Real reflection groups and their not systems
(Humphreys §§ 1.1-1.5; after planning on Humphreys Chap. $5+\S \xi 6.1-6.4$)

People had motivation to wite down a "reflection representation" for any Coxeter group $W \cong\left\langle S \mid s_{i}^{2}=1=\left(s_{i} s_{j}\right)^{m_{i j}}\right\rangle$ from features they knew occur in (finite) real refin groups W.

Let's understand this motivation, which comes from some root system geometry of W

As before, $V=\mathbb{R}^{n}$
with a chosen inner product (\cdot, \cdot)
$\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$
Which means
$(-,$,$) is$$\left\{\begin{array}{r}\cdot \mathbb{R} \text {-bilinear: }(x+y, z)=(x, z)+(y, z) \\ (x, y+z)=(x, y)+(x, z) \\ (e x, y)=c \cdot(x, y)=(x, y)\end{array}\right.$
Using Gram-Schmidt process, there's always an orthonormal basis e_{1}, \ldots, e_{n} for \mathbb{R}^{n} making

$$
(x, y)=\left(\begin{array}{ll}
x_{1} & \ldots
\end{array}\right]\left[\begin{array}{c}
y_{n} \\
\vdots \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} y_{i} \text {, if we want. }
$$

TEF'N: For a hyperplane $H \subset V$
$(=(n-1)-$ dimil linear subspace)
the reflection $s_{H}: V \rightarrow V$
fixes H pontwise, and negates $\pm \alpha_{H}:=$ unit normals

$$
\text { i.e } \alpha_{H}^{1}=H \text { and }\left(\alpha_{H}, \alpha_{H}\right)=1
$$

In general, if $\alpha \in V$ is any vector, then $S_{\alpha}:=S_{H}$ where $H=\alpha^{\perp}$
has this formula: $=\{x \in V:$ $(\alpha, x)=0\}$

$$
s_{\alpha}(x)=x-2 \cdot \frac{(x, \alpha)}{(\alpha, \alpha)} \alpha
$$

sure it's $\left\{\begin{array}{l}\text { linear in } x \\ \text { correct for } x \in H=\alpha^{\perp}: s_{\alpha}(x)=x-2 \frac{0}{(\alpha, \alpha)} \alpha=x \\ \text { correct for } x=\alpha: s(\alpha)=\alpha=\alpha\end{array}\right.$
correct for $x=\alpha: s_{\alpha}(\alpha)=\alpha-2 \frac{(\alpha, \alpha)}{(\alpha, \alpha)} \alpha=-\alpha$
An important fact: Conjugating a ref'n $\delta_{H}=S_{\alpha}$ by an orthogonal transformation

$$
\begin{aligned}
& w \in O(V,(\cdot,)):=\{w \in G L(V):(w(x), w(y))=(x, y)\} \\
& \text { an orthogonal brmstormavoly }
\end{aligned}
$$

gives another refine, namely

$$
\begin{aligned}
& w S_{H} w^{-1}=S_{w(H)} \\
& w S_{\alpha}^{\prime \prime} w^{\prime-1}
\end{aligned}
$$

Check: For $x \in \omega(H)$,

$$
\begin{gathered}
\operatorname{san} x=w(y) \\
y \in H
\end{gathered}
$$

$$
\begin{aligned}
\omega S_{H} \omega^{-1}(x) & =\omega S_{H} \omega^{-1}(\omega \\
& =\omega s_{H}(y) \\
& =\omega(y) \\
& =x \\
& =s_{\omega(H)}(x)
\end{aligned}
$$

$$
\text { and } \omega S_{H} \omega^{-1}(\omega(\alpha))=\omega S_{H}(\alpha)
$$

$$
=\omega(-\alpha)
$$

$$
=-\omega(\alpha)
$$

$$
=S_{\omega(H)}(\omega(\alpha))
$$

Recall
DEF: $W \subset G L(V), V=\mathbb{R}^{n}$ with $(\cdot,$. is a real ref'n group if it is finite and generated by the reflections $\left\{s_{H}\right\}$ contained within it.
e.g. $W=I_{2}(m)=$ dihedral group of order $2 m$ $=$ symmetries of regular m-gin

