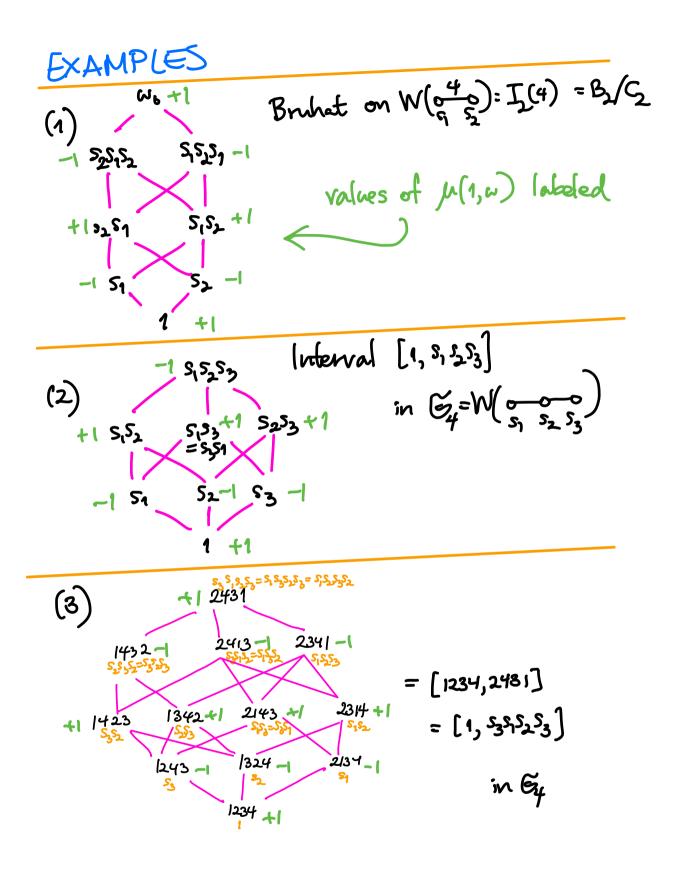
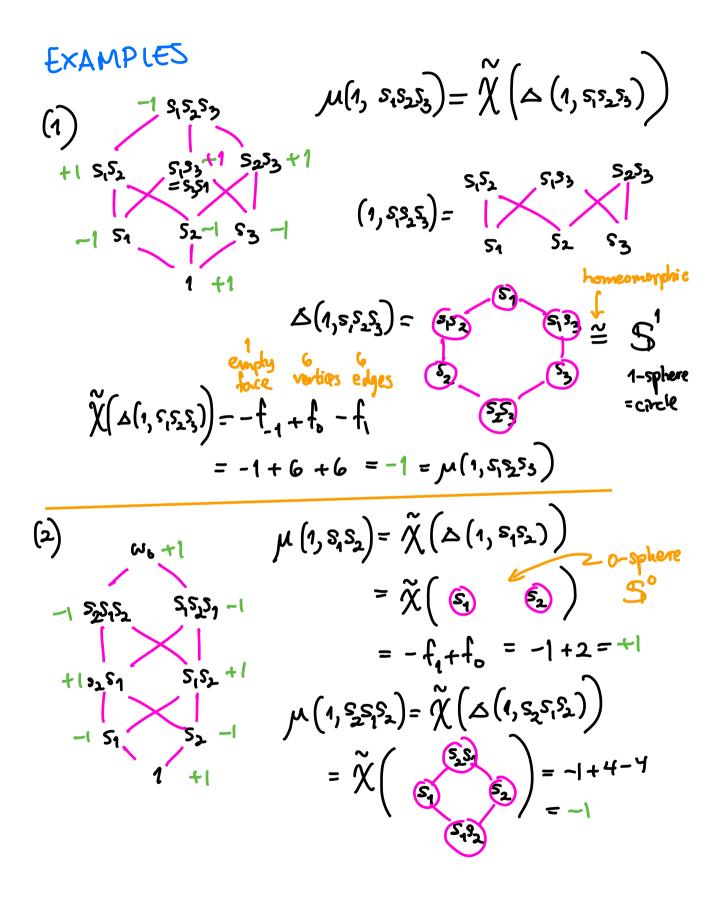
Möbius function and
topology of Bruhat intervals
Recall from enumerative combinatorics
of posets...
DEF N: For a poset P with finite mervals byj,
the Möbius function
$$\mu(x,y) := \begin{cases} 1 & \text{if } x = y \\ -\sum \mu(x,z) \\ z : x \in z \cdot y \end{cases}$$

