Length generating function revisited
(Humphreys §3. $^{14,3.15 \text {) }}$
Let's return better-equipped to a result alluded to in our overview.

Theorem
(Solomon 19.66)
For (w, s) with w finite ($=$ a finite real nef(ngapp)
having $\mathbb{C}[x]^{w}=\mathbb{C}\left[f_{11}, f_{n}\right]$ and degrees $d_{1},-, d_{n}$,
one has $W(q)=\sum_{\omega \in W} q^{l(\omega)}=\left[d_{1}\right]_{q}\left[d_{2}\right]_{q} \ldots\left[d_{n}\right]_{q}$
Example for $W=\sigma_{n}=W(\sigma_{1} \sigma_{s_{2}} \ldots \underbrace{}_{s_{1}})$,

$$
\left.W(q)=\sum_{\sigma \in G_{n}} q^{\operatorname{inv}(\sigma)}=[1]_{q}[2]_{q} \cdots[n]_{q}=(n)\right]_{q}
$$

How does the invariant theory play any role?

Let's massage the statement a bit.

Want to show $W(g)=\left[d_{1}\right]_{q}-\left[d_{n}\right]_{q}$
1)

$$
\begin{aligned}
\frac{1}{W(q)} & =\frac{1}{[d]_{q} \cdots\left[d_{w}\right]_{q}} \\
& =(1-q)^{n} \cdot \frac{1}{\left(1-q^{d}\right) \cdots\left(1-q^{n}\right)} \\
\frac{1}{W(q)} & =(1-q)^{n}+r_{1} b\left(\mathbb{C}(z]^{N}, q\right)
\end{aligned}
$$

Werve also seen $W(q)$ is characterized by a recurrence on \#S in (W, S) :

$$
\sum_{J:(-1)^{\# J}} \frac{1}{W_{J}(q)}=q^{l\left(\omega_{0}\right)} \frac{1}{W(q)}
$$

So it would suffice to show
$J: J \leq S$ or equivalently

$$
\left.\sum_{J: J \leq S}(-1)^{\# J J} H i b\left(\mathbb{C}[x]^{\omega_{J}}, q\right)=q^{\ell\left(\omega_{0}\right)} H_{i b}(\mathbb{a} x]^{\omega}, q\right)
$$

Now note $l\left(\omega_{0}\right)=\# \Phi^{+}=\#$ rein hyperplanes for W

$$
\begin{aligned}
& =\# \text { ret } \\
& =\# \text { ref ins in } W \text { (since } W \text { is } \\
& =\operatorname{deg}(J),
\end{aligned}
$$

so

$$
\begin{aligned}
& q^{2\left(\omega_{0}\right)} H_{i}\left(b\left(\mathbb{O}(x]^{\omega}, q\right)\right. \\
& =\operatorname{Hilb}\left(J \cdot c[x]^{\omega}, q\right) \\
& =\operatorname{Hib}\left(\mathbb{C}[x]^{w}, \operatorname{det}, q\right) \text {. } \\
& \text { ign: } W \rightarrow[\pm] \\
& \omega \mapsto(-1)^{g(\omega)}
\end{aligned}
$$

Hence the THEOREM follows if we can show

$$
\sum_{J: J \subseteq S}(-1)^{\# J} H i l b\left(\mathbb{C}[x]^{w_{J}}, q\right) \stackrel{(x)}{=} H_{i l b}\left(\mathbb{C}[x)^{w_{,}, \operatorname{sgn}}, q\right)
$$

Proposition: The equality ($*$) would follow from an equality of characters of W-rep'us

$$
\sum_{J: J \leq S}(-T)^{\# J} \underbrace{}_{\begin{array}{c}
\mathbb{C}\left[W / W_{J}\right]
\end{array}}=X_{\text {sen }}
$$

proof: Assuming this equality of characters, for each $d=0,1,2, \ldots$, take inner product with the character $X_{\mathbb{C}[x]_{d}}$ for W acting on $\mathbb{C}[x)_{d}$, multiply by g^{d}, then sum on d :

