Möbius function and topology of Burhat intervals

Recall from en umerative combmatorics of poses...
DEF' N : For a pose P with finite metals $[x, y]$, the Möbius function $\mu(x, y):=\left\{\begin{array}{l}1 \text { if } x=y \\ -\sum_{z: x \leq z<y} \mu(x, z)\end{array}\right.$

Which shows up in the
Möbins inversion formula:

$$
f, g: P \rightarrow \underset{\substack{\text { arming } \\ \text { or alerion } \\ \text { group }}}{R} \text { satisfy }
$$

$$
g(y)=\sum_{x: x \leq p y} f(x) \Leftrightarrow f(y)=\sum_{x: x \leq p y} \mu(x, y) g(x)
$$

Examples
(1) $\quad \omega_{6}+1$

Bruhat on $W(\overbrace{9}^{0} \stackrel{S}{2}^{4}): I_{2}(4)=B_{2} / C_{2}$

values of $\mu(1, \omega)$ labeled

(2)

$$
\begin{aligned}
& {\left[1, s_{1} s_{2} s_{3}\right]} \\
& \text { in } \widetilde{S}_{4}=W\left(\begin{array}{lll}
0 & & \\
s_{1} & s_{2} & s_{3}
\end{array}\right)
\end{aligned}
$$

One might be tempted to guess...
THEOREM For any Cox. system (W, S), any (Verna 1971) $l(\omega)-l(u)$ $u \leq \omega$ in Bmhat order have $\mu(u, \omega)=(-1)$.

That is, Bruhat order is an fulerion posen ranked $r: P r(1)$ I $r(x) \forall x, y$

Weill approach this topologically, starting with...
Theorem In any posed P,
(P. Hall 1936)

$$
\begin{aligned}
& \mu(x, y)= \\
& \text { d) } \\
& \text { haracteristic } \\
& -f_{1}+f_{2}-f_{3}+\ldots
\end{aligned}
$$

$$
\begin{gathered}
:=-f_{1}+f_{0}-f_{1}+f_{2}-f_{3}+\ldots \\
\text { where } f_{2}=\# \text { i- dimensional } \\
\text { simplices } / \text { faces } \\
\left(f_{-1}=1\right. \text { counts } \\
\text { the empty } \\
\text { simplex } \varnothing \\
\text { of dimension -1) }
\end{gathered}
$$

(reduce d)
Euler characteristic

$$
\tilde{\chi}_{1}(\underbrace{\Delta(x, y)}_{1})
$$

order complex $:=$ smplicial complex whose smplices are the totally ordered subsets

EXAMPLES
(1)

$$
\mu\left(1, s_{1} s_{2} s_{3}\right)=\tilde{X}\left(\Delta\left(1, s_{1} s_{2} s_{3}\right)\right)
$$

$$
\left(1, s_{1} s_{2} s_{3}\right)=\left.\right|_{s_{1}} ^{s_{1} s_{2}} \underbrace{s_{1} s_{3}}_{s_{2}}>\left.\right|_{s_{3}} ^{s_{2} s_{3}}
$$

equply ${ }^{6}$ in ${ }^{6}$

$$
\begin{aligned}
\tilde{X}\left(\Delta\left(1, s_{1}, s_{2} s_{3}\right)\right) & =-f_{-1}+f_{0}-f_{1} \\
& =-1+6+6=-1=\mu\left(1, s_{1} s_{2} s_{3}\right)
\end{aligned}
$$

(2)

$$
\begin{aligned}
\mu\left(1, s_{1} s_{2}\right) & =\tilde{X}\left(\Delta\left(1, s_{1} s_{2}\right)\right) \\
& \left.=\tilde{X}\left(s_{1} \quad s_{2}\right)\right) \\
& =-f_{1}+f_{0}=-1+2=+1 \\
\mu\left(1, s_{2} s_{1}, s_{2}\right) & =\tilde{X}\left(\Delta\left(1, s_{2} s_{1} s_{2}\right)\right) \\
& =\tilde{\chi}\left(s_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mu\left(1, \omega_{0}\right)=\tilde{\chi}\left(\Delta\left(1, \omega_{0}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\tilde{x}(\\
& \text { sis) } \\
& F \text { homeomorphic } \\
& \text { to } 5^{2} \\
& =2 \text {-sphere } \\
& =-f_{-1}+f_{0}-f_{1}+f_{2} \\
& =-1+6-12+8=-1
\end{aligned}
$$