IDEA: If we had a basis $\pi=\left\{\alpha_{1}, \alpha_{n}\right\}$ for V consisting of unit normals to reft hypenplomes $H_{1},-, H_{n}$, the inner products $\left(\alpha_{i}, \alpha_{j}\right)$ determine (r, \cdot), and are computable form $\left(\alpha_{i}, \alpha_{j}\right)=\left\|\alpha_{i}\right\|\left\|\alpha_{j}\right\| \cos \theta_{i j}=-\cos \theta_{i j}$ if H_{i}, H_{j} have dihedral angle $\theta_{i j}$

So we could have recovered the V and (\cdot, ,) just from the Coxeter diagram/ matrix $\left(m_{i j}\right)_{i, j=1,1, n}$ which predict the dihedral angles $\theta_{i j}=\frac{\pi}{m_{i j}}$.
(since $s_{1} s_{2}=$ oration though $\frac{2 \pi}{m_{i j}},\left(s_{i} s_{j}\right)^{m_{i j}}=1$)
This gives the idea for how to make a a faithful geometric representation

$$
W \rightarrow O(V,(0, \cdot)) \subset G L(V)
$$

for any Coxeter system (W, S).
(Humphreys §5.3)

How to find these $T=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ given the real rein group $W \subset O(V,(;))$? Start with ...
DEF' N : The (unit length) root system of W $\Phi:=\left\{ \pm \alpha_{H}\right.$: all refins s_{H} in $\left.W\right\}$

Note it satisfies $\left\{\begin{array}{l}s_{\alpha}(\Phi)=\Phi \quad \forall \alpha \in \Phi \\ \Phi \cap \mathbb{R} \alpha=\{ \pm \alpha\}\end{array}\right.$

We'll decompose it into two halves using ...
DEF'N: Lexicographic order on \mathbb{R}^{n}
sets $x=\left[\begin{array}{c}x_{1} \\ 1 \\ x_{n}\end{array}\right]<$ lex $\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]=y$ if $\begin{gathered}x_{1}=y_{1} \quad \text { for some } l \\ x_{2}=y_{2} \\ \vdots \\ x_{l}=y_{l}\end{gathered}$

$$
\begin{aligned}
& \vdots \\
& x_{l}=y_{l} \\
& x_{l+1}<y_{l+1}
\end{aligned}
$$

Note $x<_{\text {lex }} y \Leftrightarrow y-x>_{\text {lex }} 0$

$$
\begin{aligned}
x<_{\text {lex }} y & \Rightarrow\left[\begin{array}{ll}
c x<_{\text {lex }} c y & \text { for } c \in \mathbb{R}_{>0} \\
c x>_{\text {lex }} c y & \text { for } c \in \mathbb{R}_{\geq 0}
\end{array}\right. \\
& \Rightarrow x+z<_{\text {lex }} y+z \quad \forall z \in \mathbb{R}^{n} \\
x, y>_{\text {lex }} 0 & \Rightarrow x+y>_{\text {lex }} x>_{\text {lex }} 0
\end{aligned}
$$

$\rangle_{\text {lex }}$ is a total/inear order:
either $x<$ ex y or $x=y$ or $x>_{\text {lex }} y$
DETN: Disjontly decompose

$$
\Phi=\underset{\substack{\text { posifue } \\ \text { roots }}}{\Phi^{+} \cdot \sqrt{\substack{\text { negative } \\ \text { roots }}} \Phi^{-}}
$$

where

$$
\begin{aligned}
& \Phi^{+}=\left\{\alpha \in \Phi: \alpha>_{\text {lex }} O\right\} \\
& \Phi^{-}:=\left\{\alpha \in \Phi: \alpha \ll_{\text {lex }} \otimes\right\}=-\Phi^{+}
\end{aligned}
$$

