Solomon's Theorem \& consequences (Kane $\$ \pi .22)$
Shephard \& Todd (1955) obsewed che following stronger generating function result, but would only prove it oase-by-case viactherr classification; L. Solomon (1963) gave an insightful proof.

Theorem For a \mathbb{C}-refngroup $G \subset \operatorname{Gln}_{n}(\mathbb{C})$
with $\mathbb{C}[x]^{G}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$, one has of degrees: d_{1}, \ldots, d_{n}

Solomon's proof considered G acting on these...

$$
\begin{aligned}
& D E F^{\prime} N: \lambda\left(V^{*}\right)=\Lambda V^{*}=\Lambda\left\langle y_{a},-, y_{n}\right\rangle=: \Lambda\langle\underline{y}\rangle \\
& \text { = exterior algebra on } \\
& \text { a } \mathbb{C} \text {-basis } y_{1}, \rightarrow y_{n} \text { for } V^{*}
\end{aligned}
$$

So $y_{i} \wedge y_{i}=-y_{i} \wedge y_{i}$ anti-commutative and $\Lambda r^{*}=\bigoplus_{k=0}^{n} \underbrace{k} V^{*}$ $k=0$
with \mathbb{C}-basis $:\left\{y_{i} \wedge y_{i_{2}} \wedge \ldots \wedge y_{i_{k}}: 1 \leq i_{1}-<i_{k} \leq n\right\}$

$$
\begin{array}{r}
\text { e.g. } \left.n=3 \quad N y_{1}, y_{2}, y_{3}\right\rangle=\operatorname{span}\left\{1,\left\{\left.\begin{array}{ll}
y_{1}, & y_{1} \wedge y_{2}, \\
y_{3}, & y_{1} \wedge y_{2} \wedge y_{3} \\
y_{1} \wedge y_{3}, \\
y_{3} & y_{2} \wedge y_{3} \\
\lambda^{2} & \wedge^{*} v^{*}
\end{array} \right\rvert\, \wedge^{3} v^{*}\right.\right. \\
\lambda^{*}
\end{array}
$$

Then one also has the superalgebra on v^{*} or polynomial tensor exterior a gebera (or differerital forms)

$$
S\left(V^{*}\right) \otimes_{c} \Lambda V^{*}=\mathbb{C}[x] \otimes_{c} \Lambda\langle y\rangle:=\mathbb{C}\left[x_{1},-y_{n}\right] \otimes_{c} \Lambda\left\langle y_{1},-, y_{n}\right\rangle
$$

$=$ free $\mathbb{C}[x]$-module on $\mathbb{C}(x]$-basis $\left\{y_{i, 1} \wedge \wedge y_{i k}\right.$:

$$
\left.1 \leq i_{1}<\ldots<i_{k} \leq n\right\}
$$

Typical element of $\left.\mathbb{C}[x] \otimes\right|^{k}\langle y\rangle$
is $\sum f_{i_{i-i}-i_{k}}(x) \underbrace{y_{i,} \wedge \ldots y_{i}}_{\text {all this }}$ (onitong \otimes symbol)
call his y_{I} for $I=\left\{i_{1}<\ldots<i_{k}\right\}$

THEDREM When a (GG refin group G with
$\binom{$ Sow mon }{1963} $\mathbb{C}[x]^{G}=\mathbb{C}\left[f, \ldots, f_{n}\right]$
acts on $\mathbb{C}[x] \otimes \wedge\langle y\rangle$ via linear substitutions, the G-muariant subalgebra

$$
\left(\mathbb{C}\left[_{x}\right] \otimes \wedge^{k}\langle y\rangle\right)^{G} \text { is a free } \mathbb{C}[x]^{G} \text {-module }
$$

$$
\text { on basis }\left\{d f_{i_{n}} \wedge \ldots \text {...d } f_{i_{k}}: 1 \leq i_{1}<\ldots<i_{k} \leq n\right\}
$$

