Length generating function revisited
(Humphreys §3.14,3.15)
Let's return better-equipped to a result
alloded to in our overview.
THEOREM For (W,S) with W finite (= a fuitereal
returgeoup)
having C[x]^W= C[f₁₁,-f₁]
and degrees dis-sdu,
one has
$$W(q) = \sum_{w \in W} q^{Uw} = [d_1]_2[d_2]_2\cdots[d_n]_q$$

EXAMPLE For $W = G_n = W(o_1 o_2 \cdots o_n)$,
 $W(q) = \sum_{\sigma \in G_n} q^{Inv(\sigma)} = [n]_2[n]_2 \cdots [n]_q = [n]!_g$
How does the mean theory
play any role?

Let's massage the statement a bit.

Want to show
$$W(q) = [d_1]_{q^{-1}} [d_n]_{q}$$

$$\frac{1}{W(q)} = \frac{1}{[d]_{q^{-1}} [d_n]_{q}}$$

$$= (1-q)^{N} \cdot \frac{1}{(t-q^{d_1}) \cdots (t-q^{d_n})}$$

$$\frac{1}{W(q)} = (t-q)^{N} + 1 \cdot b(Ct \times W, q)$$

$$We've also seen W(q) is characterized$$
by a recurrence on #S in (W,S):

$$\sum_{i=1}^{r} (-i)^{\#J} \frac{1}{W_{J}(q)} = q^{l(w_0)} \frac{1}{W(q)}$$
So it would suffice to show

$$\sum_{i=1}^{r} (-i)^{\#J} (Hib(Ct \times W_{J}) = q^{l(w_0)} (H_{J}) + 1 \cdot b(Ct \times J_{J})$$

$$J: J \leq S$$
or equivalently
$$\sum_{j:J \leq S} (-i)^{\#J} + 1 \cdot b(Ct \times J_{J}, q) = q^{l(w_0)} + 1 \cdot b(Ct \times J_{J})$$

Now note
$$l(\omega_0) = \# \bar{g}^+ = \# \operatorname{refin} hyperplanes for W$$

 $= \# \operatorname{refins} in W (since W is
real)
 $= \deg(J),$
 $= \deg(J),$
 $= \operatorname{Hilb}(O[\times]^W, q)$
 $= \operatorname{Hilb}(J \cdot O[\times]^W, \det , q),$
 $= \operatorname{Hilb}(O[\times]^W, \det , q),$
 $\operatorname{same as}_{Syn} : W - \mathfrak{f}[h]_{R(u)}$
 $= \operatorname{Hilb}(U[\times]^W, \operatorname{det} , q),$$

Hence the THEOREM follows if we can show $\sum (-1)^{\#J}$ Hilb($C(x)^{WJ}g)^{(x)}$ Hilb($C(x)^{W,sgn}g)$ J: JSS

PROPOSITION: The equality (*) would follow from an equality of characters of W-repins $\sum_{J:J \leq S} (J)^{\#J} \chi_{C[W/W_{J}]} = \chi_{Sgn}$ $J:J \leq S$ W-permutation rep on cosets W/W_{J} $u(W_{J}) = wW_{J}$

proof: Assuming this equality of characters, for each d=0,1,2,--, take mer product with the character X for Wacting on O[*]d, multiply by gd, then sum on d: $\sum_{d=0}^{\infty} q^{d} \sum_{T:JSS} (-1)^{\#J} (\chi_{C[W/W_{J}]}, \chi_{C[M/W_{J}]}, \chi_{C[M/W_{J}]})$ = In gd (Xym, Xocx1, /w $\dim_{\mathbb{C}}(\mathbb{C}[X]_{\mathcal{A}})$: = dim (((x) d sgn) for any subgroup H<G and any G-reply <X (JG/HJ, Xu/G $\sum (-i)^{\#J}$ Hilb ($C[\underline{x}], \underline{y}$) = (Judy XH, Xu G J:JSS = Hilb(Q1×1, 35n) = < X H, Res Xu >H $\frac{\text{hobenius}}{\text{reciprocity}} = \dim_{\mathbb{C}}(\mathcal{U}^{H})$