DEF N: Define a set of simple roots $\Pi \subset \Phi^{+}$ to be any subset with these poperies:
(a) $\Phi^{\dagger}=\mathbb{R}_{30} \pi$
meaning every $\beta \in \Phi^{+}$can be written

$$
\beta=\sum_{\alpha \in \Pi} c_{\alpha} \cdot \alpha \text { with } c_{\alpha} \in \mathbb{R}_{20}
$$

(b) Π is minimal with respect to inclusion having property (a)
(no $\alpha \in \Pi$ can be removed, retaining (a))
$\operatorname{ExAMPLE}!\alpha_{1} \quad \Phi^{\dagger}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$

has $\pi=\left\{\alpha_{1}, \alpha_{2}\right\}$ as the only choice of simple rots

Corresponds ta calls of C_{0} here:

EXAMPLE $W=\sigma_{n}=$ symmetric group

$$
\mathbb{N}^{=}=\left\{\begin{array}{l}
\text { non } \\
\text { permutation } \\
\text { matrices }
\end{array}\right\} \subset G(\mathbb{R})=G L(V)
$$

$$
V=\mathbb{R}^{n}
$$

= symmetries

$$
\begin{aligned}
& \text { nmetries } \\
& \text { of regular (n-1)-simplex }
\end{aligned}
$$

$$
\int<2_{\text {see }} \text { Bjormer-Brenti }
$$

$$
\begin{aligned}
& \text { orner-Brenti } \\
& \text { EXERCISE } 1.1 .5 \\
& \text { (or later PROP 9.5.4) }
\end{aligned}
$$

$$
W\left(\begin{array}{cccc}
0 & 0 & \ldots & -0 \\
s_{1} & s_{2} & & s_{n-1}
\end{array}\right)=: W\left(A_{n-1}\right)
$$

$$
\left.\begin{array}{l}
\left.=\left(S_{i} \delta_{j}\right) \text { it } \mid 1-\right] i=2 \\
=\left(s_{i} s_{i+1}\right)^{3} \text { for } i=1,>^{n-2}
\end{array}\right\rangle
$$

Reflections: $\{$ all transpositions $(i, j): 1 \leq i<j \leq n\}$
Roots: $\Phi=\left\{e_{i}-e_{j}, e_{j}-e_{i}: 1 \leq i<j<n\right\}$
($\sqrt{2}$ kent,
nod ind length) U

Positive $\Phi^{+}=\left\{e_{i}-e_{j}: 1 \leq i<j \leq n\right\}$
roots

$$
U
$$

$$
\begin{array}{c:cc}
e_{3} e_{2} & e_{1}-e_{2} & \text { Simple } \Pi=\left\{e_{1}-e_{2}, e_{2}-e_{3}, \ldots, e_{n-i} e_{n}\right\} \\
\Phi^{-} & \Phi^{+} & \text {roots }
\end{array}
$$

$$
W=\mathbb{S}_{4}
$$

= symmetries of regular tetrahedion

$$
\begin{aligned}
& P=\operatorname{conv}\left(l_{1}+l_{2}+l_{3}+l_{4}\right) \\
&-\frac{1}{4}\left(l_{1}+l_{2}+l_{3}+l_{4}\right)
\end{aligned}
$$

refin hypendanes drawn intersedong unit sphere

$$
\text { in } \underbrace{\left(e_{1}+e_{2}+e_{3}+e_{4}\right)^{1}}_{\cong \mathbb{R}^{3}} \subset \mathbb{R}^{4}
$$

