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One reason Shephard Toddproducedtheir 1955
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Chevalley 1955 then gave a classification freeproof
of the backward implication
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1SpringerThm4.2.5
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This implication
ii Efx is a freeAle Emodulewithfinitebasis
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Theimplication
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proofof Moliere's Thm
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Now let's use it toprove
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REMARK
The Civil Ii proof via Motion generatingfunctions

was all in the Shephard Todd 1955paper