Recall reduced Euler characteristic is computable from homology groups,

$$
\tilde{X}(\Delta)=\sum_{i \geq-1}(-1)^{i} f_{i}=-\tilde{\beta}_{-1}+\tilde{\beta}_{0}-\tilde{\beta}_{1}+\tilde{\beta}_{2}-\ldots
$$

where $\tilde{\beta}_{i}=\operatorname{rank} \tilde{H}_{i}(\Delta, \mathbb{Z}) \quad$ (or could take $\tilde{\beta}_{i}=\operatorname{dim}_{k} \tilde{H}_{i}(\Delta, k)$ for a field k)

This makes $\tilde{X}(\Delta)$ a homeomorphism invariant, and even a homotopy type invariant.

ExAMPLE

$$
\begin{aligned}
& =-1+5-6=-1+8-9=-1+9-13+3=-2 \\
& =-\tilde{\beta}_{-1}+\tilde{\beta}_{0}-\tilde{\beta}_{1}+\tilde{\beta}_{2}-\tilde{\beta}_{3}+\ldots \\
& =-0+0-2+0-0+\ldots
\end{aligned}
$$

because $\Delta_{1}, \Delta_{2}, \Delta_{3}$ are all homotopy equivalent to a $\left(1\right.$-point) wedge $\mathbb{S}^{1} \vee \mathbb{S}^{1}$

which has $\tilde{H}_{i}\left(\mathbb{S} \cup S_{S}, \mathbb{Z}\right) \cong\left\{\begin{array}{l}0 \text { if } i=-1,0,2,3,4, \ldots \\ \mathbb{Z}^{2} \text { if } i=1\end{array}\right.$

So what we will actually try to show is this:
THEOREM For any COx. sys. (W, S) and $u \leq w$, (Byömer-Wachs 1982)

$$
\begin{aligned}
& \text { homeomorphic } \stackrel{\searrow}{\triangle}(u, \omega) \stackrel{S^{l(\omega)-l(u)-2}}{\cong} \\
& {\left[\stackrel{\text { P. Hall }}{\Rightarrow} \mu(u, \omega)=\tilde{X}\left(S^{l(u)-l(u)-2}\right)=(-1)\right)}
\end{aligned}
$$

The approach is via these useful concepts.
DEF'N: Say that a simplicial complex Δ is pure of dimension d if all of its facets have dimension d, i.e. del vertices. : maximal

pure 2-dimil

DEF'N: Say a pure d-dimil simplicial complex Δ is shellable if one cam order its facets
 forming a pure $(d-1)$-dim'l subcomplex.
examples
(1) shellable:

$F_{5} \cap\binom{$ suburuplex }{ gen'd by $F_{1}, F_{2}, F_{3}, F_{4}}$

(2)

but not shellable
(3)

(4) shellable:

boundary of octahedron
flatten as a planar graph un $>$

A useful PL-topology fact will apply to Benhat intervals. tpiecense.

THEOREM: If a pure d-dimil complex Δ
(Fact A.2.4.3 is both shellable and thin, in $B-B)$ is both shellable and $($ every $(d-1)$-simplex liesineractly two

$$
\text { then } \Delta \cong \mathscr{S}^{d} \text {. }
$$

So weill try to show any $u \leqslant \omega$ in Brahat has $\Delta(u, d)$

- pure d-dimil where $d=\ell(\omega)-l(w)-2$
- shellable
- thin.

