Math 5707 Graph theory
 Spring 2023, Vic Reiner
 Midterm exam 1- Due Wednesday, March 1 by midnight at the class Canvas site

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (20 points total) True or False. To receive full credit, assertions which are true must be proven, and those that are false must have a counterexample exhibited.
(a) (5 points) There exists a simple graph (no loops, no parallel edges) having degree sequence $\left(d_{1}, \ldots, d_{n}\right)=(6,6,6,6,5,3,3,1)$.
(b) (5 points) For $a, b \geq 1$, the complete bipartite graph $K_{a, b}$ contains an Euler circuit (closed Euler tour) if and only if a, b are both even.
(c) (5 points) For $a, b \geq 2$, the complete bipartite graph $K_{a, b}$ contains a Hamilton circuit (closed Hamilton tour) if and only if $a=b$.
(d) (5 points) Any simple graph contains either an Euler circuit or Hamilton circuit, or both.
2.(20 points) Given a multigraph $G=(V, E)$ and any edge-cost function $c: E \rightarrow \mathbb{R}_{\geq 0}$, let T be a minimum cost spanning tree, that is, a spanning tree $T \subseteq E$ that achieves the smallest value of $c(T):=\sum_{e \in T} c(e)$.

Prove or disprove (via counterexample): For every pair of vertices x, y in V, the unique path P from x to y within T will achieve the minimum $\operatorname{cost} c(P)=\sum_{e \in P} c(e)$ among all paths from x to y within G.
3. (20 points) Show that a tree with at least one edge that has no vertices of degree two will have more leaf vertices (that is, degree one vertices) than non-leaf vertices, and in fact, at least two more leaves than non-leaves.
4. (20 points total) Recall that for a simple graph $G=(V, E)$, its complement graph \bar{G} is the simple graph on the same vertex set V, but with the complementary set of edges. That is, $\{x, y\}$ is an edge of \bar{G} if and only if $\{x, y\} \notin E$.

Say G is self-complementary if \bar{G} is isomorphic to G. For example, the path P_{3} with 3 edges is self-complementary, as is the 5 -cycle C_{5} (edges of \bar{G} are shown dashed):

We proved on Homework 1, in Bondy and Murty's Exercise 1.2 \#11, that a self-complementary graph must have $n=|V|$ either congruent to 0 or 1 modulo 4 , that is, either n is divisible by 4 or n has remainder 1 on division by 4 .
(a) (10 points) Prove that for any n divisible by 4 there exists a self-complementary graph having n vertices.
(Hint: break the vertex set into 4 equal size groups and then use the path P_{3} as a guideline for how to connect between groups).
(b) (10 points) Prove that for any n having remainder 1 on division by 4 there exists a self-complementary graph having n vertices.
(Hint: Figure out how to add one more vertex to your construction from part (a).)
5. (20 points) Let $G=(V, E)$ be a simple graph with $\operatorname{deg}_{G}(v) \geq 2$ for all vertices v in V. Prove that there exists a connected simple graph H having the same (weakly decreasing reoredered) degree sequence $\mathbf{d}(H)=\left(d_{1} \geq d_{2} \geq \cdots \geq d_{n}\right)=\mathbf{d}(G)$ as the one for G.

