Z}^{+}$is the homomorphism sending all elements to 0 .
(f) For all positive integers n, the only group homomorphism $(\mathbb{Z} / n \mathbb{Z})^{\times} \longrightarrow \mathbb{Z}^{\times}$is the homomorphism sending all elements to +1 .
(g) The only group homomorphism $\mathbb{Q}^{\times} \longrightarrow \mathbb{Z}^{\times}$is the homomorphism sending all elements to +1 .
(h) There do not exist two 6-dimensional subspaces V_{1}, V_{2} in \mathbb{R}^{10} whose intersection $V_{1} \cap V_{2}$ is a line.
(i) There do not exist two 6-dimensional subspaces V_{1}, V_{2} in \mathbb{R}^{10} whose intersection $V_{1} \cap V_{2}$ is a 5 -dimensional subspace.
(j) For a field F, any matrix A in $F^{n \times n}$ satisfying $A^{3}-I_{n \times n}=0$ is invertible.
(k) For a field F, any matrix A in $F^{n \times n}$ satisfying $A^{4}-A=0$ is noninvertible.
2. (20 points total) Let H, K be subgroups of a finite group G, and define as usual the subset $H K:=\{h k: h \in H, k \in K\} \subseteq G$.
(a) (5 points) Give an example of H, K, G where $H K$ is not a subgroup of G.
(b) (5 points) Prove that the set map $H \times K \xrightarrow{\varphi} G$ defined by $\varphi((h, k):=h k$ has this property: for every g in $H K$, the fiber $\varphi^{-1}(g):=\{(h, k) \in H \times K: \varphi((h, k))=g\}$ has the same cardinality $\left|\varphi^{-1}(g)\right|$.
(c) (10 points) Use part (b) to prove that $|H K|=\frac{|H||K|}{|H \cap K|}$.
3. (15 points total) Recall from Artin's Exercise 7.10 .7 that for a group G, the commutator subgroup $C=\left\langle\left\{g h g^{-1} h^{-1}\right\}_{g, h \in G}\right\rangle$ is the subgroup of G generated by all commutators $g h g^{-1} h^{-1}$, that $C \triangleleft G$ is a normal subgroup, and that the quotient group G / C is abelian.
(a) (5 points) Prove that when G is the symmetric group S_{n} with $n \geq 2$, the canonical quotient map $G \xrightarrow{\pi} G / C$ sends every tranposition $t=(i, j)$ to the same element of G / C, that is $\pi(t)=\pi\left(t^{\prime}\right)$ for all transpositions t, t^{\prime} in S_{n}.
(b) (10 points) Prove that $G=S_{n}$ for $n \geq 2$ has $G / C \cong\{ \pm 1\}$.
4. (20 points total, 10 points each) Letting n be an integer with $n \geq 2$ and $\zeta:=e^{\frac{2 \pi i}{2 n}}$ in \mathbb{C}, define $G:=\langle a, b\rangle$ as the subgroup of $G L_{2}(\mathbb{C})$ generated by these two matrices:

$$
a=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \text { and } b=\left[\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right]
$$

(a) (10 points) Prove that $|G|=4 n$.
(b) (10 points) Prove that G has this presentation by generators and relations:

$$
G \cong\left\langle\alpha, \beta \mid \alpha^{4}=1=\beta^{2 n}, \beta^{n}=\alpha^{2}, \alpha \beta \alpha^{-1}=\beta^{-1}\right\rangle
$$