which shows up in the
Misbus meension formula:

$$f,g: P \rightarrow R$$
 satisfy
 $group$
 $g(y) = \sum f(x) \iff f(y) = \sum \mu(x,y) g(x)$
 $\chi: x \le y$



One might be tempted to guess ... (Verma 1971) For any Gx. system (W,S), any $u \in \omega$ in Bruhat order have $\mu(u,\omega) = (-1)$. That is, Bruhat order is an Eulerian poset (ranked r: P-3/(x) Vx,y and m(x,y)=(-1) kle'll approach this topologically, starting with ... In any poset P, THEOREM (P. Hall 1936) $\mu(\mathbf{x},\mathbf{y}) = \tilde{\chi}(\Delta(\mathbf{x},\mathbf{y}))$ (reduced) Enter characteristic open order merval complex $:= -f_1 + f_0 - f_1 + f_2 - f_3 + \dots$ (x,y):= := smolicia where $f_i = # i - dimensional$ simplices/facescomplex (20P: x < 2 < y) nose Smolices (f_=1 counts are the the empty totally Simplex Ø ordered of dimension -1) subsets



$$\mu(4,\omega_{0}) = \tilde{\chi}(\Delta(1,\omega_{0}))$$

$$= \tilde{\chi}\left(\Delta\left(\begin{array}{c}2^{254} + \frac{552}{5}\\ \frac{5}{5}\\ \frac{5}{$$

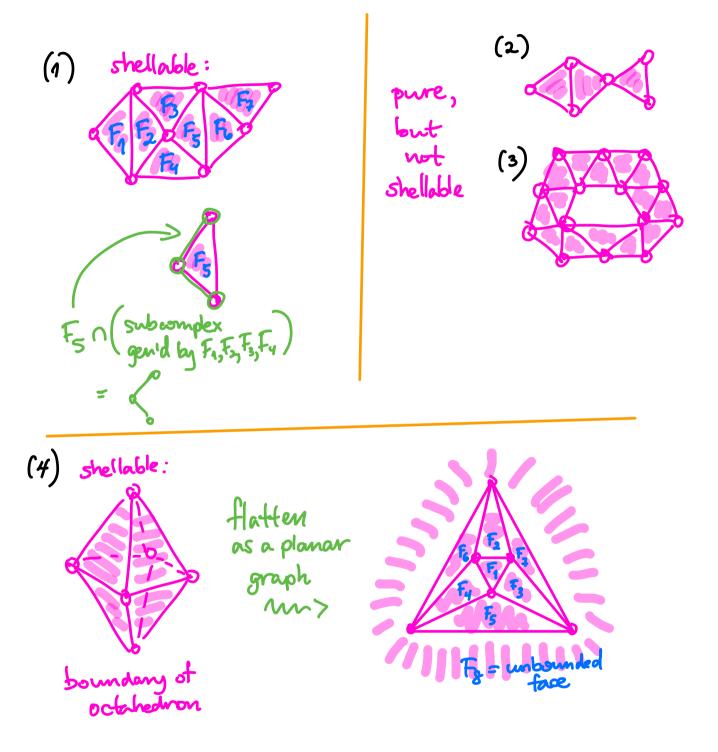
This makes $\tilde{X}(\Delta)$ a homeomorphism invariant, and even a homotopy type invariant.