where $d f:=\frac{\sum_{D E F N}^{n}}{n} \frac{\partial f}{\partial x_{i}} \otimes y_{i}=\frac{\partial f}{\partial x_{1}} \otimes y_{1}+\ldots+\frac{\partial f}{\partial x_{n}} \otimes y_{n}$.
In other words,

$$
(\mathbb{C}[x] \otimes \Lambda\langle y\rangle)^{G} \cong \underbrace{\wedge_{\mathbb{C}[x]}\left\langle d f_{1}, \ldots, d f_{n}\right\rangle}_{\begin{array}{c}
\text { exterior algebra over } \mathbb{C}[\underline{x}]^{G} \\
\text { on n generators }
\end{array}}
$$

$$
\left.\begin{array}{rl}
\text { EXAMPLE } G=I_{2}(m) & \cong G(m, m, 2) \\
& =\left\{\left[\begin{array}{cc}
c^{k} \\
s^{k} \\
0 & \xi^{-k}
\end{array}\right],\left[\begin{array}{c}
0 \\
\left.\xi^{k}\right\}^{k}
\end{array}\right]: k=0,1, \ldots, m-1\right\}
\end{array}\right\} \begin{aligned}
\operatorname{has} \mathbb{C}[\underline{X}]^{G}=\mathbb{C}[\underbrace{x_{1}^{m}+x_{2}^{m}}_{f_{1}}, \underbrace{\left.x_{1} x_{2}\right]}_{f_{2}}
\end{aligned}
$$

Then $\mathbb{C}[\underline{x}] \otimes \wedge \underline{y}\rangle=$ free $\left.C x_{1}, x_{2}\right]$-module on basis

$$
\left\{1, \quad \begin{array}{c}
y_{1}, \\
y_{2}
\end{array}, y_{1} \wedge y_{2}\right\}
$$

and Solomon's Theorem says $(\mathbb{C}[\underline{x}] \wedge\langle\underline{y}\rangle)^{G}=$ free $\mathbb{C}\left[x_{1}^{m}+x_{2}^{m}, x_{2} x_{2}\right]$-module on basis

$$
\left.\begin{array}{l}
d f_{1} \wedge d f_{2}= \\
m\left(x_{1}^{m-1} y_{1}+x_{2}^{m-1} y_{2}\right) \wedge\left(x_{2} y_{1}+x_{1} y_{2}\right) \\
=m\left(x_{1}^{m} y_{1} \wedge y_{2}+x_{2}^{m} y_{2} \wedge y_{1}\right) \\
=m\left(x_{1}^{m}-x_{2}^{m}\right) y_{1} \wedge y_{2}
\end{array}\right\}
$$

$\mathbb{C}(x)^{G}$-basis for $\left(\mathbb{C}[x] \otimes \mathbb{R}^{2}(\underline{y}\rangle\right)^{G}$

It's useful to track Hilbert series for these objects with separate gradings in $\mathbb{C}[x]$ using a variable of $\lambda\langle\underline{y}\rangle$ using a variable t
So $\mathbb{C}[x] \otimes \Lambda\langle\underline{y}\rangle=\bigoplus_{d, k=0}^{\infty} \mathbb{C}[x]_{d} \otimes \Lambda^{k}\langle\underline{y}\rangle$
has $H_{i}\left[\underline{b}(\mathbb{C}[x] \otimes \wedge\langle y\rangle ; q, t):=\sum_{d, k=0}^{\infty} q^{d} t^{k} \operatorname{dim}_{C} \mathbb{C} \mid \underline{x}\right]_{d} \otimes \wedge^{k}\langle\underline{y}\rangle$

$$
=\underset{x_{n}}{\left(1+q+q^{2}+\ldots\right) \cdots\left(1+q q^{2}+\cdots\right)\left((4 t) \cdots(1-t)=\left(1+q_{1}+g^{2}+\cdots\right)^{2}\left(1+t^{1}\right)^{n}=\frac{(1+t)^{n}}{y_{n} \cdots y_{n}}(1-q)^{n}\right.}
$$

