Invariant Theory (Humphreys Chap. 3)
His a classical topic.
We'll focus on finite groups
$$G = GL(C) = GL(V)$$

 $V = C^{n}$
C-basis e.,-,en

as they act on
$$\mathbb{C}[x_1, \underline{x}_n] = : \mathbb{C}[\underline{x}]$$
 polynomial

Via linear substitutions: for $g\in G$, $g(f(x)) := f(\tilde{g}'x)$. Want to study, describe the *G*-invariant subring $\mathbb{C}[x]^G := \{f(x) \in \mathbb{C}[x]\} : g(f(x)) = f(x) \forall g \in G\}$

shall
proof:
$$\mathbb{C}[x] = \mathbb{C} \mathbb{C}[x]_{d} = \mathbb{C} \oplus \mathbb{C}[x]_{1} \oplus \mathbb{C}[x]_{2} \oplus \dots$$

 U
 $\mathbb{C}[x]^{\mathbb{C}_{n}} \oplus \mathbb{C}[x]_{d}$
 $\mathbb{L}^{\mathbb{C}_{n}} \oplus \mathbb{C}[x]_{d}$
 $\mathbb{L}^{\mathbb{C}_{n} \oplus \mathbb{C}[x]_{d}$
 \mathbb{L}^{\mathbb

(2) Similarly, not too hard to show

$$G(d,1,n) = \{n_{xx}, monomial \\ metrics with nonzero entries in 11\} \subset GLn(C)$$

 $dels' fde2 (d,1,n) = C[x]G(d,1,n) = C[e_1(x_1, -x_n), g(x_1, -x_n)] = C[e_1(x_1, -x_n)$

$$(3) G = \left\langle e_{1} \begin{bmatrix} e_{2} \\ 0 - 1 \end{bmatrix} \right\rangle \cong \mathbb{Z}/2\mathbb{Z}$$

$$(3) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 - 1 \end{bmatrix} \right\rangle \cong \mathbb{Z}/2\mathbb{Z}$$

$$(3) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 - 1 \end{bmatrix} \right\rangle \cong \mathbb{Z}/2\mathbb{Z}$$

$$(3) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 - 1 \end{bmatrix} \right\rangle$$

$$(3) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 - 1 \end{bmatrix} \right\rangle$$

$$(3) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 - 1 \end{bmatrix} \right\rangle$$

$$(3) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 - 1 \end{bmatrix} \right\rangle$$

$$(3) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 - 1 \end{bmatrix} \right\rangle$$

$$(3) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 - 1 \end{bmatrix} \right\rangle$$

$$(3) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 - 1 \end{bmatrix} \right\rangle$$

$$(3) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 - 1 \end{bmatrix} \right\rangle$$

$$(3) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 - 1 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(3) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

$$(4) G = \left\langle e_{1} \begin{bmatrix} -4 & 0 \\ 0 \end{bmatrix} \right\rangle$$

PROPOSITION: For any finite group $G \in GL_{n}(\mathbb{C})$, $\mathbb{C}[x]^{G}$ is at least finitely general as an algebra over \mathbb{C} by any $f_{1}, f_{2}, \dots, f_{m}$ in $\mathbb{C}[x]^{G}$ generating the Hilbert ideal $I := (\mathbb{C}[x]^{G}_{+}) \subset \mathbb{C}[x]$ $\mathbb{C}[x]^{G}_{+} \otimes \mathbb{C}[x]^{G}_{+} \otimes \dots$

The proof is easy, and uses an important recurring idea ve've seen: averaging over G DEF: N: In any finite-dimit G-repin U over C, the averageng/Reynolds operator $\mathcal{U} \xrightarrow{T_{G}} \mathcal{U}$ $u \mapsto \mathcal{T}_{G}(u) := \frac{1}{|G|} \sum_{g \in G} g(u)$ is an idempotent projection onto the G-fixed \mathcal{U}_{g}^{G} $\mathcal{T}_{G}^{2} = \mathcal{T}_{G}$

