Weak (Brahat) Order (Bjomer-Brenti Chap. 3)

- overall a less subtle order than Bruhat

DEFINITION-PROPOSTIION
Given (w, s), the following define the same poset S_{R} on W, called the (right) weak (Bunhat) order, weaker than Bruhat \leq (meaning $u \leq R_{0} \Rightarrow u \leq \omega$) but with same rank function $l(\omega)$:
(i) S_{R} is the transitive closure of $u{e_{R}}^{u}$ s if $s \in S$ and $l(n)<l(\omega)$
(ii) $u s_{R} w$ if $w=u s_{1} s_{2}--s_{k}$ with $l\left(u s_{1} s_{2}-s_{i}\right)=l(u)+i$ for $i=0,1,0 k$
(iii) $u \leq_{R} w$ if u, w have reduced words of form

$$
\left.\begin{array}{l}
u=s_{1} s_{2}-s_{m} \\
w=s_{1} s_{2} \cdots s_{m} s_{1}^{\prime} s_{2}^{\prime} \cdots s_{k}^{\prime}
\end{array}\right] \text { "prefix } \begin{aligned}
& \text { order" }
\end{aligned}
$$

(iv) $u S_{R} w$ if $l(u)+l\left(u^{-1} \omega\right)=l(\omega)$
proof: All straightforward.
ROMARK: Can similarly define left weak order S_{L}, isomorphic to \leq_{R} via $\omega \rightarrow \omega^{-1}$, but $S_{R} \neq S_{L}$.

EXAMPLES
(1) $I_{2}(m)$
$m=\mu$:

(2) $\mathrm{S}_{4}=W\left(\begin{array}{lll}0 & 0 & 0 \\ s_{1} & s_{2} & s_{3}\end{array}\right) \quad 4321=\omega_{0}=s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}=\ldots$

REMARK: By definition, the tasse diagram of s_{R} as a graph is the dual/vidge graph for the maximal cones/chambers in the Tits woe $U=\bigcup_{\omega \in W} \omega(C) \subset V^{*}$

$$
W=\Xi_{3}, U=V^{*}(\underline{\cong} V)
$$

FACT: When W is finite, any vector v_{0} in the mtevior of C has the polytope $P:=$ convex hull of $\left\{\omega\left(v_{0}\right)\right\}_{\nu \in W}$ with vertices se edges \cong Hassediagram of $\leq R$

Called

Some symmetries of weak order, like Buhat ...
PROPOSITION: When W is finite,
(i) $\omega_{0} Z_{R} \omega \quad \forall \omega \in W$
(ii) $\left.\omega \longmapsto \omega_{0} \omega\right\}$ both give posit anti-automonphisms of \leq_{R}
(iii) $\omega \mapsto \omega_{0} w \omega_{0}$ is a poet automorphism of \leq_{R} EXAMPLE

$\omega \longmapsto \omega \omega$

$\omega \longmapsto \omega \omega_{0}$

proof: They all follow from

$$
\begin{aligned}
& u \leq_{R} \omega \Leftrightarrow l(u)+l\left(n_{0}^{-1} \omega\right)=l(\omega) \\
& l\left(\omega \omega_{0}\right)=l\left(\omega_{0} \omega\right)=l\left(\omega_{0}\right)-l(\omega)
\end{aligned}
$$

and $\omega \mapsto \omega_{0} \omega \omega_{0}$ permuting S

As with TableanCriterion for Buhat, there is a more efficient encoding/rephrasing of \leqslant_{R} :
PROPOOTTION: $u \leqslant_{R} \omega \Leftrightarrow T_{L}(u) \subseteq T_{L}(\omega)$
i.e. $\left(S_{n}, \leq_{R}\right) \hookrightarrow\left(2^{\top}, \subseteq\right)$ embeds S_{R} as a inbporet $\omega \mapsto T_{L}(\omega)$