COROLCARY (to Solomon's The.) Ga C-ref.ngrap has

$$
\begin{aligned}
& \text { Hill }\left((\mathbb{C}|x| \otimes \wedge\langle y\rangle)^{G} ; q, t\right)= \\
& \text { Hill }(\mathbb{C}[x], q) \cdot \sum_{k=0}^{n} \sum_{1 \leq i_{1} \ldots i_{k} \leq n} \frac{t q^{d_{i-1}} \cdot t q^{d_{i-1}} \ldots \cdot t q^{d_{i-1}}}{\text { the }(q, t)-\text { monomial }} \\
& \text { backing } \mathbb{C} x^{-9} \text { - basis } \\
& \text { element } \\
& d f_{i, n} \wedge . . . \wedge d f_{i k} \\
& =\frac{\left(1+\operatorname{tq} q^{d_{1}}\right)\left(1+t q^{d_{i}-1}\right) \cdots\left(1+q^{d_{i}-1}\right)}{\left(1-q^{d_{1}}\right)\left(1-q^{d_{2}}\right) \cdots\left(1-q^{d_{n}}\right)}=\prod_{i=1}^{n} \frac{1+t q^{d_{i}-1}}{1-q^{d_{i}}}
\end{aligned}
$$

Example For $G=I_{2}(m) \cong G(m, m, 2)$
with $\left(d_{1}, d_{2}\right)=\left(m_{11}, 2\right)$

$$
\operatorname{Hilb}\left((\mathbb{C}[x] \otimes \wedge\langle y))^{c} ; q, t\right)=\frac{\left(1+q^{\prime \prime}\right)\left(1+t_{q}^{m-1}\right)}{\left(1-q^{2}\right)\left(1-q^{m}\right)} \operatorname{deg}\left(x_{1}^{m}+x_{2}^{\prime \prime}\right)^{\prime \prime} \operatorname{deg}\left(x_{1}, x_{2}\right)
$$

Solomonis The makes magic happen when combined with ...
Super -Molien's THEOREM: For any finite group $G \subset G G_{n}(\theta)$,

$$
\operatorname{Hilb}\left((\mathbb{C}[x] \otimes \lambda|y\rangle)^{G} ; q, t\right)=\frac{1}{|G|} \sum_{g \in G} \frac{\operatorname{det}\left(I_{n}+t \cdot g\right)}{\operatorname{det}\left(I_{n}-q \cdot g\right)}
$$

proof: Same prot as before: if we change basis to have act triangularly on V^{*}, so

$$
\left.\left.g=\begin{array}{lcll}
x_{1} & x_{1} & \lambda_{1} & x_{n} \\
1 & & * \\
x_{n} & 0 & & \lambda_{n}
\end{array}\right] \text { and same on } \begin{array}{llll}
y_{1} & y_{1} & -y_{n} \\
\lambda_{1} & & * \\
y_{n} & & & \\
0 & & \lambda_{n}
\end{array}\right]
$$

then it also acts triangularly on each $\mathbb{C}[\underline{x}]_{d} \otimes \lambda^{k}\langle\underline{y}\rangle$ with eigenvalues $\left\{\lambda_{1} a_{1} \lambda_{n} a_{n}, \lambda_{i_{1}}, a_{i_{2}} \cdots \lambda_{i_{k}}: \begin{array}{l}a_{1}+\ldots+a_{n}=d \\ 1 \leq i_{1}<\ldots i_{k} \leq n\end{array}\right\}$