It still makes sense acting $\mathbb{C}[x] \xrightarrow{T_G} \mathbb{C}[x]$ (since each O(x) is finitie-dimil), and it is C(x) - linear there: if fec(x), hec(x) then $\pi_{\mathcal{C}}(fh) = \pi_{\mathcal{C}}(f) \pi_{\mathcal{C}}(h) = f \cdot \pi_{\mathcal{C}}(h)$.

pool of PROP: Show every homogoneous f & C[x]G lies nothe C-subalgebra genid by f1,_,fm via induction on d.

BASE CASE doo. Then $\mathbb{C}[\underline{\times}]_{0}^{G} = \mathbb{C}$, so done.

INDUCTIVE STEP
$$d \ge 1$$
.
Since $f \in C[\ge]_{d}^{G} \subset I = (C[\ge]_{d}^{G}) = (f_{1}, f_{2}, ..., f_{m})$
can write $f = \sum_{i=1}^{m} f_{i} h_{i}$ where $h_{i} \in C[\ge]_{d-deg}(f_{i})$
 $\begin{cases} apply T_{G} \\ f = T_{G}(f) = \sum_{i=1}^{m} T_{C}(f_{i}h_{i}) = \sum_{i=1}^{m} f_{i} T_{G}(h_{i})$
lies in
 $C[\ge]_{d-deg}(f_{i}),$
so already in
the subalgebra genid
by reduction
 $= f$ lies in this subalgebra.

PROPOSITION: The number not Galgebra generators fr, fin for Cl×JG satisfies M≥n, with equality ⇐> they're alg. independent, so C(×JG ≅ C(fr, -, fn) a polynomial ring. Toprore this, either one uses ring theory of Kull dimension and integral ingertensions, or some field theory ideas...

{fi,_,fin} generating C[z]G as a C-algebra => Frac(([x]G) = C(f1,f2,-,fn) as a field extension /C C field of fractions := { p(x) : p, q f ((x)⁶, q=0) But the inclusion $\operatorname{Trac}(\mathbb{C}[x]^G) \subseteq \mathbb{C}(\underline{x})^G \operatorname{Trg}(q(\underline{x}))$ is actually an equality: given $\frac{p(\underline{x})}{q(\underline{x})} \in \mathbb{O}(\underline{x})^G$, rewrite it as $\frac{p(\underline{x}) \cdot qeG}{q\neq 1}$ $q(\underline{y}) \cdot \operatorname{Trg}(q(\underline{x}))$ $\neq q(x) \cdot \prod_{g \in G} q(x)$ denominator is G-invoriant, hence so is $\in \operatorname{Frac}(\mathbb{C}[x]^G)$ numerator Also the field extension $C(x)^{6} \subset C(x)$ is a finite algebraic Galois extension vith Galois group Gr (by Galois Theory). Hence we have $\mathbb{C}(\underline{x}) = \mathbb{C}(\underline{x}_{1,\dots,n}, \underline{x}_{n})$ \rightarrow + $i_{1}, ..., f_{m}$ contins a algebraic omscendence. busis for Q(x) over C, somen $\mathbb{C}(\underline{x})^{\mathsf{Si}} = \mathbb{C}(\mathsf{f}_{\mathsf{N}}, \mathsf{L}, \mathsf{f}_{\mathsf{N}})$ and equality => alg. independence

One reason Shephard & Todd produced their 1955
classification of complex refin groups
$$G \subset GL(V)$$
, $V = C^n$
acting inveducitly (= $G(d,e,n) + 34 e \times ceptronal groups$)
was to prove the backward mydication here.