EXAMPLE: σ_{3}, \leq_{R}

COROLCARY: When $u \leq_{R} \omega$, then

$$
\#[u, \omega]_{\leq R} \leqslant \#\left[T_{(}(\omega), T_{L}(\omega)\right]_{c}=2^{l(\omega)-l(\omega)}
$$

proof of PROP: The forward implication (\Rightarrow)
comes from the prefix characterization:

$$
\begin{aligned}
& \left.u s_{R} w \Rightarrow \begin{array}{l}
u=s_{1} s_{2} \cdots s_{k} \\
\omega=s_{1} s_{2} \cdots s_{k} s_{k+1} \ldots s_{l}
\end{array}\right\} \text { reduced } \\
& \Rightarrow T_{L}(\omega) \subset T_{L}(\omega)=\left\{\begin{array}{c}
\text { palindromes } \\
i=1,2, \cdots, \\
s_{1}, \cdots s_{i} \cdots \\
\left\{_{2} s_{0}\right.
\end{array}\right\} \\
& i=1,2,-l
\end{aligned}
$$

For the backward implication (\Rightarrow), assume $T_{L}(a) \subseteq T_{L}(\omega)$
$\left\{s_{1}, s_{1} s_{2_{2}} s_{1},-, s_{1} s_{2}-s_{k}-s_{2} s_{1}\right\}$ for $u=s_{1} s_{2} \cdots s_{k}$ reduced.

Try to show whys a reduced word of for $\omega \stackrel{\left({ }^{(k)}\right)}{=} s_{1} s_{2} \ldots s_{i} s_{1}^{\prime} s_{2}^{\prime} \cdots s_{l(\omega)-i}^{\prime}$ for each $i=0,1,2, \ldots, k$ by induction on i.
BASE CASE: $i=0$ says nothing (w has a reduced word).
INDUCTIVE STEP: Assume true for i.
Note $t_{i+1}=s_{1} s_{2} \ldots s_{i} s_{i+1} s_{i} \ldots s_{2} s_{1} \in T_{L}(u) \subseteq T_{L}(\omega)$, and $t_{i+1} \neq t_{1}, t_{2}, \ldots, t_{i}$ since $s_{1} s_{2} \ldots s_{k}$ is reduced,
so Strong Exchange applied to $(*)$ shows $t_{i+1}=s_{1} s_{2} \cdots s_{i} s_{1}^{\prime} s_{2}^{\prime} \cdots s_{m}^{\prime} \cdots s_{2}^{\prime} s_{1}^{\prime} s_{i}-s_{2} s_{1}$ for some $m \geqslant 1$.

Then $\omega=t_{i+1}^{2} \cdot \omega=\left(s_{i}-s_{i+1}-\cdots s_{1}\right)\left(s_{1} s_{2}-s_{i} s_{1}^{\prime}-s_{m}^{\prime} \cdots s_{1}^{\prime} s_{i}-s_{2} s_{1}\right) \cdot \omega$

$$
=s_{1} s_{2} \cdots s_{i} s_{i+1} s_{1}^{\prime} s_{2}^{\prime} \cdots \hat{S}_{m}^{\prime} \cdots s_{l(\omega), i}^{\prime}
$$

Understanding intervals $[u, \omega]_{\leq R}$ reduces to $\left[1, \omega^{\prime}\right]_{S_{R}}$:
Proposition: One has a poset isomorphism

$$
\left[1, u^{-1} \omega\right]_{\leq R} \xrightarrow{\sim}[u, \omega]_{S R}
$$

example

$$
\begin{aligned}
& {\left[1, u^{1} \omega\right] } \\
= & {[1234,1432] }
\end{aligned} \quad \begin{gathered}
{[u, w]} \\
=[3124,3421]
\end{gathered}
$$

proof: Assume $u \leq_{R} \omega$. For any $v \in W$, one has

$$
\begin{aligned}
l(\omega) & =l(u)+l\left(u^{-1} w\right)=l(u)+l\left(v \cdot v^{-1} u^{-1} \omega\right) \\
& \leq l(u)+l(v)+l\left(v^{-1} u^{-1} \omega\right) \geq l(u v)+l\left(v^{-1} u^{-1} \omega\right) \geq l(\omega)
\end{aligned}
$$

Now note

Thelatfice property, and consequences
Unlike Brnhat order \leq, when W is infinite, weak Bunhat s_{R} is never directed:

ExAMPLE

$$
\begin{aligned}
W & =I_{2}(\infty) \\
& =W\left(\begin{array}{lll}
(0) \\
s_{1} & s_{2} \\
s_{2}
\end{array}\right)
\end{aligned}
$$

Why "never"? If $S=\left\{s_{1}, s_{2},, s_{n}\right\}$ have an upper bound $w \geq_{R} s_{1}, s_{2}, \ldots, s_{n}$ then $D_{L}(\omega)=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}=S \Rightarrow \begin{gathered}\text { an old prop }\end{gathered} \Rightarrow \omega=\omega_{0}$ and W is finite.

