Math 5707 Graph theory
 Spring 2023, Vic Reiner

Final exam- Due Wednesday, May 3 by midnight at the class Canvas site

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (20 points total) True or False. To receive full credit, assertions which are true must be proven, and those that are false must have a counterexample exhibited.
(a) (5 points) If a graph G has degree sequences $(2,2,4,4,4,4,4)$ then it is eulerian, that is, it contains a (closed) Euler tour.
(b) (5 points) If a tree has $n \geq 2$ vertices in total, in which ℓ of them are leaves and all other vertices have degree 3 , then $\ell=\frac{n+2}{2}$.
(c) (5 points) Given a graph G with connected components $G_{1}, G_{2}, \ldots, G_{t}$, its chromatic polynomial $p_{G}(k)$ always satisfies

$$
p_{G}(k)=p_{G_{1}}(k) \cdot p_{G_{2}}(k) \cdots p_{G_{t}}(k) .
$$

(d) (5 points) Recall (from lecture or Bondy \& Murty's Section 3.2) that for every graph G, one can uniquely define 2-vertex-connected subgraphs $B_{1}, B_{2}, \ldots, B_{s}$ called its blocks or 2-connected components, whose union is G. Assuming G is connected, then its chromatic polynomial $p_{G}(k)$ always satisfies

$$
p_{G}(k)=\frac{p_{B_{1}}(k) \cdot p_{B_{2}}(k) \cdots \cdots p_{B_{s}}(k)}{k^{s-1}} .
$$

2. (20 points) Define for each $n=1,2,3, \ldots$ a simple bipartite graph $G_{n}=(X \sqcup Y, E)$ with vertex set $V=X \sqcup Y$ partitioned into two sets of size n labeled

$$
\begin{aligned}
& X=\left\{x_{1}, \ldots, x_{n}\right\}, \\
& Y=\left\{y_{1}, \ldots, y_{n}\right\},
\end{aligned}
$$

and edge set E of size $n^{2}-n$ defined as follows:

$$
E:=\left\{\left\{x_{i}, y_{j}\right\}: 1 \leq i, j \leq n \text { but } i \neq j\right\}
$$

(a) (10 points) For exactly which values of $n=1,2,3, \ldots$ is G_{n} eulerian, that is, containing a (closed) Euler tour?
(b) (10 points) For exactly which values of $n=1,2,3, \ldots$ is G_{n} hamiltonian, that is, containing a (closed) Hamilton tour?
3. (20 points) Let $G=(V, E)$ be a simple graph, with $\Delta(G)$ the maximum of its vertex degrees, and $\alpha(G)$ the maximum size of an independent or stable subset of vertices $V^{\prime} \subset V$, that is, a subset V^{\prime} having no edges of the form $e=\{x, y\} \subset V^{\prime}$ in E. Prove that

$$
\alpha(G) \geq \frac{|V|}{1+\Delta(G)} .
$$

4. (20 points) When a soccer-ball-like sphere is made up only of pentagonal and hexagonal faces, sewn together so that its seams form a graph which is 3 -regular (at every vertex, there are exactly 3 edges incident), how many pentagonal faces will there be in total?
(Note: it turns out that the number of hexagons can vary, but you will end up proving that the number of pentagonal faces is a fixed number!)
5. (20 points total)
(a)(10 points). Show that in any directed graph $D=(V, A)$, one has

$$
\sum_{v \in V} \operatorname{outdeg}_{D}(v)=\sum_{v \in V} \operatorname{indeg}_{D}(v) .
$$

where outdeg ${ }_{D}(v), \operatorname{indeg}_{D}(v)$ are the outdegree and indegree at a vertex v.
(b) (10 points). Let $G=(V, E)$ be an undirected graph which is connected and has $|E|$ even. Show that there exists at least one choice of a directed graph $D=(V, A)$ obtained from G by orienting each edge $e=\{x, y\}$ in E either as the arc $x \rightarrow y$ or $y \rightarrow x$ in A, such that the outdegree $^{o^{\prime}} \operatorname{ldtg}_{D}(v)$ is even for all v in V.

