Tits's geometric representation for a Coxeter system (Humphreys Chap .5,6)
Rather than just proving properties of real refin groups using their roots, let's show they hold for all Coxeter groups, which will also have some notion of roots.

DET'N: Call a symmetric $n \times n$ matrix $\left(m_{i j}\right)_{i, j=1,3 \rightarrow n}$ with $m_{i j} \in[2,3, \ldots\} \cup\{\infty\}$ and $m_{i i}=2 \forall i$ a Coxeter matrix, with

$$
W:=\left\langle S_{\left\{s_{1,}, s_{2},-, s_{n}\right\}} \mid s_{i}^{2}=1=\left(s_{i s j}\right)^{m_{i j}}\right\rangle
$$

the associated Coxeter system (W, S), and Coxeter group W,

$$
\text { so } W:=F(S) \quad\left(\begin{array}{c}
\text { normal subgroup } \\
\text { genid by } \\
\left.\left\{s_{i}^{2}\right)\left(s_{i} s_{j}\right)^{m i j}\right\}
\end{array}\right)
$$

ecg. here $s_{1} s_{2} s_{s} s_{1} s_{1} s_{1}^{-1} s_{1} s_{3}$

$$
=s_{1} s_{2} s_{5} s_{1} s_{1} s_{3}
$$

REMARK: Sometimes its handy to use this version of the Coxeter presentation:

$$
W:=\langle S \mid s_{i}^{2}=1, \underbrace{s_{i} s_{j} s_{i} s_{j} \cdots \cdots}_{\text {called } a}=\frac{s_{j} s_{i} s_{i} s_{j} s_{i} \cdots}{\prod_{m_{i j}} \text { letters }}\rangle
$$

called a braid relation

Why "braid" relation?
Every such Coxeter group W has an associated braid group

$$
\begin{aligned}
& B_{W}:=\langle\sigma_{1,--, \sigma_{n}}^{\sigma_{i}} \mid \underbrace{\sigma_{i} \sigma_{j} \sigma_{i} \sigma_{j} \ldots}_{m_{i j}}=\underbrace{\sigma_{j} \sigma_{i} \sigma_{j} \sigma_{i} \ldots}_{m_{i j}}\rangle \\
& \text { (but } \sigma_{i}^{2} \neq 1 \text {, } \\
& W \quad s_{i} \\
& \left.\sigma_{i} \neq \sigma_{1}\right)
\end{aligned}
$$

ExAMPLE:

$$
S_{n}=\left\langle s_{1}, \ldots s_{n-1} \mid s_{i=1}^{2}, \begin{array}{c}
\left.s_{i} s_{j}=s_{j} s_{i}, s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}\right\rangle \\
{[i-j \mid \geq 2}
\end{array}\right\rangle
$$

\uparrow
$B_{n}=$ braid group on n strands

$$
\cong\left\langle\sigma_{1, \ldots}, \sigma_{n-1} \mid \sigma_{i} \sigma_{j}=\sigma_{i} \sigma_{i}, \quad \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right\rangle
$$

Artin's presentation

Recall group presentations can be tricky?
EXAMPLE Check $\left\langle a, b \mid 1=a^{5}=b^{8}=a b\right\rangle=\{1\}$ Exerase
Q: Do the relations $\left.\left(s_{i}\right)_{1}\right)^{m_{i j}}$ in W force any extra collapsing, e.g. does order of $s_{i} s_{j}$ ever strictly divide $m_{i j}$?
Is $W \neq\{1\} ? N_{0}$, at least $W \neq\{1\}$.
DEFROP: There's a sign homomorphism

$$
W \xrightarrow{\epsilon}+\{ \pm 1\}
$$

defined by $s_{i} \longmapsto-1 \quad \forall i$

$$
\begin{aligned}
& \text { red by } \left.\begin{array}{l}
s_{i} \longmapsto-1 \\
\left(\begin{array}{lll}
\omega & \epsilon \\
s_{i} & s_{i} \cdots & s_{i l}
\end{array}(-1)^{l}=l(\omega)\right.
\end{array}\right)
\end{aligned}
$$

proof: Check the set map $\underset{S_{\bullet} \mapsto-1}{\epsilon}\{ \pm 1\}$
when extended to $F(S) \rightarrow[\pm 1\}$ has s_{i}^{2} and $\left(s_{i} s_{j}\right)^{m_{i j}}$ in it kernel.

This has consequences for one of our main tools for inductive proofs.
DEIN: Given (W, S), define the length function

$$
\begin{aligned}
& W \xrightarrow{W}\{0,1,2, \ldots\} \\
& \omega \longmapsto l(\omega):=\min \left\{l: \omega=s_{i}, s_{i}, \ldots s_{i_{l}}\right\} \\
& l_{s}(\omega):=
\end{aligned}
$$

PROP: (i) $l(\omega)=l\left(\omega^{-1}\right)$
(ii) $\in(\omega)=(-1)^{l(\omega)}$
(iii) $l(\omega s)=l(\omega) \pm 1(\neq l(\omega))$
(iv)

$$
\begin{aligned}
l(u v) & \leq l(u)+l(v) \\
& \geqslant l(u)-l(v)
\end{aligned}
$$

proof: (i) comes from $w^{-1}=s_{i_{Q}} s_{i} \cdots s_{i-1} s_{i_{2}}$ if $\omega=s_{i} \cdots s_{i}$
(ii) comes from previous $P R O P$
(iii) comes from

$$
\begin{aligned}
& l(\omega s) \leq l(\omega)+1, \text { so }(50 \\
& l(\omega)=l(\omega s \cdot s) \leq l(\omega s)+1
\end{aligned}
$$