PROPOSITION: Simple roots $\Pi \subset \Phi^{+}$satisfy:
(i) $(\alpha, \beta) \leq 0 \quad \forall \alpha \neq \beta$ in Π (pairwise non-acute)
(ii) Π is linearly independent, and hence a basis for $\operatorname{span}_{\mathbb{R}} \Phi^{\dagger}=\operatorname{span}_{\mathbb{R}} \Phi$ in V
proof: Let's see why $(i) \Rightarrow$ (ii) first.
Assuming (i), if we had nontrivial dependence write it $c_{1} \alpha_{1}+\ldots+c_{m} \alpha_{m}=d_{1} \beta_{1}+\ldots+d_{l} \beta_{l}$ with $\alpha_{i} \beta_{j} \in \Pi$ and $c_{i}, d_{j} \in \mathbb{R}>0$
and note $\gamma:=\sum_{i=1}^{m} c_{i} \alpha_{i}=\sum_{j=1}^{l} d_{j} \beta_{j}>_{\text {lex }} O$,
but $0 \leq(\gamma, \gamma)=\left(\sum_{i} c_{i} \alpha_{i}, \sum_{j} d_{j} \beta_{j}\right)=\sum_{i, j} c_{>0} d_{j}(\underbrace{\left(\alpha_{i}, \beta_{j}\right.}_{\leq 0}) \leq 0$.
Contradiction.
Proof of (ii): If $(\alpha, \beta)>0$, note

$$
s_{\alpha}(\beta)=\beta-2 \frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha=\beta-c \cdot \alpha \text { with } c>0 \text {. }
$$

Well reach a contradiction to

$$
S_{\alpha}(\beta) \in \Phi=\Phi^{+} \uplus \Phi^{-}
$$

in two cases for whether $S_{\alpha}(\beta) \in \Phi^{+}$or Φ^{-}.

Case 1: $\quad S_{\alpha}(\beta) \in \Phi^{+}$
Write $s_{\alpha}(\beta)=1 \cdot \beta-c \cdot \alpha=\sum_{\gamma \in \Pi} c_{j} \cdot \gamma=c_{\beta} \beta+\sum_{\substack{\gamma \in \Pi \\ \gamma \neq \beta}} c_{j} \gamma, c_{\gamma} \geqslant 0$
 "contradiction"
Case 2: $\quad S_{\alpha}(\beta) \in \Phi^{-}$
Write $s_{\alpha}(\beta)=1 \cdot \beta-c \cdot \alpha=\sum_{\gamma \in \pi} c_{\gamma} \cdot \gamma=c_{\alpha} \cdot \alpha+\sum_{\substack{\gamma \in \pi \\ \gamma \neq \alpha}} c_{\gamma} \cdot c_{\gamma} c_{\gamma} \leq 0$
If $\left.c+c_{\alpha}>0, \beta+\sum_{\substack{\gamma \in T_{\gamma} \\ \gamma \neq \alpha}}\left(-c_{\gamma}\right) \cdot \gamma=\left(c+c_{\alpha}\right) \cdot \alpha \Rightarrow \alpha \notin \pi\right\}$
If $c+c_{\alpha} \leq 0, \quad 0=-\beta+\left(c+c_{\alpha}\right) \alpha+\sum_{\substack{\gamma \in \pi \\ \gamma \neq \alpha}} c_{\gamma} \cdot \gamma<_{k x} 0$,
end

Two important consequences
LEMMA: \forall simple roots $\alpha \in \Pi$,

$$
\begin{aligned}
& s_{\alpha}\left(\Phi^{+} \backslash\{\alpha\}\right)=\Phi^{+} \backslash\{\alpha\} \\
& \left(\text { but } s_{\alpha}(\alpha)=-\alpha \in \Phi^{-},\right. \text {of course) }
\end{aligned}
$$

proof: Given $\beta \in \Phi^{+} \backslash\{\alpha\}$, write

$$
\beta=\sum_{\gamma \in \Pi} c_{\gamma} \gamma \text {, so } c_{\gamma} \geq 0 \text { and some } c_{\gamma_{0}}>0 \text { for } \gamma_{0} \neq \alpha .
$$

But then $s_{\alpha}(\beta)=\beta-c \cdot \alpha$ has same coefficient $c_{\gamma_{0}}>0$ on γ_{0}, and hence $S_{\alpha}(\beta) \in \Phi^{+}$, not Φ^{-}.