So can check that the bigraded trace of g

$$
\begin{array}{r}
\sum_{d, k}^{q^{d} t^{k}} \operatorname{Trace}(\mathbb{C} \mid x]_{d} \otimes \wedge^{k}|y| y \\
=\frac{\left(1+t \lambda_{1}\right)-\left(1+t \lambda_{n}\right)}{\left(1-q \lambda_{1}\right)-\left(1-q \lambda_{n}\right)}=\frac{\operatorname{det}\left(I_{n}+t \cdot \bar{g}_{d}\right)}{\operatorname{det}\left(I_{n}-q \cdot \bar{g}^{-1}\right)}
\end{array}
$$

$$
\begin{aligned}
& \text { and then } \\
& H_{i} l(b(\mathbb{C}(x) \circlearrowleft \wedge\langle y\rangle ; q \cdot t)=\frac{1}{|G|} \sum_{g \in G} \frac{\operatorname{det}\left(I_{n}+t \cdot g^{-1}\right)}{\operatorname{det}\left(I_{n}-q \cdot j^{\prime}\right)} \\
&=\frac{1}{|G|} \sum_{g \in G} \frac{\operatorname{det}\left(I_{n}+t \cdot g\right)}{\operatorname{det}\left(I_{n}-q \cdot g\right)} \\
& \text { COROLlARY: } \sum_{g \in G} u \operatorname{dim}\left(V^{g}\right)=\prod_{i=1}^{n}\left(u+\left(d_{i}-1\right)\right)
\end{aligned}
$$

for a \mathbb{C}-rein group G with $\mathbb{C}(x]^{G}=\mathbb{C}\left[f_{1}, \rightarrow f_{n}\right]$ of legs $d_{1}, \ldots, d_{n}=$ proof: Solomon + super-Molien \Longrightarrow

$$
\frac{1}{|G|} \sum_{g \in G} \frac{\operatorname{det}\left(I_{n}+t \cdot g\right)}{\operatorname{det}\left(I_{n}-q \cdot g\right)}=\prod_{i=1}^{n} \frac{1+t q^{d_{i}-1}}{1-q^{d_{i}}}
$$

$\frac{1}{|G|} \sum_{g \in G} \prod_{i=1}^{n} \frac{1+t \lambda_{i}(g)}{1-q \lambda_{i}(g)}$ where g has eigenvalues $\lambda_{1}(g), \lambda_{2}(g), \ldots, \lambda_{n}(g)$

Substitute

$$
t=u(q-q)-q
$$

$$
\begin{aligned}
& \frac{1}{|G|} \sum_{g \in G} \prod_{i=1}^{n} \frac{1+\left(u(1-q-1) \lambda_{i}(g)\right.}{1-q \lambda_{i}(g)}=\prod_{i=1}^{n} \frac{1+(u(1-q)-1) q^{d_{i}-1}}{1-q^{d_{i}}} \\
& \begin{array}{r}
\|<\sim \operatorname{since} \operatorname{dim}_{=\left\{\lambda_{i}(g)=1\right\}}^{\omega} \\
\frac{1}{|G|} \sum_{g \in G}\left(\prod_{\lambda_{i}(g) \neq 1} \frac{1+(u(1-q)-1) \lambda_{i}(g)}{1-q \lambda_{i}(g)}\right)
\end{array} \\
& \begin{array}{l}
\left(\frac{1+(u(-q)-1))}{1-q}\right)^{\operatorname{dim}\left(v^{v}\right)} \quad \prod_{i=1}^{n} \frac{\left[d_{i-1}\right]_{q}+u q d_{i}}{\left[d_{i}\right]_{q}}
\end{array} \\
& \left\{\text { take } \lim _{q \rightarrow 1}\right. \\
& \text { \} take } \lim _{g \rightarrow 1} \\
& \frac{1}{|G|} \sum_{g \in G} u^{\operatorname{dim}\left(v^{\omega}\right)}=\prod_{i=1}^{n} \frac{d_{i}-1+u}{d_{i}}
\end{aligned}
$$