So why should
$$\sum_{i:J \leq S} (f_i)^{i+J} X_{C[W/W_{J}]} = X_{sgn} hold ??$$

One proof is through topology and this important tod :
THEOREM:
(Hopf Trace Formula)
Let a finite group G act on a chain complex
of G vector spaces
 $b \rightarrow C_{nn} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{2} \xrightarrow{2} C_{1} \xrightarrow{2} C_{0} \rightarrow 0$,
commuting with the boundary maps (i.e. $g\partial_{i}=\partial_{ing}$)
(e.g. if G are symmetries of a simplicial
complex Δ , and $C_{i} = C_{i}(\Delta, c)$)
Then $\sum_{i=0}^{\infty} (-i) X_{i} = \sum_{i=0}^{\infty} (-i)^{i} X_{i}$
 $d G on C d G on hometry
 $d G on C d G on hometry$
 $d G on hometry
 $d G on hometry$
 $d G on$$$

Example
$$W = G_{3}$$
 acting on $\Delta =$
 $Janycentric subdivision of
 $ghe boundary of$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $1 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$$

Henre

 $\chi_{c_{1}} - \chi_{c_{1}} + \chi_{c_{2}} - \chi_{c_{3}} + \dots$ $\stackrel{\text{via}}{=} \left(\chi_{2}^{+} \chi_{\beta_{1}}^{+} \right) - \left(\chi_{2}^{+} \chi_{\beta_{2}}^{+} \right) + \left(\chi_{2}^{+} \chi_{\beta_{1}}^{+} \right) - \left(\chi_{2}^{+} \chi_{\beta_{2}}^{+} \right) + \left(\chi_{2}^{+} \chi_{\beta_{1}}^{+} \right) - \left(\chi_{2}^{+} \chi_{\beta_{2}}^{+} \right) + \left(\chi_{2}^{+} \chi_{\beta_{1}}^{+} \right) - \left(\chi_{2}^{+} \chi_{\beta_{2}}^{+} \right) + \left(\chi_{2}^{+} \chi_{\beta_{1}}^{+} \right) - \left(\chi_{2}^{+} \chi_{\beta_{2}}^{+} \right) + \left(\chi_{2}^{+} \chi_{\beta_{1}}^{+} \right) - \left(\chi_{2}^{+} \chi_{\beta_{2}}^{+} \right) + \left(\chi_{2}^{+} \chi_{\beta_{1}}^{+} \right) - \left(\chi_{2}^{+} \chi_{\beta_{2}}^{+} \right) + \left(\chi_{2}^{+} \chi_{\beta_{1}}^{+} \right) - \left(\chi_{2}^{+} \chi_{\beta_{2}}^{+} \right) + \left(\chi_{2}^{+} \chi_{\beta_{1}}^{+} \right) + \left(\chi_{2}^{+} \chi$ $= \left(\chi_{B_{a}^{+}} \chi_{H_{b}^{+}} \chi_{B_{-1}}\right) - \left(\chi_{B_{a}^{+}} \chi_{H_{1}^{+}} \chi_{B_{b}}\right) + \left(\chi_{B_{a}^{+}} \chi_{H_{2}^{+}} \chi_{H$ cancel

 $= \chi_{B_{-1}} + \chi_{H_{0}} - \chi_{H_{1}} + \chi_{H_{2}} - \chi_{H_{3}} + \dots \quad \boxtimes$

Now let's apply this to the simplicial complex
$$\Delta$$
,
called the Coxeter Complex for (W,S) ,
that comes from intersecting the Tits come
 $U = V^* \cong V$ with the unit ophere S^{m} in $V = IR^{n}$.
One finds that the oriented simplicial chain
group $\tilde{C}_{i} \cong \bigoplus \mathbb{C}[W/W_{J}]$
 $(= +8 \times J = in)$
 $(= +8$

Meanwhile,
$$\tilde{H}_{i}(\Delta) = \tilde{H}_{i}(S^{n}) = 0$$
 unless $i = n-1$
with $\tilde{H}_{n-1}(\Delta) \cong sgn = det$
 a_{3} W-reptus
Since W acts orthogonally on $V = \mathbb{R}^{n}$,
and elements $g \in O_{n}(\mathbb{R})$ act on the
orientation cycle z of $\tilde{H}_{n,i}(S^{n-1})$ via
the $det(g) \in \pm 1$, either preserving
 $det(g) = 1$

Hence Hopf Trace Formula says

$$(-1)^{n-1} \chi_{sgn} = \sum_{\substack{i \ge -1}} (-1)^{i} \chi_{i}$$

$$= \sum_{\substack{i \ge -1}} (-1)^{i} \sum_{\substack{j \le \\ i \ge -1}} \chi_{c[w/w_{j}]}$$

$$\Rightarrow \chi_{sgn} = \sum_{\substack{j \le \\ j \le J \le S}} (-1)^{\#J} \chi_{c[w/w_{j}]}$$