EXAMPLE $\widetilde{X}\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) = \widetilde{\chi}\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) = \widetilde{\chi}\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) = \widetilde{\chi}\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$ = -1+9-13+3 = -2 = -1+5-6 = -1 + 8 - 9 $= -\tilde{\beta}_{-1} + \tilde{\beta}_{0} - \tilde{\beta}_{1} + \tilde{\beta}_{2} - \tilde{\beta}_{3} + \cdots$ = -0 + 0 - 2 + 0 - 0 + ... because $\Delta_{1,2} \Delta_{2,2} \Delta_{3}$ are all homotopy equivalent to a (1-point) wedge 5' v 5' which has $\widetilde{H}_{i}(S^{1}, S, \mathbb{Z}) \cong \int O f i = -1, 0, 2, 3, 4, ...$ \mathbb{Z}^{2} if i = 1

So what we will actually by to show is this:
(THEOREM For any Cox. sys. (W,S) and usw,
Moneconverphic
$$S(w) - l(w) - 2$$

 $P(u,w) = S(w) - l(w) - 2$
 $P(u,w) = \chi(S^{l(w)} - l(w) - 2)$
The approach is via these useful concepts.
DEF'N: Say that a simplicial complex Δ is
pure of dimension d if all of its thesets
have dimension d, i.e. del vertices.
Moneconverting a pure d-dimil simplicial complex Δ
is shellable if one can order its facets
Fe, F2, --, F4 with Viz2, Find (Subcomplex.)

EXAMPLES



The shellability and thin-ness both will asme
from a certain way to label edges in mox chains.
Fix a reduced expression
$$\omega = s_1 s_2 - s_0$$

with its positions labeled $0 \otimes - 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 > \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 = \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 = \omega_0 = 0$.
Then in any max chain $\omega = \omega_0 = \omega_0 = 0$.
The proposed shelling order is via lex order on
label sequences read top-to-bottom
DRAMPLE In Gs, $\omega = \omega_0 = s_0 = s_0 = 0$.
Then labels:
The proposed shelling order $s_1 = s_0 = s_0 = s_0$.
The proposed shelling order $s_1 = s_0 = s_0 = s_0$.
The proposed shelling order $s_1 = s_0 = s_0 = s_0$.
The proposed shelling order $s_1 = s_0 = s_0 = s_0$.
The proposed shelling order $s_1 = s_0 = s_0 = s_0$.
The proposed shell $s_0 = s_0 = s_0 = s_0$.
The proposed shell $s_0 = s_0 = s_0$.
The proposed shell $s_0 = s_0 = s_0$.
The proposed shell $s_0 = s_0 = s_0$.
The proposed shell $s_0 = s_0 = s_0$.
The proposed shell $s_0 = s_0$.
The prop

LEMMA Frenz Burhat interval [4,w] has a unique chain with increasing labels i, < i, < ... < ik. proof: We constructed one when we showed Bruhat was ranked: if w=sysz...s, and u=sisz...si,...s, we exhibited one with labels (i1, i2, -, ik) and in letonost To show one can't have two of them, induct on l(w) - l(w), with BASE (ASE l(w) = l(w) + 1 easy. In the inductive step, given two of them $\tau(i_1) = \sum_{j=1}^{N} \sum_{j=$ one knows $S_1 - S_{i_1} - S_{i_k} - S_j = N = S_1 - S_j - S_j_k - S_j_k$ and if ik < jk wlog, then one gets a contradiction that ~p-1 $W_{k-1} = Mt = S_1 - - \hat{S}_{l_1} - - \hat{S}_{l_k} - \hat{S}_{l_k}$ $f = S_{S_1} = S_{S_2} = S_{S_1} =$ Therefore ik=Jk, so wk-1= wk-1. Then there is at most one increasing labeled chain in [wk., w] by induction, implying (in, --, ik.) = (jn, -, ik.)