So how to prove...
Theorem A rein group G with $\mathbb{C}[x]^{G}=\mathbb{C}\left[f, \ldots, f_{n}\right]$ (solon)
has $\left(\mathbb{C}[x] \otimes \Lambda^{k}|y\rangle\right)^{G}$ a free $\mathbb{C}[x]^{G}$-module
on basis $\left\{d f_{i_{1}} \wedge \ldots d f_{i_{k}}: 1 \leq i_{1}<\ldots<i_{k} \leq n\right\}$.
Let's start by noting that each $d f_{i}$ and hence $d f_{i}, \ldots . . . \wedge d f_{k}$ are actually G-ivvariant, due to ...
PROPOSITION: Every $g \in G_{n}(\mathbb{C})$ commuter with d when acting on $\mathbb{C}[x] \otimes \wedge\langle y\rangle$. proof: H reduces to checking $g d=d g$ when acting on any homog. $h(x) \otimes 1 \in \mathbb{C}[x] \propto \Lambda^{\circ}\langle y\rangle$, since $d\left(h(x) \otimes y_{I}\right)=d(h(x) \leftrightarrow 1) \cdot\left(1 \otimes \underline{y}_{I}\right)$. checking it for $\bar{h}(x) \otimes 1$ can be done using induction on deg (h), since one has Leibniz mile:

$$
d\left(h_{1} \cdot h_{2} \otimes 1\right)=d\left(h_{1}\right) \cdot h_{2} \otimes 1+h_{1} d\left(h_{2}\right) \otimes 1
$$

And then it's easy to check when $\operatorname{deg}(h)=1$ by noting $d\left(x_{i} \otimes 1\right)=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} x_{i_{0}} \otimes y_{i}=1 \otimes y_{i_{0}}$

The G-invariance of

$$
\begin{aligned}
& d f_{1} \wedge \ldots \wedge d f_{n}=\left(\sum_{i} \frac{\partial f_{1}}{\partial x_{i}} y_{i}\right) \wedge \ldots \wedge\left(\sum_{i} \frac{\partial f_{n}}{\partial x_{i}} y_{i}\right) \\
& =\operatorname{det}(\left[\frac{\partial f_{j}}{\partial x_{i}}\right] \underbrace{}_{\substack{i=1 \\
j=1,1, n, n}} \cdot y_{1} \wedge \ldots \wedge y_{n} \\
& \text { all } \text { this }^{J}:=\text { Jacobson determinant }
\end{aligned}
$$

together with the fact that

$$
\begin{aligned}
& g\left(y_{1} \wedge \ldots \wedge y_{n}\right)=\left(g g_{n}\right) \wedge \ldots \wedge\left(g^{-1} y_{n}\right)=\operatorname{det}(g)^{-1} y_{1} \wedge \wedge y_{n} \\
& \left(" y, \ldots \wedge y_{n} \text { is a } \operatorname{det}^{-1}-\right.\text { relative invariant ") }
\end{aligned}
$$

implies $g(J)=\operatorname{det}(g) \cdot J$
(" J is a det-relative invariant")

Something much stronger about J is tee, and gets used in several proofs...

PRoposmon: Given a \mathbb{G} ref group G, the det-relative invariants inside $\mathbb{C}[x]$

$$
\begin{aligned}
\mathbb{C}[x]^{G}, \operatorname{det} & :=\{h(x) \in \mathbb{C}[x]: g(h)=\operatorname{def}(g) \cdot h\} \\
& =J \cdot \mathbb{C}[x] G
\end{aligned}
$$

that is, they form a free $\mathbb{C}\left[\underline{]^{G} \text { - submodule }}\right.$ of rank 1, with $\mathbb{C}[x]^{a}-$ basis $\{J\}$.
Furthemore, $J=c \cdot \Pi \ell_{H}(x)^{d_{H}-1}$ for some $c \in \mathbb{C}^{x}$ refry hyperplanes H for G
and $d_{H}:=\left|G_{H}\right|$ where $G_{H}:=\{g \in G: g H=H\}$

$$
=\{1\} \cup \underbrace{\left\{\begin{array}{l}
\text { reins s in } \\
\text { hypentar with }
\end{array}\right\}}_{\text {sse e } d_{4}-1}
$$