The purity is immediate from the fact that Buhhat order on W is ranked by $l(\omega)$,
so all maximal chains $u=u_{0}<u_{1}<\cdots \cdots<u_{k}<-u_{k}=\omega$ have $k=\ell(\omega)-\ell(u)$
 \Uparrow
all facets $F=\left\{u_{1}, u_{2},, u_{k-1}\right\}$ in $\Delta(u, w)$ have \#F=k-1

$$
\begin{aligned}
& \# F=k-1 \\
& \operatorname{dm} F=k-2 \quad \text { where } k=l(w)-l(w)
\end{aligned}
$$

The shellability and thin-ness both will come from a certain way label edges in max chains. Fix a reduced expression $\omega=s_{1} s_{2} \cdots \cdot S_{q}$
with its positions labeled (1) (2) \sim - 9 .
Then in any max chain $\omega=\omega_{0}>\omega_{1}>\ldots \rightarrow \omega_{k-1}>u_{k}=u$ as you wort down from the top, each step w_{j} to ω_{j+1} knocks out a unique s_{k} (by strong Exchange applied to $\omega_{j+1}=\omega_{j} t$) whose original position (1) labels the edge $\omega_{j}>\omega_{j+1}$
The proposed shelling order is via lex order on label sequences read top to bottom

$$
\begin{aligned}
& 0(1)(3) \\
& 1=555 .
\end{aligned}
$$

EXAMPLE in $G_{3}, \omega=\omega_{0}=S_{1} S_{2} S_{1} \leftarrow$ fixed

$\Delta(1, \omega)$

Chain labels:

(3) 102

LEMMA From Buhat internal $[u, w]$ has a unique chain with increasing labels $i_{1}<i_{2}<\ldots<i_{k}$. proof: We constructed one when we showed Bmhat was ranked: if $w=s_{1} s_{2} \cdots s_{q}$ and $u=s_{s_{2}}-\hat{s}_{i_{1}} \ldots \hat{s}_{i_{k}} \ldots s_{q}$, we exhibited one with labels $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ and i_{k} leftmost. To show one cant have two of them, induct on $l(\omega)-l(u)$, with BASE (ASE $l(\omega)=l(\omega)+1$ easy. in the inductive' step, given two of them

$$
\begin{aligned}
& \text { and if } i_{k}<j_{k} \text { wOG, then }
\end{aligned}
$$

 one gets a contradiction that

$$
\begin{aligned}
& \omega_{k-1}^{\prime}=u t=s_{1} \cdots \hat{s}_{c_{1}} \cdots \hat{s}_{i_{k}} \ldots \hat{s}_{j k} \cdots s_{q} \\
& \text { has length } \\
& <l(n) \text {. }
\end{aligned}
$$

Therefore $i_{k}=j_{k}$, so $\omega_{k-1}=w_{k-1}^{\prime}$. Then there is at most one increasing labeled chain in $\left[\omega_{k-1}, \omega\right]$ by induction, implying $\left(i_{1}, \ldots, i_{k_{-}}\right)=\left(i_{1,-}, j_{k-1}\right)$

One can reverse left-to-right choices and abs prove: (pick i_{i}-... $<i_{k}$ with i_{1} rightmost)
LEMMA Grey Buhat interval $[u, w]$ has a unique chain with decreasing labe's $i_{1}>i_{2}>\ldots>i_{k}$. corollary Buwhat internals $[u, v]$ with $l(\omega)-l(\omega)=2$ all look like this:

Equivalently, all Buhat intervals $[x, y]$ have $\Delta(x, y)$ thin:

proof: In a length 2 interval, every maximal chain is either increasing or decreasing

$$
i_{1}<i_{2} \text { or } i_{1}>i_{2}
$$

LEMMA: The lex smallest labeled max chain in [u,w]
is the unique increasing one.
proof: Induct on $l(\omega)-l(n)$.
BASE CASE $l(\omega)-l(n)=2$.
There by constmetion they are

INDUCTIVE STEP $l(\omega)-l(n) \geq 3$.
If the lex smallest chain is this one

then its segment in $\left[\omega_{k-1}, n\right]$ and its segment in $\left[u, w_{1}\right]$ are also lex smallest, so increasing by induction, but then they overlap enough to show the big one is moreasing