(Shephind-Todd/Chamlley)
THEOREM: A finite subgroup
$$G \subset GL_n(\mathbb{C})$$
 has
 $\mathbb{C}[\underline{x}]^G = \mathbb{C}[f_1, f_n]$ a polynomial ring
 $\iff G$ is a complex refin group

The refin ideas of (i) =>(ii) are in the prot
of that Humphreys calls...
THE KEY LEMMA:
Assume
$$f_{1}h_{1}+...+f_{1}h_{1}h_{2}=0$$
 for some $f_{i}\in C[x]^{G_{1}}$
 $h_{i}\in C[x]$
all homogeneous, and $f_{i}\notin (f_{2},...,f_{m}) C[x]^{G_{1}}$.
Then $h_{i}\in I:= (C[x]_{+}^{G_{1}}) C[x] = the Hilbert ideal.proof: Induct on deg(he).These $h_{i}\in I:= (C[x]_{+}^{G_{1}}) C[x] = the Hilbert ideal.$
 $proof: Induct on deg(he).$
That $f_{i}=-c^{i}(f_{2}h_{2}+...+f_{in}h_{m})$
 $iso f_{i}=-c^{i}(f_{2}h_{2}+...+f_{in}h_{m})$
 $f_{i}=\pi^{G}(f_{i})=-c^{i}(f_{1}\pi_{c}(h_{2})+...+f_{in}\pi_{G}(h_{m})) \in (f_{2},..,f_{m}) C[x]^{G_{1}}$
(NDUCENCE STEP: deg(h_{i}) \ge 1.
We make use of the apportant BGG operators
for each reflection se Gi, with reflecting
hyperplane $H = \ker I_{H}(x)$ for some $I_{H}(x)=c_{i}x_{i}-a_{i}x_{i}$.
 $CLAIM: Every h(x) \in C[x]$
has $h-s(h)$ vanishing on H ,
and hence I_{H} divides $h-s(h)$ in $C[x]:$$

¥ veft one has (h-s(h))(v) = h(v) - h(s'v) = h(v) - h(v) = 0.
The divisibility is easier to see if one
changes basis X₁, -, X_n in V* so that lu(x) = X₁
i.e H = { X₁=0} and s =
$$\begin{bmatrix} S_{1} & 0\\ 0 & \ddots & 1 \end{bmatrix}$$

Tor any f(x) ∈ C(x] vanishing on H= {X₁=0},
then writing f(x) = X₁f(x) + f(X_2, X_3, -, X_n)
shows f(X_3, -, X_n) vanishes ¥ X₂, -, X_n ∈ Cⁿ⁻¹ = f=0.
The BGG operator for refine s is
C(x) = $\frac{X_3}{R_1(x)}$ and note it } lowers degree by 1
is C(x) = -linear
EXAMPLE G= G_3 acting on C(X₁, X₂, X₃)
and s = (12) has
A₁(X₃, X₃) = $\frac{X_1^3 X_2^3 X_3^5}{X_1 - X_2} = \frac{X_1^3 X_2^3 X_3^5 - X_1^3 X_3^2 X_3^5}{X_1 - X_2}$

Now in the inductive step where
$$\sum_{i=1}^{m} f_i h_i = 0$$
 with deg[h]zi,
apply Δ_s to conclude $\sum_{i=1}^{m} f_i \Delta_s[h_i] = 0$,
and hence $\Delta_s(h_g) \in I = (C[x_1]^2)_{C[x_1]}$ by induction.
 $h_g - s(h_g)$ If $h_i - s(h_i) \in l_g \cdot I = I$ therefore see
 $h_i = s(h_i)$ in $C[x_1]/I$ therefore see
 $h_i = g(h_g)$ in $C[x_1]/I$ therefore see
 $h_i = g(h_g)$ in $C[x_1]/I$ therefore see
 $h_i = \frac{1}{|G|} \sum_{g \in G} g(h_g)$ in $C[x_1]/I$
 $h_i \in I$ If $h_i \in I$ If If I If $h_i \in I$ If