Examples
(1) Afamilar case: if $G=\sigma_{n} \curvearrowright \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$

$$
\text { At hen } \mathbb{C}[x]^{\sqrt{\mathcal{S}_{n}}}=\mathbb{C}\left[e_{1,}, e_{n}\right]=\mathbb{C}\left[p_{1} p_{1}, p_{2,}, p_{n}\right]
$$

so $J=\operatorname{det}\left(\frac{\partial P_{j}}{\partial x_{i}}\right)=\operatorname{det}\left[j \cdot j_{j}^{j}\right]=c \prod_{i \leq i=j \leq n}\left(x_{i}-x_{j}\right)=c \prod_{H}^{x_{i} x_{y} \ldots x_{n}} l_{H}^{d_{H}-1}$

$$
\binom{H}{\text { all } d_{11}=2}
$$

and $\mathbb{C}[x]^{\sigma_{n} \text { dee }}=$ attenuating polynomials $\left.=\prod_{1 \operatorname{sicij}_{j}\left(x_{i}-x_{y}\right)}\right) \cdot \mathbb{C}[x]^{\sigma_{n}}$
(2) The essence of the PROP is the simplest case:

$$
\begin{array}{ll}
G=\left\langle\frac{9:=}{[\xi]}\right\rangle \subset G,(\mathbb{C})=\mathbb{C}^{x}, & \xi=e^{2 \pi i / d} \\
& =G(d, 1,1) \\
\mathbb{O} & V=C^{\prime} \\
\mathbb{C}[x]=\mathbb{C}[x] \operatorname{viag}(x)=\xi^{-1} x & H=\{0\} \\
U & \\
\mathbb{C}[x]^{G}=\mathbb{C}\left[x^{d}\right] & l_{H}=x \\
f_{1} &
\end{array}
$$

while we can directly check

$$
\begin{aligned}
& \mathbb{C}[x]^{G} \operatorname{det}=\left\{h(x) \in \mathbb{C}[x]: h\left(\xi^{-1} x\right)=\xi \cdot h(x)\right\} \\
&= \operatorname{span}_{\mathbb{C}}\left\{x^{j}:\left(\xi^{-1} x\right)^{j}=\xi \cdot x^{j}\right\} \\
& \text { le. }-j \equiv 1 \bmod d \\
& j \equiv d-1 \bmod d \\
& j=d-1+d k \text { for } k \geq 0 \\
&= \operatorname{span}_{\mathbb{C}}\left\{x^{d-1}\left(x^{d}\right)^{k}: k \geq 0\right\} \\
&= x^{d-1} \cdot \mathbb{C}\left[x^{d}\right] \\
&= J \cdot \mathbb{C}\left[x^{d}\right] \quad \text { since } J=\operatorname{det}\left[\frac{\partial}{\partial x}\left(x^{d}\right)\right]=d \cdot x^{d-1}
\end{aligned}
$$

proof of PROPOSITION: 1 st prove
CLAM: Any $h(x) \in \mathbb{C}(x)^{G d e t}$ is drisible by $\prod_{H} l_{H}$.
This is equivalent by mi que factorization, to showing it is divisible by each $l_{H} d_{H}$. . Changing bases x_{1}, x_{n} in V^{*}, assume $l_{H}(x)=\operatorname{ker}\left(x_{1}\right)$
 and on $\left.V^{*}, \quad s=\begin{array}{cccc}x_{1} \\ x_{2} & x_{1} x_{1} & \cdots x_{n} \\ \vdots & -1 & 0 \\ x_{n} & 1 & 0 \\ 0 & & 1\end{array}\right]$