Nevertheless, \leq_{R} does always have meets $x \wedge y:=$ greatest lower bound of x, y and even oo meets $\triangle A:=$ greatest lower bound of all $a \in A$

PROPOSITION:
(c) For any Cox sys. (w,s)
and any $x, y \in W$, the meet way exists in \leq_{R} Consequently,
(b) \leq_{R} is a complete meet-semilattice, i.e. all meets $N A$ exist $\forall A \subseteq W$
(c) When A has an upper bound, the join VA: least upper bound alway exists.
(d) In particular, if W is finite, s_{R} is a lattice (meets \mathcal{O}, joins V exist)
 proof: First show $(a) \Rightarrow(b) \Rightarrow(c) \Rightarrow(d)$. Given (a), then if $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ one has $\wedge A=\left(\left(a^{\left(a_{1} \wedge a_{2}\right.}\right) \wedge a_{3}\right) \wedge a_{4} \ldots$.
weakly shorter

$$
{\underset{c}{\text { and }}}_{\text {weak shorter }}^{\text {than } a_{3}} . . .
$$

and it must terminate since $l(\omega) \in \mathbb{N}$
So (b) follows.

Then (b) $\Rightarrow(c)$ since $V A=\lambda\{$ upper bounds $\}$
and $(c) \Rightarrow(d)$ since when W is five, ω_{0} is an upper bound $\forall A \subseteq W$.

To prove (ω), show ray exists by induction on $l(x)$.
BASE CASE: The set

$L:=\left\{\begin{array}{c}\text { common lower-bounds } \\ z S_{R} x, y\end{array}\right.$
contains no $s \in S$. (e.g. if $l(x)=0$)
Then $1=x \wedge y$.
INDUCTIVE STEP: L contains some $s \in S$.
Weill show any $z \in L$ of maximum length has $z=x \wedge y$.
First we claim $s \leq_{R} x, y \Rightarrow s \leq_{R} z$:
otherwise $s z>z$ and if we start with
$z=s_{1} \cdots s_{k}$ reduced
$\left.\begin{array}{l}x=s_{1} \cdots s_{k} s_{1}^{\prime}-\delta_{l}^{\prime} \text { reduced } \\ y=\delta_{1} \cdots s_{k} s_{1}^{\prime \prime} \cdots s_{m}^{\prime \prime} \text { reduced }\end{array}\right\}$ since $z \leq_{k} x_{1} y$

Prong
tex range
so $s z=s s_{1}-s_{k} s_{R} x, y \Rightarrow s z \in E$, contradiction.

Given $w \in L-\{1\}$ ，wart to show $w \leq_{R} z$ ．
Pick any se with sur＜ω

$$
\text { i.e. } s \leq_{R} \omega \Rightarrow s \leq_{R} x, y \underset{\substack{\text { by above } \\ \text { discussion }}}{\Rightarrow} s \leq_{R} z
$$

Now cre＇ll repeatedly use a ＂Liffing－like＂FACT：If $\delta E S$ has $\begin{aligned} & s u<u \\ & s w<w\end{aligned}$ then

$$
u \leq_{R} \omega \Longleftrightarrow \operatorname{su} \leq_{R} s \omega
$$

proof：

Let $z^{\prime}:=s x \wedge s y$ ，which exists by induction

$$
(l(s x)<\ell(x))
$$

Then
Also，$z^{\prime} \leq_{R} s x, s y$ \triangle FACT

$$
s z^{\prime} \leqslant_{R} x, y
$$

』

$$
s z^{\prime} \in L
$$

$$
l\left(s z^{\prime}\right) \leq l(z)
$$

So $s z E_{R} z^{\prime}$ and $l(s z)=l(z)-1$ 约 $l\left(s z^{\prime}\right)-1=l\left(z^{\prime}\right)$ ．
Hence $s z=z^{\prime}$ ．But $s \omega^{2} \leq_{R} z^{\prime}=s z \stackrel{\text { FACT }}{\Rightarrow} \omega S_{R} z$ ．

