Bunhat order on quotients W^{J} and tableau criterion

Recall the unique factorizations for $J \leq S$

$$
\begin{aligned}
& W \longleftrightarrow W^{J} \times W_{J} \\
& w \longleftrightarrow(v, u)^{J}
\end{aligned}
$$

where $w=v \cdot u$ and $l(\omega)=l(v)+l(x)$

PROPOSITION:
The sujections

$$
W \xrightarrow{P^{J}} W^{J}
$$

are all order-presewing for Beat order,

$$
\text { i.e. } \omega \leq \omega^{\prime} \Rightarrow P^{J}(\omega) \leq P^{\top}\left(\omega^{\prime}\right)
$$

proof: Induct on $l\left(w^{\prime}\right)$.
BASE CASE: $\omega^{\prime} \in W^{J}$, so $P^{\top}\left(\omega^{\prime}\right)=\omega^{\prime}$.
Then $P^{J}(\omega) \leq \omega \leq \omega^{\prime}=P^{J}\left(\omega^{\prime}\right)$, so done.

$$
\begin{aligned}
\text { because } w & =u \cdot v, u=P^{J}(w) \\
& =s_{i 1}-s_{g}(w) \cdot s_{j i}-s_{j g(v)}
\end{aligned} \text { reduced }
$$

INDUCTIVE STEP: $\omega^{\prime} \notin W^{J}$, so $\exists s \in J$ with $\omega^{\prime} s<\omega^{\prime}$.
Apply Lifting Property here
to conclude $P^{\top}(\omega) \leq \omega^{\prime} s$.

So by induction,

$$
\begin{array}{lc}
p^{J}\left(p^{J}(\omega)\right) \leq & p^{J}\left(\omega^{\prime} s\right) \\
p^{J}(\omega) & \prod^{J}\left(\omega^{\prime}\right)
\end{array}
$$

Pleasantly, on certain quotients W^{J}, Buhhat order is much simpler to check, and quite familiar...
PRoposition: For $W=\sigma_{h}=W(0, \ldots \rightarrow)$
and $J=S,\left\{S_{k}\right\}$ for $k=1,2,, n-1$,

$$
\begin{aligned}
& \text { and } \\
& \text { whose right boundary } \\
& \text { vertical steps are }\left\{w_{1}, w_{2} \rightarrow w_{k}\right\} \\
& u \leq \omega \Leftrightarrow \begin{array}{l}
u_{1} \leq w_{1} \\
u_{k} \leq w_{k}
\end{array} \Leftrightarrow \lambda(u) \leq \lambda(\omega) \\
& \text { (Young's lattice) }
\end{aligned}
$$

EXAMPLE $W=G_{S}=W\left(\begin{array}{llll}\sigma_{1} & s_{2} & s_{3} & s_{4}\end{array}\right)$

$$
J=S-\left\{s_{2}\right\}, W_{J}=\left(\begin{array}{cc}
0 & -X \times \\
s_{1} & 0 \\
s_{3} s_{4}
\end{array}\right)=G_{2} \times G_{3}
$$

proof sketch:
Checking the maps are bijections is straightforward. Not hard to check that if $u \xrightarrow{t} \omega$ in Bunhat graph then $\left\{u_{1}, \ldots, u_{k}\right\} \leq_{G_{\text {ale }}}\left\{\omega_{1}, \ldots, \omega_{k}\right\}$, so $\lambda(u) \leq \lambda(\omega)$, Conversely, if $\lambda<\mu$ in Young's Lattice

$$
\lambda_{(\omega)}^{\prime \prime} \quad \lambda^{\prime \prime}(\omega)
$$

$$
\begin{array}{ll}
\left\{u_{1, \ldots} u_{k}\right\}=\{2,355,8\} & 23581467 \\
\left\{w_{a, c}, w_{k}\right\}=\{2,4,5,8\} & 24581367
\end{array}
$$

Con exhibit $w=s_{i} u$ and $l(\omega)>l(u)$, showing $u \leq w$.