$$
\begin{aligned}
& \sum_{d=0}^{\infty} q^{d} \sum_{J: J \leq S}(-1)^{\# J} \underbrace{}_{\left(w / w_{J}\right]}, X_{\left.\mathbb{C}(x)_{d}\right)}\rangle_{w} \\
& =\sum_{d=0}^{\infty} q^{d} \underbrace{\left\langle X_{s g n}, X_{\mathbb{E}}(x)_{d}\right\rangle_{w}}_{=\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[\underline{x}]_{d}^{w_{s g n}}\right)} \\
& \begin{array}{l}
\text { equals } \\
\text { dime }_{C}(d x)_{d} \\
\left.w_{J}\right):
\end{array}
\end{aligned}
$$

for any subgroup $H<G$ and any G-repU,

$$
\begin{aligned}
& \left\langle X_{d[G / H]}, X_{U}\right\rangle_{G} \\
& =\left\langle\operatorname{Innd}_{H}^{G} X_{\text {iv }}^{H}, X_{U}\right\rangle_{G} \\
& =\left\langle X_{\text {birr }}^{H}, \operatorname{Res}_{H}^{G} X_{U}\right\rangle_{H} \\
& \begin{array}{c}
\uparrow \text { Fobenius } \\
\text { reupocity }
\end{array}=\operatorname{dim}_{\mathbb{C}}\left(U^{H}\right)
\end{aligned}
$$

So why should $\sum_{J: J \subseteq S}(-1)^{\# J} X_{\mathbb{C}\left[W / N_{j}\right]}=X_{\text {sign }}$ hold?
One proof is through topology and this important tod:
THEOREM:
(Hope Trace Formula)
Let a finite group G act on a chain complex of \mathbb{G} vector spaces

$$
0 \rightarrow C_{m} \xrightarrow{\partial_{m}} C_{m-1} \theta_{m-1} \ldots C_{2} \stackrel{\partial_{2}}{\rightarrow} C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0,
$$

commuting with the boundary maps (i.e. $g \partial_{i}=\partial_{i-1}$) (e.g. if G are symmetries of a simplicial complex Δ, and $\left.C_{i}=C_{i}(\Delta, c)\right)$

$$
\begin{aligned}
& \left.\begin{array}{rl}
\text { evaluate } \\
\text { charades }
\end{array}\right\} \quad \begin{aligned}
H_{i} & =Z_{i} / B_{i} \\
& =\operatorname{ker} \partial_{i} / \min \partial_{i+1}
\end{aligned}
\end{aligned}
$$

$\begin{gathered}\text { Ewer, } \\ \begin{array}{c}\text { Poincare } \\ \text { relation }\end{array}\end{gathered} \sum_{i=0}^{m}(-1)^{i} d m_{c} C_{i}=\sum_{i=0}^{m}(-1)^{i} \operatorname{dim}_{C} H_{i}$

EXAMPLE $W=\sigma_{3}$ acting on $\Delta=$
 tanycentric subdivision of the bound any of

$$
0 \rightarrow \tilde{C}_{1} \xrightarrow{\partial_{1}} \tilde{C}_{0} \xrightarrow{\partial_{0}} \tilde{C}_{-1} \rightarrow 0
$$

$\left.\begin{array}{l}\mathbb{C} \text { bases: } \\ \mathbb{C}[W] \leadsto\left\{\begin{array}{ll}{[1,12]} & {[2]} \\ {[1,13]} & {[8]}\end{array}\right] \mathbb{C}\left[W / W_{\left[s_{2}\right]}\right]\end{array} \quad[]\right\} \mathbb{C}\left[W / W_{\left\{S_{3,3}\right]}\right]$
Howology $\tilde{H}_{i}(\Delta)=0$ except for $i=1$
where $\tilde{H}_{1}(\Delta) \cong$ sign repp of $W=\sigma_{3}$