And $s_{\alpha}(\beta) \neq \alpha$, else

$$
\beta=s_{\alpha}\left(s_{\alpha}(\beta)\right)=s_{\alpha}(\alpha)=-\alpha \notin \Phi^{+}
$$

CORONARY: $W=\left\langle\left\{s_{\alpha}\right\}_{\alpha \in \pi}\right\rangle$
simple reflections
proof: Since $W=\left\langle\left\{s_{H}\right\}\right\rangle=\left\langle\left\{s_{\alpha}\right\}_{\alpha \in \Phi^{+}}\right\rangle$

$$
\text { and } \beta=\omega(\alpha) \Rightarrow s_{\beta}=\omega S_{\alpha} \omega^{-1} \text {, }
$$

it's enough to show every $\beta \in \Phi^{+}$is in the W^{\prime}-orbit of some $\alpha \in \Pi$, where $W^{\prime}:=\left\langle\left\{s_{\alpha}\right\}_{\alpha \in \Pi}\right\rangle$.
Prove this via induction on the height of $\beta=\sum_{\alpha \in \pi} c_{\alpha} \cdot \alpha$ defredas $h(\beta):=\sum_{\alpha \in \pi} \varepsilon_{\alpha}$.
Pick $\beta^{\prime} \in \Phi^{+} \cap\left\{W^{\prime}\right.$ orbit of $\left.\beta\right\}$ minimizing ht $\left(\beta^{\prime}\right)$.
Since $0<\left(\beta^{\prime}, \beta^{\prime}\right)=\left(\beta^{\prime}, \sum_{\alpha \in \Pi} c_{2} \cdot \alpha\right)=\sum_{\alpha \in \Pi}\left(\beta^{\prime}, \alpha\right)$,
there expats $\alpha_{0} \in \Pi$ with $\left(\beta^{\prime}, \alpha_{0}\right)>0$.
Either $\beta^{\prime}=\alpha_{0} \in \Pi$ and were done or else $\beta^{\prime \prime}=s_{\alpha_{0}}\left(\beta^{\prime}\right)=\beta^{\prime}-c \alpha_{0}$ with $c=2\left(\frac{\left(\beta^{\prime} \alpha_{0}\right)}{(0,0,0)}>0\right.$ has $h\left(\left(\beta^{\prime \prime}\right)<h t\left(\beta^{\prime}\right)\right.$ and $\beta^{\prime \prime} \in \Phi^{\dagger}$ by previous lemma; contradiction.

UPSHOT:
For a real refingroup $W \subset G(V), V=\mathbb{R}^{n}$ with $\left.(\cdot)\right)$, creating $\underset{\text { mots }}{\Phi} \supset \underset{\substack{\text { positive } \\ \text { cots }}}{\Phi} \supset \underset{\substack{\text { snipe } \\ \text { woos }}}{\prod}=\left\{\alpha_{1}, \alpha_{m}\right\}$ and replacing V with $\operatorname{span}_{\mathbb{R}}(T)$ W.L.O.G., we can recover both

- the bilinear form (\because,) on V via its Gram matrix on Π :

$$
\begin{aligned}
& \left(\left(\alpha_{i,}, \alpha_{j}\right)\right)_{i, j=1,2, \rightarrow m} \\
& 1 \\
& -\cos \left(\frac{\pi}{m i j}\right) \text { if } m_{i j}=\operatorname{order} \text { of } s_{\alpha_{i}} S_{\alpha_{j}}
\end{aligned}
$$

- the group $W \subset O(V,(\cdot, \cdot))$ via

$$
W=\left\langle\left\{s_{\alpha}\right\}_{\alpha \in \Pi}\right\rangle
$$

where $s_{\alpha}(x):=x-2 \frac{(x, \alpha)}{(\alpha, \alpha)} \alpha$

REMARK: Later well discuss for crystallographic (finite) root systems Φ^{+}
$C=$ those where we choose roots to make $2 \frac{(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z} \quad \forall \alpha \beta \in \Phi$
$=$ those coming from Lie groups/algebras)
how $h t(\alpha)=$ rank of α in the graded/ranked root poset on $\Phi{ }^{t}$ defined by $\alpha<$ root β if $\beta-\alpha \in \Phi^{+}$

EXAMPLE $W=G_{4}^{\prime}$
root poset $<$ root on Φ^{+}
Φ^{+}

the highest root α_{0}

$h t(\alpha)$ 3