One can reverse left-b-right choices and also prove:
(pick is - one with is rightmost)
LEMMA from Binhat interval
$$[u_1, w]$$
 has a unique
chown with decreasing labels $i_1 > i_2 > ... > i_k$. If
COROLLARY Durhat intervals $[u_1, w]$ with
 $l(w) - l(w) = 2$ all bok like this:
 $v_1 \qquad v_2$
Equivalently, all Burhat retervals (x_1y_1) have
 $\Delta(x, y_1)$ thin:
 $v_2 \qquad v_3 \qquad v_2$
Proof: In a length 2 interval, every
maximal choin is either increasing or decreasing
 $i_1 \qquad v_2 \qquad i_{i_2} \qquad v_2$
 $v_1 \qquad v_2 \qquad v_3 \qquad v_4 \qquad v$

USMMA: The lex smallest labeled max chain in
$$[u,w]$$

is the unique increasing one.
proof: Induct on $l(w) - l(w)$.
Base CASE $l(w) - l(w) = a$.
Thore by construction they are
 $w = s_1 s_2 - s_5$
 $w = s_1 \cdots s_1 \cdots s_p - s_1$ j minimal
 $= s_1 \cdots s_1 \cdots s_p - s_1$ maximal
 $\Rightarrow m_2 i \Rightarrow p > i \Rightarrow (z, j) <_{lex}(p,m)$
INDUCTIVE STEP $l(w) - l(w) \ge 3$.
If the lex smallest chain is this one
 w_1
 w_2
 w_2
 w_1
 w_2
 w_1
 w_2
 w_1
 w_2
 w_1
 w_2
 w_1
 w_2
 w_3
 w_1
 w_2
 w_1
 w_2
 w_1
 w_2
 w_2
 w_3
 w_1
 w_2
 w_3
 w_1
 w_2
 w_3
 w_1
 w_2
 w_1
 w_2
 w_3
 w_1
 w_2
 w_3
 w_1
 w_2
 w_1
 w_2
 w_3
 w_1
 w_1
 w_2
 w_1
 w_1
 w_2
 w_1
 w_1
 w_2
 w_1
 w_1
 w_2
 w_1
 w_2
 w_1
 w_1
 w_2
 $w_$

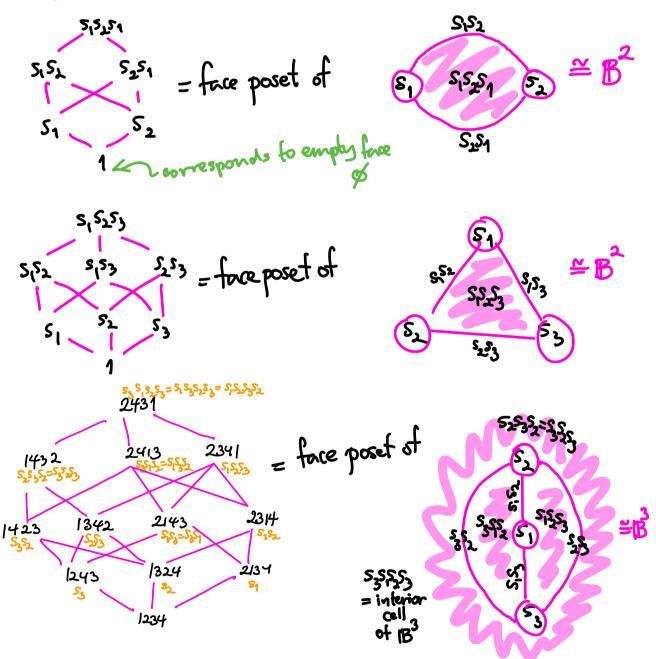
Finally ...
THEOREM Lex order on the labels of facets
$$F_{1}, F_{2}, ...$$