The lattice property has some nice consequences.
THEOREM (word Properly B-B Tum 3.3.1)
(i) Freng expression $w=s_{1} s_{2}--s_{q}$ can be transformed to a reduced expression by a sequence of nit-moves and braid moves

$$
\begin{array}{cc}
\text { nil-moves } & \text { and minctetters } \\
\ldots s_{i} s_{i} \ldots . . & \ldots . . s_{i} s_{j} s_{i} s_{j} s_{i} \\
\left\{\begin{array}{c}
\ldots . . . \\
\ldots
\end{array}\right. & \{
\end{array}
$$

(ii) Any 2 reduced expressions for w can be connected by a sequence of braid moves.
proof: Prove (ii) first, by induction on $q=l(\omega)$.

$$
\left.=s_{1}^{\prime} s_{2}^{\prime} \ldots-s_{k}^{\prime}\right\} \text { applied } t
$$

If $s_{1}=s_{1}^{\prime}$, were done by induction applied to $s_{1} w$.
Othemise $s_{1} \neq s_{1}^{\prime}$ and $S_{1,} s_{1}^{\prime} \leq_{R} \omega \Rightarrow \omega_{0}\left(W_{\left[s_{1}, s_{1}^{\prime}\right.}\right)=s_{1} v s_{1}^{\prime} \leq{ }_{2} \omega$.
So can write $\omega=s_{1} s_{2} \cdots s_{k}$) comm. by induction

$$
\begin{aligned}
& =\left(s_{1} s_{1}^{\prime} s_{1}^{\prime}-s_{1}^{\prime}\right) s_{1}^{\prime \prime} s_{2}^{\prime \prime} \cdots s_{t}^{\prime \prime} \\
& \left.=\left(s_{1}^{\prime} s_{1} s_{1}^{\prime} \cdots s_{1}\right) s_{1}^{\prime \prime} s_{2}^{\prime \prime}-\cdots s_{t}^{\prime \prime \prime}\right) \text { conn by a brad move } \\
& =s_{1}^{\prime} s_{2}^{\prime} \cdots s_{k}^{\prime} \quad \text { by induction }
\end{aligned}
$$

Picture:

Now prove (i) byinduction on q in $\omega=S_{1} S_{2} \cdots s_{1}$.
If not reduced, so $q>l(\Delta)$, find smallest i such chat

$s_{i} s_{i+1} \cdots-s_{v i} 1 s_{i} \longleftarrow$ not reduced
By Exchange Property $s_{i+1}-s_{q-1} s_{q}=s_{i} s_{i+1}-s_{j} \cdots s_{q}-s_{q}$
for some j with $i+1 \leq j \leq q$, and these two reduced words are connected by braid moves using (ii).
Hence $w=s_{1} \cdots s_{i} s_{i+1} \cdots \cdots \cdots s_{q}$) conn. by braid

$$
\begin{aligned}
& s_{1}-\cdots s_{i} s_{i} s_{i+1}-\hat{s}_{j}-s_{q}^{b} \\
& s_{i}-s_{i-1} \quad s_{i+1}-\hat{s}_{j}-s_{q} \leftarrow \text { nil-move } \begin{array}{l}
\text { shorter, so } \\
\text { done by ndeneto } 0
\end{array}
\end{aligned}
$$ done by induction

Here's a topological Möbins function consequence. COROUARY: For any Cox. sys. (W, S) and $u \leqslant_{R} \omega$, $\binom{B-B \operatorname{Thm}_{3} 3.2 .7}{$ or 3.2 .8}

$$
\begin{aligned}
& \Delta(u, \omega)_{\leq R} \underset{\substack{\text { nomotapy } \\
\text { equivalent }}}{\approx} \begin{cases}S^{\# J}-2 & \text { if } u^{-1} \omega=\omega_{0}\left(W_{J}\right) \\
\text { apoint some } J S S & \text { othenise }\end{cases} \\
& \text { (contradible) othenwise }
\end{aligned}
$$