Then can check as in above EXAMP LE that $h(\underline{x}) \in \mathbb{C}(\underline{x}]$ has $s(h)=\operatorname{def}(s) \cdot h=\xi \cdot h$
\Leftrightarrow every monomial $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$ in $h(x)$
has $a_{1} \equiv d-1 \bmod d$
$\Rightarrow x_{1}^{d-1}$ divides $x_{1}^{a_{1}} x_{2}^{a_{2}}-x_{n}^{a_{n}}$
$\Rightarrow \underset{l_{H}^{d_{H-1}^{\prime \prime}}}{x_{1}^{d-1}}$ dries $h(x)$, proving cLAM.

Now since $J=\operatorname{def}\left(\frac{\partial f_{j}}{\partial x_{i}}\right) \in \mathbb{C}[x]^{G_{1} \operatorname{det}}$, the CCAIM shows $\prod_{H} l_{H}^{d_{H-1}}$ divides J.
But they have same degree:

$$
\begin{aligned}
& \operatorname{deg} J=\sum_{i=1}^{n}\left(\begin{array}{c}
d_{i-1}
\end{array}\right)=\begin{array}{c}
\text { refers } \\
\text { in } G
\end{array}=\sum_{H} \#\binom{\text { refnsm }}{G \text { fang } H} \\
& \operatorname{deg}\left(\frac{\partial t_{i}}{\partial x_{j}}\right) \\
& =\sum_{H}\left(d_{H^{-1}}\right)=\operatorname{deg} \prod_{H} \int_{H} d_{H}-1 .
\end{aligned}
$$

Also $J \neq 0$ since f_{1}, f_{n} are alg. indep. (not so obvious; see Humphreys $s_{3.10}$ br quick prot) Hence $J=c \cdot \prod_{H} l_{H} d_{p-1}$ for some $c \in \mathbb{C}^{x}$.
And ClAM M shows $\left.C(x)^{G, \operatorname{det}}=\pi_{H} \ell_{H}^{d_{H}-1} \cdot C(x)\right]^{G}$

$$
=J \cdot \mathbb{C}[\underline{x}]^{G}
$$

Now Solomon shows $\left(\mathbb{C}[x] \otimes \lambda^{k}\langle y\rangle\right)^{G}$ has
free $\mathbb{C}(\underline{x}]^{f}$-basis $\quad\left\{d f_{I}:=d f_{i,} \wedge \ldots \wedge d f_{i_{k}}\right\}_{I=\left\{i, \ldots<i_{k}\right\}}$ by checking their $\left\{\begin{array}{c}\text { lin. independence } \\ + \\ \text { spanning } . . .\end{array}\right.$
$\mathbb{C}[x]^{G}$-linear independence of $\left\{d f_{I}\right\}$:
It's enough to show they're $\mathbb{C}(x)$-lin. indep. inside the $\mathbb{C}(x)$-vector space $\mathbb{C}(x) \otimes \hat{\lambda}^{k}\langle y\rangle$.
If $\sum_{I} h_{I}(x) d f_{I}=0$ for some $\bar{h}(x) \in \mathbb{C}(x)$
then for each k-subset $I_{0} \subset\{1,2,-n\}$, let $I_{0}^{c}:=\{1,2,-n\} \backslash I_{0}$, and mint. by $d_{I_{0}}$:

$$
\sum_{I} h_{I}(x) \underbrace{d f_{I} \wedge d f_{I_{0}^{c}}}=0
$$

vanishes unless $I=I_{0}$, due If to a repeat $d f_{i} \wedge d f_{i}=0$

$$
\begin{aligned}
& \quad h_{I_{0}}(x) d f_{I_{0}} \wedge d f_{I_{0}^{c}}=0 \\
& = \pm h_{I_{0}}(\underline{x}) \cdot J \underbrace{d y_{1} \wedge \ldots \wedge d y_{n}}_{=\text {the unique }} \\
& \quad \mathbb{C}(x) \text {-basis } \\
& \\
& \quad h_{I_{0}}(\underline{x}) \cdot J=0 \quad \text { element of } \mathbb{C}(x) \otimes \wedge^{\wedge}\langle\underline{y}\rangle
\end{aligned}
$$