This will have a nice consequence for Brant on G_{n} :
THEOREM (Tableau Criterion, (B-B Tum 2.6.3)) $\ln G_{n}, u \leq w$ in Bruhat order

$$
\left\{u_{1,-,} u_{k}\right\} \leqslant_{\text {Gale }}^{\Downarrow}\left\{\omega_{1,}, \omega_{k}\right\} \text { for all } k \in \operatorname{Des}(u)
$$

EXAMPLE in \widetilde{S}_{q}, to check

$$
u=\underset{\substack{\text { Desc }(u)}}{36847.5912}<\stackrel{?}{<} \quad w=694287531
$$

compare entrywise ...

$$
\begin{array}{lll}
368 & \stackrel{2}{5} & \begin{array}{l}
469 \\
24689 \\
2456789
\end{array} \\
\hline 3456789 & &
\end{array}
$$

failure
$\Longrightarrow u \neq \omega$ in Bnihat.

The Tableau Criterion is a special case of ...
THEOREM Given subsets $\left\{J_{i}\right\}$ of S with $I:=?_{i} J_{i}$ (B-BThm. 2.6.1) one has for any $u \in W^{\top}, w \in W$

$$
u \leq \omega \Longleftrightarrow p^{J_{i}}(u) \leq p^{J_{i}}(\omega) \quad \forall i
$$

EXAMPLES:
(1) 1

$$
\begin{aligned}
\text { If } W=G_{n}, & \left\{J_{i}\right\}=\left\{S \backslash\left\{s_{k}\right\}\right\} \forall k \in \operatorname{Des}(u), \\
& \text { so } I=\bigcap_{i} J_{i}=S \backslash \operatorname{Des}(u), \quad u \in W^{I},
\end{aligned}
$$

and this is exactly Tableau Criterion
(2) If $I=?_{i} J_{i}=\phi$, so $W^{I}=W^{\phi}=W$, then $u \leq \omega \Leftrightarrow P^{J_{i}}(\omega) \leq P^{J_{i}}(\omega) \forall i$
sketch proof of THEOREM (see B- BPP 45-46):
Forward implication we know:

$$
u \leqslant \omega \Rightarrow P^{J_{i}}(u) \leqslant P^{J_{i}}(w) \quad \forall J_{i}
$$

(with no assumption of $n \in W^{I}$ for $I=\cap J_{i}$ needed)

For the reverse implication

$$
P^{J_{i}}(u) \leq P^{J_{i}}(\omega) \quad \Rightarrow \quad u \leq \omega,
$$

induct on $l(\omega)$.
BASE CASE $l(\omega)=0 \Rightarrow \omega=e$

$$
\begin{aligned}
& \Rightarrow p^{J_{i}}(u) \leq P^{J_{i}}(\omega)=e \quad \forall i \\
& \Rightarrow p^{J_{i}}(u)=e \quad \forall i \\
& \Rightarrow u \in W_{J_{i}} \forall i \Rightarrow u \in W_{I} \\
& \Rightarrow u \in W_{I} \cap W^{I} \\
& \Rightarrow u=e \quad(=\omega) .
\end{aligned}
$$

INDUCTIVE STEP $l(\omega) \geq 1$, so pick $s \in S$ with sur< ω.
Now rely on a general ...

$$
\begin{aligned}
& \text { CLAIM: } \forall J \subset S \\
& P^{J}(u) \leq P^{J}(w) \Rightarrow\left\{\begin{array}{l}
P^{J}(s u) \leq P^{J}(s w) \text { if } s u<u \\
P^{J}(u) \leq P^{J}(s w) \text { if } s u>u
\end{array}\right.
\end{aligned}
$$

allowing one to finish in 2 cases:

- Su<u $\underset{\mathrm{cim}^{\Rightarrow}}{\Rightarrow} P^{J_{i}}\left(s_{u}\right) \leq P^{J_{i}}\left(s_{w}\right) \forall i$

$$
\overrightarrow{\text { induction, }} \text { sum } \leq s w \underset{\text { Lifting }}{\Longrightarrow}
$$

since $s u \in W^{I}$ again

$$
\begin{aligned}
&-s u>u \underset{c i A 1 m}{\Rightarrow} P^{J_{i}}(u) \leq p^{J_{i}}(s w) \forall i \\
& \underset{\text { indiction }}{\Longrightarrow} u \leq s w<w
\end{aligned}
$$

But then proving the CAIM is a slightly painful case-by-case check, based on $s u>u$ and $s P^{\top}(\omega)>P^{\top}(\omega) \quad$!