Finally...
THEOREM Lex order on the labels of facets F_{1}, F_{2}, \ldots of $\Delta(u, \omega)$ gives a shelling.
Hence $\Delta(a, \omega)$ is pure d-dimil, thin, shellable so homeomonphic to \mathbb{S}^{d} where $d=l(\omega)-l(\omega)-2$.
proof: A typical face of $F_{i} \cap\left(\begin{array}{l}\text { sub complex } \\ \text { genid by } F_{1}, F_{2},, ~\end{array}, F_{i-1}\right)$ is a face $F_{i} \cap F_{j}$ with $F_{j}<_{l e x} F_{i}$. We must exhibit some face $F_{k}<$ lex F_{i} with

$$
F_{i} \cap F_{j} \leq F_{i} \cap F_{k} \text { and } \operatorname{dim}\left(F_{i} \cap F_{k}\right)=d-1
$$

Picture: ω
Find y nearest ω where F_{i}, F_{j} first deviate, and let x be the first place where they coincide again.
Inside the interval $[x, y]$, since $F_{j}<F_{\text {lex }}$, it cannot be that F_{i} is lex earliest, so it cannot be increasing in $[x, y]$, so it has some adjacent decreasing labels surrounding some z. Let F_{k} replace z with z^{\prime} in the same length 2 interval, and note F_{k} has $F_{k}<$ lex F_{i},

$$
F_{i} \cap F_{j} \subseteq F_{i} \cap F_{k} \text { and } \operatorname{dim}\left(F_{i} \cap F_{k}\right)=d-1 \text {. }
$$

REMARKS
(1) B-B prove more strongly (THM 2.7.5) that for any $J \subseteq S$ and $u \leq w$ in W^{J}, the interval $(u, \omega)_{W^{J}}$ is also pure d-dimil and shellable where $d=l(w)-l(u)-2$. Furthermore, it is not thin but subthin, ie. (d-1).faces lie in ≤ 2 facets. This implies

$$
\leq 2 \text { facets. This implies } \quad \Delta(u, w)_{W^{J}} \xlongequal[\overline{\overline{1}}]{ } \begin{cases}S^{d} & \text { if }[u, w]_{W J}=[u, w]_{W} \\ \mathbb{B}^{d} & \text { if }[u, w]_{W} J \subsetneq[u, w]_{W} \\ { }_{d-\text { ball }}\end{cases}
$$

(2) The fact that (open) Buhhat intervals $\Delta(u, w)$ are all spherical implies $[u, w]$ is also the face poet of a regular CW-ball - see B-B THM 2.7.12 \& App. A 25

EXAMpLES

These regular (W-balls have been interpreted geometrically (for Weyl groups W) in terms of total positvity using ideas of Lusztig, via Fomin-Shapiro-Shapivo, Harsh, Galashin-Kapp,Lam.

EXAMPLE Totally nonnegative part of the unipotents $U=\left\{\left[\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right]: a, b c \in \mathbb{R}\right\}$

$$
\begin{aligned}
\text { is defined by inequalities } \begin{aligned}
& a \geqslant 0 \\
& b \geq 0 \\
& c \geqslant 0
\end{aligned} \\
\qquad a c-b=\left|\begin{array}{ll}
a & b \\
1 & c
\end{array}\right| \geqslant 0 \text { i.e. } b \leq a c
\end{aligned}
$$

cross-section slice ans

(3) The analogy between these

$$
\begin{aligned}
& \text { The analogy between these } \\
& \left\{\begin{array}{c}
d \text {-dimil } \\
\text { Bruhat interval } \\
\text { balls } \mathbb{B}^{d}
\end{array}\right\} \text { and }\left\{\begin{array}{c}
\text { convexpolytopes }
\end{array}\right\} \\
& \text { is ven strong. }
\end{aligned}
$$

is very strong.
Face poses of polytopes are also Eulerian:

$$
\begin{aligned}
& \text { sets of polytopes are also } \\
& \mu(F, G)=(-1)^{\operatorname{dma} G-\operatorname{dim} F}
\end{aligned}
$$

There is a boric variety one can associate to P when it has vertices in \mathbb{Q}^{n}, analogous to the Schubert varieties and their strata associated to $[u, w]$ when W is crystallographic.