\Downarrow since $J \neq 0$

$$
h_{I_{0}}(\underline{x})=0 \quad \text { for all } I_{0} .
$$

The $\left\{d f_{I}\right\} \mathbb{C}[x]-$-span $\left(\mathbb{C}[x] \otimes \wedge^{k}\langle\underline{y}\rangle\right)^{G}$:
Note the above lin. independence, together $\operatorname{dim}_{C(x)}$-counting shows that
$\left\{d f_{I}\right\}$ are a $\mathbb{C}(x)$-basis for $\mathbb{C}(x) \otimes \Lambda^{k}\langle y\rangle$.
Hence given any $\omega \in\left(\mathbb{C}[x] \otimes R^{k}\langle\underline{y}\rangle\right)^{G}$

$$
\left(\underline{\mathbb{C}}(\underline{x}) \otimes \lambda^{k}\langle\underline{y}\rangle\right),
$$

ore can write it as

$$
\omega=\sum_{I} h_{I}(\underline{x}) d f_{I} \text { with } h_{I}(\underline{x}) \in \mathbb{C}(\underline{x})
$$

and then by applying π_{G},

$$
\omega=\pi_{G}(\omega)=\sum_{I} \pi_{G}\left(h_{I}(x)\right) \cdot d f_{I}
$$

we can assume $\pi_{G}\left(h_{I}(x)\right)=\frac{p_{I}(x)}{q_{I}(x)} \in \mathbb{C}(\underline{x})^{G}$.
As before, fix a k-subset $I_{0} \subset\{1,2,-n\}$ and mull. by $d f_{I_{0}^{c}}$:

$$
\begin{aligned}
& w_{\wedge} d f_{I_{0}}^{c}=\sum_{I} \frac{P_{I}(x)}{q_{I}(\underline{x})} \cdot d f_{I} \wedge d f_{I_{0}^{c}} \\
& \text { // } \\
& r_{I_{0}}(x) d y_{1} \wedge \ldots d y_{n} \\
& \text { lying in }\left(\mathbb{C}[x] \otimes \Lambda^{n}\langle y\rangle\right)^{G} \text {, } \\
& \frac{P_{I_{0}}(x)}{q_{I_{0}}(x)} d f_{I_{0}} \wedge d f_{I_{0}^{c}}^{c} \\
& 11 \\
& \text { since } \omega, d f_{I_{0}}^{c} \\
& \text { were G-mvariant } \\
& \frac{P_{I_{0}}(\underline{x})}{q_{I_{0}}(x)} \cdot J \cdot d y_{n} n \ldots a d y_{n}
\end{aligned}
$$

Hence $\frac{p_{I_{0}}(x)}{q_{I_{0}}(x)} \cdot J=r_{I_{0}}(\underline{x})$,

$$
\begin{aligned}
& r_{I_{0}}(\underline{x}), G, \operatorname{det} \\
&\text { and } \left.\begin{array}{rl}
r_{0}(x) & \in \mathbb{C}(x)^{n} \cap \mathbb{C}[x] \\
& =\mathbb{C}[x]^{G, \operatorname{det}} \\
& \stackrel{P R O D}{=} J \cdot \mathbb{C}[x
\end{array}\right]^{G}
\end{aligned}
$$

Thus J divides $r_{I_{0}}(x)$ in $\mathbb{C}[x]$,
so

$$
\begin{aligned}
\frac{P_{I_{0}}(x)}{q_{I_{0}}(x)}=\frac{r_{I_{0}}(x)}{J} & \in \mathbb{C}[x] \cap \mathbb{C}(x)^{G} \\
& =\mathbb{C}[x]^{G}
\end{aligned}
$$