of $\Delta(u, \omega)$ gives a shelling.
Hence $\Delta(a, \omega)$ is pine d-dimil, thin, shellable
so bome comorphic to \mathbb{D}^{d} where $d=2(\omega)-2(\omega)-2$.
Proof: A typical take of $F_{1} \cap (\frac{s_{1}}{gen'd} \frac{s_{2}}{gen'd} \frac{s_{1}}{gen'd} \frac{s_{1}}{gen'd} \frac{s_{2}}{gen'd} \frac{s_{1}}{gen'd} \frac{s_{1}}{gen'd} \frac{s_{2}}{gen'd} \frac{s_{1}}{gen'd} \frac{s_{1}}{gen'd} \frac{s_{2}}{gen'd} \frac{s_{1}}{gen'd} \frac{s_{2}}{gen'd} \frac{s_{2}}{gen'd} \frac{s_{1}}{gen'd} \frac{s_{2}}{gen'd} \frac{s_$

REMARKS
(1) B-B prove more strongly (THM 2.7.5) -that
for any JSS and
$$u \le w$$
 in W^J , the interval
 $(u, w)_{WJ}$ is also pure d-dimil and shellable
where $d = l(w) - l(w) - 2$. Furthermore, it is
not thin but subtrin, i.e. $(d-1)$ -trees lie in
 ≤ 2 facets. This implies
 $\Delta (u, w)_{WJ} \cong \int S^d$ if $[u, w]_{WJ} = [u, v]_W$
 B^d if $[u, w]_{WJ} \equiv [u, w]_W$
 B^d if $[u, w]_{WJ} \equiv [u, w]_W$
 $EXAMPLE W(s^{4} o)_{S_1} = [u, w]_W$
 $W = Si_{2}S_{1} - S_{2}S_{1} + S_{1} + S_{2} - S_{1} + S_{2} + + S_{1} + S_{2} + S_{2} + S_{2} + S_{1} + S_{2} + S_{2} + S_{2} + S_{1} + S_{2} + S_{2} + S_{1} + S_{2} + S_{2} + S_{1} + S_{2} + S_{$

(2) The fact that (open) Bruhat intervals $\mathcal{L}(u, w)$ are all spherical implies [u,w] is also the face poset of a regular CW-ball - see B-B THM 2.7.12 & App. A.25

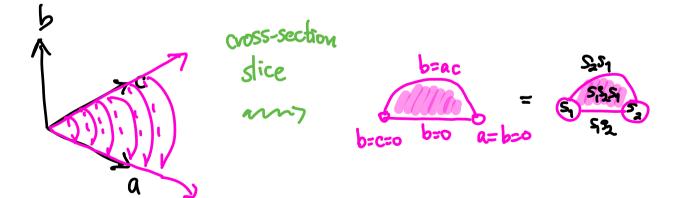
EXAMPLES



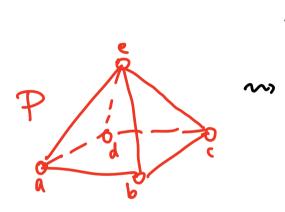
EXAMPLE Totally nonnegative part of the
unipotents
$$\mathcal{U} = \begin{cases} 1 & 4 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \end{cases}$$
: a, for \mathfrak{g}

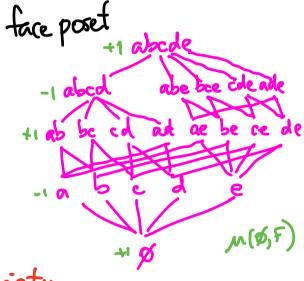
is defined by inequalities
$$a \ge 0$$

 $b \ge 0$
 $c \ge 0$
 $ac - b = \begin{vmatrix} a & b \\ 1 & c \end{vmatrix} \ge 0$ i.e. $b \le ac$



(3) The analogy between these [Bruhat interval] balls (B^d) and convex polytopes] is very strong. Face posets of polytopes are also Eulerian: µ(F,G)= (-1) dmG-dmF





There is a toric variety one can associate to P when it has vertices in Qⁿ, analogons to the Schubert varieties and their strata associated to [u,u] when W is crystallographic.