REMARK: Once one has this ker LEMMA, one can pretty quickly show that any h1,--,hm lifting a O-basis for O[x]/I give a free basis for O[x] as a free O[x]^G-module; see Springer's lem 4.2.8

This implication.
(ii)
$$C[x]$$
 is a free $C[x]^{G}$ -module with finite basis.
(iii) $C[x]^{G} = C[f_{1,...,f_{n}}]$ for alg. indep. homogeneous
is a case of a purely comm. alg. statement:
comm. ALG. LEMMA: (Sprager 4.2.10)
Whenever $C[x_{1,...,x_{n}}]$ is a free R-module of finite rank
over some C-subalgebra $R \subset C[x]$, then
 $R = C[f_{1,...,f_{n}}]$ for alg. indep. homog. fi...fn.
The proof is elementary, but rather bicky,
and at some point calls on a cute leasy) fact:
EULER'S (EMMA:
If $h(x) \in C[x]$ is homog. of degree d,
then $\sum_{i=1}^{n} x_i \frac{\partial h}{\partial x_i} = d \cdot h(x)$
proof: (heck it when $h(x) = x_1^{i_1} x_2^{i_2} \cdots x_n$ is a monomial.
Remark: The map $C[x] \longrightarrow C[x]$
 $h(x) \mapsto C[x] \longrightarrow C[x]$
is ometimes called the future demotion.

The implication.
(ii)
$$C[x]^G = C[f_{1,...,f_n}]$$
 for alg. indep. homogeneous
is rather fun, and starts like this...
Assuming $C[x]^G = C[f_{1,...,f_n}]$ for alg. indep. homog. fi
varie their degrees $d_1 \leq d_2 \leq ... \leq d_n$
Let $\hat{G}_1 :=$ the subgroup of GI genid by all refins in G_1
so \hat{G}_1 is a complex refin group, and by $(i) = p(i) = p(ii)$
already proven, $C[x]^G = C[\hat{f}_{1,...,f_n}]$ for alg. indep. homog. fi
whose degrees we name $d_1 \leq d_2 \leq ... \leq d_n$.
PROP: In this setting, $d_1 \leq d_1$, $d_2 \leq d_2 \leq ... \leq d_n$.
proof: One has $C[x]^G = C[x]^G$
 $C[f_{1,...,f_n}]$ $C[\hat{f}_{1,...,f_n}]$
so $\exists (unique)$ provenials $F_{1,...,f_n} = C[T_{1,...,T_n}]$
expressing $f_1 = P_1(\hat{f}_{1,...,f_n})$ for $l=1,2,...,n$,
and whenever the variable T_j appears in $F_2(T_{1,...,T_n})$

this means $d_{j} \ge \hat{d}_{j}$.

Note that for each
$$i=1,2,...,n$$
, one cannot
have $\{f_{n}, f_{2}, ..., f_{i}\} \subset \mathbb{C}[\hat{f}_{n}, \hat{f}_{2}, ..., \hat{f}_{i-1}]$
else $\{f_{n}, f_{2}, ..., f_{i}\}$ could not be alg. indep.
Hence \exists some f_{n} with $l \leq i$
whose F_{n} has one of $T_{i}, T_{i}n, ..., T_{n}$ appearing,
say T_{j} with $j \geq i$.
This means $d_{i} \geq d_{i} \geq \hat{d}_{j} \geq \hat{d}_{i}$

We'll then finish it off with an easy consequence of
Molien's Theorem (proven below):
(st numerology) For a complex refingroup GI,
(proposition) For a complex refingroup GI,
with
$$C[x]^G = C[f_{1,2}, f_n]$$
 homog. of degrees $d_{1,2}, d_n$
one has (a) $|G| = d_1 d_2 - d_n$
(b) # refins in $G = \sum_{i=1}^{n} (d_i - i)$