and hence $\mu(u, \omega)=\left\{\begin{array}{cc}(-1)^{\# J-2} & \text { if } u^{\prime \prime} \omega=\omega_{0}\left(W_{J}\right) \\ 0 & \text { othemise }\end{array}\right.$
REMARK: We know $[u, \omega]_{\leq R} \cong\left[1, u^{-1} \omega\right]_{\leq R}$,
so WLOG $u=1$ anyway incturking aboul this!
EXAMPLE: $\omega_{0}+1$
$I_{2}(4) 0$ s. $S_{1} S_{1} s_{S_{1}}^{2} s_{2} 0$
$\operatorname{lin}_{1-2} \sim s_{1}=w_{0}\left(W_{J}\right)$ for
$\Delta\left(1, s_{1}\right)=\{\phi\} \cong \mathbb{S}^{1-2}=\mathbb{S}^{-1} \quad \begin{aligned} & 0 \\ & \quad\end{aligned} \quad \| J=1$
$s_{R} \begin{array}{ccc}0 & s_{1} s_{2} & s_{2} s_{1} 0 \\ -1 & s_{1} & s_{2}-1 \\ & 1+1\end{array}$
$\Delta\left(1, s_{1} s_{2} s_{1}\right)=\int_{5} \approx$ point, contractible
$\mu(1, \omega)$ labeled

sketdy: As montioned eartier, WLOG $u=1$.
On the open interval $P:=(1, \omega)_{\leq R}$ the $\operatorname{map} P \xrightarrow{f} P$

$$
x \longmapsto \bigvee_{\substack{s \in S \\ s \leq_{R} x}} s
$$

gives a (co-)closure operator on the poset P :
DET'N: (a) f is order-presening: $x \leq y \Rightarrow f(x) \leq f(y)$
(b) $f(x) \geqslant x \quad \forall x \in P$
(c) $f^{2}=f$ i.e. $f(f(x))=f(x)$
(all 3 of $(a),(b),(c)$ are easy to check herc)
(Topological poset)
\rightarrow LEMMA: For any w-closure map $f: P \rightarrow P$ F-B on a poset, one has a homotopy equinalence A.2.3.2

$$
\underbrace{\Delta f(P)}_{=\operatorname{im}(f)} \approx \Delta P
$$

(and even a strong deformation retraction

$$
\Delta f(P) c \Delta P)
$$

Why does this help?
If $\omega=\omega_{0}\left(W_{J}\right)$ then

$$
f(P)=\text { subposet of } s_{R} \text { on }\left\{\omega_{0}\left(W_{K}\right)\right\}_{\phi \nsubseteq K \varsubsetneqq} J
$$

$\cong(\phi, J)$ inside Boolean algebra 2^{J}

$$
\text { and } \Delta f(P) \cong \Delta(\phi, J) \cong \underset{\text { barycentric }}{\text { subdivision }} \cong \Phi^{\# J-2}
$$ subdivision

of bounden of simplex with vertex set J

If $\omega_{0} \neq \omega_{0}\left(W_{J}\right)$ then
$f(p)$ has $w_{0}\left(W_{J}\right)$ where $J:=\left\{s \in S: s \leq R_{D} \omega\right.$ as a top element, and $\Delta f(P)$ is a cone, so contractible.

EXAMPLES (i) $I_{2}(4)$
The map f on $\left[1, \omega_{0}\right]$ is shown

$$
P=\left(1, \omega_{0}\right) \xrightarrow{f} f(P)
$$

(2) $W=G_{1}=W\left(\begin{array}{lll}-s_{1} & s_{2} & \xi_{3}\end{array}\right)$

$$
\Delta\left(1, \omega_{0}\right) \approx \Delta f(p)
$$

f(p) circled

IIS baycantric subdurision
of boundayy of

gives a cone vertex

Coming back to that ...
(Topological post)
\rightarrow LEMMA: For any w-closure map $f: P \rightarrow P$
FB on a poset, one has a homotopy equivalence
A.2.3.2

$$
\underbrace{\Delta f(P)}_{=\operatorname{im}(f)} \approx \Delta P
$$

(and even a strong deformation retraction

$$
\Delta f(P) c \Delta P)
$$

sketch

and the map $P \xrightarrow{ } f(P)$
are both order-presenving, so they give
simplicial maps

$$
\begin{aligned}
& \Delta f(P) \xrightarrow{i} \Delta P \\
& \Delta P \xrightarrow{f} \Delta f(P)
\end{aligned}
$$

The composites $f(P) \stackrel{i}{\longrightarrow} P \xrightarrow{f} f(P)$ have $f \circ i=1_{f(P)}$

$$
P \xrightarrow{f} f(P) \stackrel{i}{\hookrightarrow} P \quad \text { io f } \leq 1_{P}
$$

and post maps $f, g: P \rightarrow Q$ having $f \leq g$ are always homotopic. So fo i=1 $1_{\Delta f(P)}$, oof $\approx 1_{\Delta P}$.
This makes i a deformation retraction

