
 

Mobius function and
topology of Bmhat intervals

Recall from enumerative combinatorics

ofpoets
DEF N For a poset P with finite
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Onemightbetempted to guess
THEOREM
Verma 1971
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That is Brunet order is an Eulerianposet
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We'll approach this t.pe gjp.sIly starting
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This makes X o a homeomorphisminvariant

and even a homotopy type invariant
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So what we will actually try to show is this

THEOREM For any Cox Sys
W S and new
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The approach is via these
useful concepts

DEF N Say that a simplicial
complex D is
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of dimension d if all of

its facets

have dimension
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is shellable if one can order its facets
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Auseful PL topologyfactwillapplytoBmhat intervals
I piecewise
linear
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Theshellability and thin ness bothwill come

from a certain wayto
labeledges in max chains

Fix a reducedexpression w
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with its positions
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work down fromthe top each
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EXAMPLE In G w w 888 fixed

SS Is

I a Fa
w

sit
ofgig É o

o

s

sis

I
no o

F Fa Fy Fy
020 020



LEMMA EveryBunhat interval
In w has aunique

chain with increasing labels incise sik

proof Weconstructed one
when we showedBmhat

was ranked if wasps sq and
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we exhibited one with labels in is in and inleftmost
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One can reverse left to right choices andalso prove
Ipick it in with inrightmost
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LEMMA Thelexsmallest labeledmax chain in yw

is the unique increasing one

proof Induct on la la
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Finally
THEOREM Lex order on the labelsof facetsFaFa

of 0 fun gives a shelling

Hence Dfa w is pure d dime
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REMARKS
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2 Thefactthatlopen Bruhat intervals Olu

are all spherical implies u w is also thefareposet

of a regularCW ball see B B THM 2.7.12
App A2.5
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These regularCW balls have been interpreted

geometrically forWeylgroupsW in termsof

totalpositivity using ideas ofLustig
via Fomin Shapiro Shapiro

Hersh
Galashin Karp Lam
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3 Theanalogy betweenthese
d dime

balls Bd and convex polytopes

P
is very strong

Face posets of polytopes are also Eulerian
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There is a tonic variety
one can associate to P when it has

vertices

in Q analogous to the Schubert

varieties and their strata
associated

to u u when W is crystallographic