EXAMPLE
Recall
$$\mathbb{O}[\underline{x}]^{G(d,1,n)} = \mathbb{O}[e_1(\underline{x}^d), e_2(\underline{x}^d), \dots, e_n(\underline{x}^d)]$$

degrees: $d ed \dots nd$
 $\overset{"}{d_1} \leq \overset{"}{d_2} \leq \dots \leq \overset{"}{d_n}$
Note $[G(d,1,n)] = d^n \cdot n! = d \cdot 2d \cdot 3d \dots nd \sqrt{d_n}$
therefore nonzero d_1^n (choose the permutation "shepe"
eddies in d_1^n (choose the permutation "shepe"
eddies in d_1^n $\overset{GO}{=}_{g\neq 1} : ge^{d_1^n} \int + \# \left\{ \begin{bmatrix} 1 & 0 & g^n \\ g \in g^n \end{bmatrix} : ge^{d_1^n} \right\}$
 $= (d-1) \cdot n + {n \choose 2} d = {n+1 \choose 2} d - n$
 $= (d-1) + (2d-1) + \dots + (nd-1) \sqrt{d_n^n}$

Why does this finish off
$$(iii) \Rightarrow (i)$$
?
Recall we want to show the inclusion $\hat{G} \leq G$ is quality.
Note G, \hat{G} have the same set of refins,
so part (b) and $\hat{d}_i \leq d_i \Rightarrow \hat{d}_i = d_i \forall i$.
Then part (a) $\Rightarrow |\hat{G}| = |G|$,
so $G = \hat{G}$, a refin group \mathbb{Z}

$$\frac{\text{Molien's THEOREM (1897)}}{\text{numerical group of GLn(C)}} = \frac{\text{numerical group of GLn(C)}}{\text{numerical group of GLn(C)}}$$

acting on $\mathbb{C}[x] = \mathbb{C}[x_{1,3}, ..., x_n]$ as before,
the invariant ing $\mathbb{C}[x]^G$ has Hilbert series
Hilb($\mathbb{C}[x]^G$, q) $\stackrel{\text{DEF'N}}{=} \sum_{d=0}^{\infty} q^d dm(\mathbb{C}[x]^G)$
computable by another average over G:
Hilb($\mathbb{C}[x]^G$, q) = $\frac{1}{[G]} \sum_{g \in G} \frac{1}{\det[(I_n - q; q)]}$
EXAMPLE: $G = G_2$ acting on $\mathbb{C}[x_1x_3]$
has $\mathbb{C}[x_1x_3]^{G_2} = \mathbb{C}[e_1,e_3]$
=> Hilb($\mathbb{C}[x]^{G_2}$, q) = $(1+q^1+g^2+\dots)(1+g^2+(g^2)^2+\dots) = (\frac{1}{(1-g^2)(1-g^2)})$
while Molien says
Hilb($\mathbb{C}[x]^{G_2}$, q) = $\frac{1}{2!} \left[\frac{1}{\det[\frac{1}{3} - g[\frac{1}{3}]} \right] = \frac{1}{2} \left[\frac{1}{(1-g^2)^2} + \frac{1}{(1-g^2)} \right]$
= $\frac{1}{2[\frac{1}{\det[\frac{1}{3} + g^2]} + \frac{1}{\det[\frac{1}{3} + g^2]} \right] = \frac{1}{2[\frac{1}{(1-g^2)^2} + \frac{1}{(1-g^2)}]}$

proof of Malien's Thm:
Let's interpret each term det
$$(I_n - g \cdot g)$$
 as a graded tare.
Change the C-basis $\chi_{1,3-,\chi_n}$ for V^* as g acts
triangularly with eigenvalues $n_{1,3-,\chi_n}$:
 $g = \prod_{k=1}^{\chi_1} \prod_{k=1}^{\chi_2} \prod_{k=1}^{\chi_1} \prod_{k=1}^{\chi_2} \prod_{k=1}^{\chi_2}$

