## Math 5705 Undergraduate enumerative combinatorics Fall 2002, Vic Reiner <br> Midterm exam 1- Due Friday September 20, in class

Instructions: This is an open book, open library, open notes, takehome exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (20 points) Supplementary problem 9 for Chapter 1 on page 29.
2. A composition of a number $n$ into $k$ parts is an expression

$$
n=n_{1}+n_{2}+\cdots n_{k}
$$

where the $n_{i}$ are positive integers, and in which the order matters, i.e. $\left(n_{1}, \ldots, n_{k}\right)$ is considered as an ordered sequence. For example, there are 8 compositions of 4 :

$$
\begin{aligned}
4 & =4 \\
& =3+1 \\
& =1+3 \\
& =2+2 \\
& =2+1+1 \\
& =1+2+1 \\
& =1+1+2 \\
& =1+1+1+1
\end{aligned}
$$

(a) (10 points) Supplementary problem 2 for Chapter 1 on page 28. (b) (10 points) Supplementary problem 1 for Chapter 1 on page 28.
3. (a) (10 points) Supplementary problem 3 for Chapter 1 on page 28. (b) (10 points) Supplementary problem 4 for Chapter 1 on page 28. In your solution to part (b), feel free to assume that a Gray code exists for every $n$, even if you weren't able to prove it in part (a). Also feel free to instead provide a bijection in part (b) that has nothing to do with Gray codes.
4. Let $n \geq m$ be positive integers. Suppose $m+n$ people cast votes sequentially in a two candidate election, where in the finally tally, Candidate 1 received $n$ votes, Candidate 2 received $m$ votes, and throughout the voting process, Candidate 2 was never ahead of Candidate 1 . We wish to count the number of possible such voting sequences; call this number $C_{n, m}$. For example, if $n=5, m=4$, then one such sequence is

$$
(1,2,1,1,2,2,1,2,1)
$$

(a) (5 points) Describe explicitly a bijection between such voting sequences and the lattice paths taking unit steps north or east from $(0,0)$ to $(n, m)$ which lie weakly below the line $y=x$.
(b) (10 points) Using ideas from the solution of Problem 52 on page 21, find a formula for $C_{n, m}$.
(c) (5 points) Express your formula for $C_{m, n}$ using no additions or subtractions, i.e. only with multiplications and divisions (e.g. allowing factorials, binomial coefficients, etc.)
5. Prove by any means:
(a) (10 points)

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

(Hints: if you have no other ideas, here are some you might try. In a lattice path from $(0,0)$ to $(n, n)$, where might you cross the line $y=n-x$ ? In choosing a committee of $n$ people from a pool of $n$ women and $n$ men, how many women might end up on the committee?)
(b) (10 points)

$$
\sum_{m=0}^{n}\binom{m}{k}=\binom{n+1}{k+1}
$$