Here Hop Trace Formula says

$$
-X_{\tilde{c}_{-1}}+X_{\tilde{c}_{0}}-X_{\tilde{c}_{1}}=-X_{\tilde{H}_{1}}
$$

is A $\underset{\substack{\text { row } \\+\operatorname{row} C}}{ }$

Hope Trace formula comes from a simple fact:
PROposition: When one has a short exact sequence of vector spaces $0 \rightarrow A \rightarrow B \rightarrow B / A \rightarrow 0$ and a linear map $g: B \rightarrow B$
that also preserves A, i.e. $g(A) \subseteq A$, then g induces a linear map $g: B / A \rightarrow B / A$, with $\operatorname{Trace}\left(\left.g\right|_{B}\right)=\operatorname{Trace}\left(\left.g\right|_{A}\right)+\operatorname{Trare}\left(\left.g\right|_{B A}\right)$
proof: Pick bases so groks like this:

proof of Hop Trace Formula:
The chain complex $0 \rightarrow C_{m}^{\partial_{m}} C_{m-1} \rightarrow \ldots \rightarrow C_{2}^{\partial_{2}} C_{n}^{\partial_{1}} \rightarrow C_{0} \rightarrow 0$ and group elements $g \in G$ commuting with ∂_{i} give rise to two kinds of short exact sequences as in the PROPOPOSTTION...

$$
\begin{aligned}
& z_{i} / B_{i}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& x_{c_{0}}-x_{c_{1}}+x_{c_{2}}-x_{C_{3}}+\ldots \\
& \stackrel{\operatorname{via}}{(a)}\left(x_{z_{0}}+x_{B_{-1}}\right)-\left(x_{z_{1}}+x_{B_{0}}\right)+\left(x_{z_{2}}+X_{B_{1}}\right)-\left(x_{z_{3}}+x_{B_{2}}\right)+\cdots \\
& \text { (ia) } \\
& \stackrel{\left(B_{B}\right)}{\left(X_{B_{0}}+X_{H_{0}}+X_{B_{-1}}\right)-\left(X_{\text {cancel }}^{+}+X_{H_{1}}+X_{B_{0}}\right)}+\underset{\text { (} \left.X_{B_{2}}+X_{H_{2}}+X_{B_{1}}\right)-\left(X_{B_{3}}+X_{H_{3}}+X_{3}\right)}{=} \\
& =X_{B_{-1}}^{0}+X_{H_{0}}-X_{H_{4}}+X_{H_{2}}-X_{H_{3}}+\ldots
\end{aligned}
$$

Now let's apply this to the smplicial complex Δ, called the Coxeter Complex for (w, s), that comes from intersecting the Tits cone $U=V^{*} \cong V$ with the unit sphere \mathbb{S}^{n-1} in $V=\mathbb{R}^{n}$.
One finds that the oriented smplicial chain $\operatorname{group} \tilde{C}_{i} \simeq \oplus \mathbb{I}\left[w / W_{J}\right]$

$$
\# \delta J=i+1
$$

isomorphism as W-repins

$$
\begin{aligned}
& 0 \rightarrow \tilde{C}_{11} \rightarrow \tilde{C}_{\text {is }} \rightarrow \underset{\text { us }}{\tilde{C}_{-1}} \rightarrow 0 \\
& \mathbb{C}[W] \underset{\Theta}{\mathbb{C}\left[W_{[5,1}\right]} \mathbb{C}\left[W / W_{[5,5,5]}\right] \\
& \mathbb{C}\left[W / N_{T_{5}}\right]
\end{aligned}
$$

Meanwhile, $\tilde{H}_{i}(\Delta)=\tilde{H}_{i}\left(S^{n-1}\right)=0$ unless $i=n-1$ with $\tilde{H}_{n-1}(\Delta) \cong \underset{\text { as W-repins }}{\cong} \operatorname{sgn}=\operatorname{det}$
since W acts orthogonally on $V=\mathbb{R}$, and clements $g \in O_{n}(\mathbb{R})$ act on the orientation cycle z of $\tilde{H}_{n-1}\left(S^{n-1}\right)$ via the $\operatorname{det}(g) \in \pm 1$, either presenting or reversing orientation.

$$
\operatorname{det}(g)=-1
$$

Hence Hop Trace Formula says

$$
\begin{aligned}
(-1)^{n-1} X_{\text {son }} & =\sum_{i \geq-1}(-1)^{i} X_{\tilde{c}_{i}} \\
& =\sum_{i \geq-1}(-1)^{i} \sum_{\substack{J \\
\# S J=i+1}} X_{\left.\mathbb{C} w / w_{J}\right]} \\
\Rightarrow X_{\text {son }} & =\sum_{J: J S S}(-1)^{\# J} X_{\mathbb{C}\left[w / w_{J}\right]}
\end{aligned}
$$