Now recall ...
Exercise: For any fin. dim'l G-repin U
one has dim
$$(U^G) = Trace (U - T_G M)$$
,
because $T_G^2 = T_G$ shows $U = Tm(T_G) \oplus ker(T_G)$
i.e. $T_G = u^G \left(\begin{array}{c} u^G & ker(T_G) \\ \hline 0 & 1 \end{array} \right)^{1-eigenspace} & 0-eigenspace$
i.e. $T_G = u^G \left(\begin{array}{c} 0 & 1 \\ \hline 0 & 1 \end{array} \right)^{1-eigenspace} & 0-eigenspace$
Hence $Hilb((Ux)^G, g) = \sum_{d=0}^{\infty} g^d \cdot kin_C (Ux)_d^G$
 $= \sum_{d=0}^{\infty} g^d \cdot Trace (Ux)_d - C(x)_d$
 $Trace(T_G) = \frac{1}{|G|} \sum_{g \in G} \int_{d=0}^{\infty} f^A \cdot Trace (Ux)_d - C(x)_d$
 $= \frac{1}{|G|} \sum_{g \in G} \int_{d=0}^{\infty} det(T_n g, g)$

Now let's use it to prove ... (proposition) For a complex refingroup GI, with $C[x]^G = C[f_1, f_n]$ homog. of degrees d_1, d_n one has (a) $|G| = d_1 d_2 - - d_n$ (b) $\# refins in G = \sum_{i=1}^{n} (d_i - i)$ proof: Compare 2 expressions for Hilb ([]x], g): $\frac{1}{\left[G\right]} \underbrace{\sum_{g \in G} \frac{1}{\det(I_n - q, q)}}_{from Molien} = \underbrace{\left(I - q^{d_1}\right) \cdots \left(I - q^{d_n}\right)}_{from C[x]^G = C[f_1, -f_n]}$ $= \frac{1}{164} \frac{1}{966} \frac{1}{(1-9\lambda_1(9))\cdots(1-9\lambda_n(9))}$ if g has eigenvalues $\lambda_1(g), ..., \lambda_n(g)$ $= \frac{1}{|G|} \left(\frac{1}{(1-q)^n} + \frac{\sum}{\operatorname{refins}} \frac{1}{(1-q)^{n-1}(1-q)^{n-1}(1-q)^{n-2}} \right)$ seg where flg) has no pole at g=1. 3 muit. bothsides by (⊢g)ⁿ

$$\frac{1}{|G|} \left(1 + \sum_{\substack{r \in I \text{ ins } i - q \\ s \in G}} \frac{1 - q}{1 - q} \cdot det(s) + (t - q)^2 f(q_i) \right)_{i=1}^{(k)} \prod_{\substack{i=1 \\ i=1 \\ i - q}}^{i - q} \frac{1 - q}{1 - q} \cdot det(s)} \prod_{\substack{i=1 \\ i=1 \\ i - q}}^{i - q} \frac{1 - q}{1 - q} \cdot det(s)} \prod_{\substack{i=1 \\ i=1 \\ i=1$$

Since
$$|G| = d_1 d_2 - d_n$$
, this means

$$\sum_{\substack{i=1\\refns}} \frac{1}{1-det(s)} = \sum_{\substack{i=1\\i=1}}^{n} \frac{d_i-1}{2}$$

$$\sum_{\substack{i=1\\i=1}}^{n} \frac{d_i}{2} = \frac{1-det(s)}{1-det(s)} + \frac{1-det(s)}{1-det(s)} = \frac{2-(det(s)+det(s'))}{1-(det(s))+det(s')+1} = 1$$

$$\frac{d_i}{det(s')} = \frac{1-det(s')+1-det(s)}{1-(det(s))+det(s')+1} = 1$$

$$\frac{d_i}{det(s')} = \frac{2-(det(s)+det(s'))}{1-(det(s))+det(s')+1} = 1$$

REMARK: The (iii) => (i) proof via Molien & generating functions was all in the Shephards Todd 1955 paper.