(iv) comes from iterating (iii)

To understand (W, S) better, need some geometry.
DE IN: Given a Corefer matrix $\left(m_{i j}\right)_{i, j=1,-, n}$ introduce a vectorspare $V \cong \mathbb{R}^{n}$ with \mathbb{R}-basis $\Pi:=\left\{\alpha_{1},-, \alpha_{n}\right\}=\left\{\alpha_{s}\right\}_{s \in S}$ and define a symmetric \mathbb{R}-bilinear form $B(,$,

$$
\begin{aligned}
& V \times V \xrightarrow{B(\cdot,)} \mathbb{R} \\
& (x, y) \longmapsto B(x, y)
\end{aligned}
$$

via its Grammatix on Π :

$$
B\left(\alpha_{i}, \alpha_{j}\right):= \begin{cases}1 & i \quad i=j \\ -\cos \left(\frac{\pi}{m_{i j}}\right) & f_{i} i \neq j\end{cases}
$$

Then we (attempt to) define ...
DET'N: Tits's geometric representation for (W, S)

$$
W \xrightarrow{\sigma} G L(V)
$$

sending $s_{i} \longmapsto \sigma_{i}=\sigma_{i}$
where $\sigma_{i}(x):=x-2 \underbrace{B\left(x, \alpha_{i}\right) \alpha_{i}}_{T_{\text {same }} \text { as }} \frac{B\left(x, \alpha_{i}\right)}{B\left(\alpha_{i}, \alpha_{i}\right)}$

THEOREM This does extend to a
(i) homomorphism $W \stackrel{\sigma}{\rightarrow} G(V)$
(ii) with image in the isometry group $O(V, B(i))$
(iii) and which is injective.

This THM takes work, but let's at least check...
PROP: $\sigma_{i}^{2}=1 \quad \forall i$ and σ_{i} is a B-isomety.
proof: Could do it directly, but also note

$$
V=\mathbb{R}_{i} \oplus \alpha_{i}^{\perp} \text { where } \alpha_{i}^{\perp}:=\left\{x \in V: B\left(x, \alpha_{i}\right)=0\right\}
$$

since $\left\{\begin{array}{l}V=\mathbb{R}_{\alpha_{i}}+\alpha_{i}^{\perp} \text { as any } x \in V \\ \text { has } x=\underbrace{B\left(x, \alpha_{i}\right) \alpha_{i}}_{\in \mathbb{R} \alpha_{i}}+\underbrace{\left(x-B\left(x \alpha_{i}\right) \alpha_{i}\right)}_{\in \alpha_{i}^{\perp}} \\ \mathbb{R}_{i} \cap \alpha_{i}^{\perp}=\{0\} \text { since } B\left(\alpha_{i}, \alpha_{i}\right)=1 \neq 0 .\end{array}\right.$
Then check $\left\{\begin{array}{l}\sigma_{i}\left(\alpha_{i}\right)=\alpha_{i}-2 \alpha_{i}=-\alpha_{i}, \text { so }\left.\sigma_{i}\right|_{\mathbb{R}_{\alpha_{i}}}=-1_{\mathbb{R}_{\alpha_{i}}} \\ \left.\sigma_{i}\right|_{\alpha_{i}^{+}}=1_{\alpha_{i}^{1}}\end{array}\right.$
so σ_{i} acts as an involution s isometry on both summands of the \perp direct sum decomp $V=\mathbb{R}_{\alpha_{i}} \oplus \alpha_{i}^{\perp}$

ExAMPLES
(1) Assume we started with a real rein group $W^{\prime} \subset G\left(V^{\prime}\right)$ for $V^{\prime}=\mathbb{R}^{n}$ with inner product ($\left.\because, \cdot\right)$ then produced $\left.\Phi^{\prime}=\frac{\left(\Phi^{+}\right.}{u}\right)^{\prime}-\left(\Phi^{-}\right)^{\prime}$

$$
\Pi^{\prime}=\left\{\alpha_{1}^{\prime},-, \alpha_{n}^{\prime}\right\}
$$

(assuming $\left.V^{\prime}=\operatorname{span}_{\mathbb{R}}\left(\pi^{\prime}\right) w L O G\right)$,
Then we could create a coxeter matrix $\left(m_{i j}\right)$ via $m_{i j}=\operatorname{order}$ of $s_{\alpha_{i}^{\prime}} s_{\alpha_{j}^{\prime}}$
and Coxeter system (W, S) with geom. rein

$$
W \xrightarrow{\sigma} G L(V) \text { and } B(-, \cdot) \text { on } V .
$$

We then have an isometry $\left(V^{\prime}(-,),\right) \longrightarrow(V, B(;, j))$ $\alpha_{i}^{\prime} \longmapsto \alpha_{i}$ inducing an isomorphism $W^{\prime} \longrightarrow \sigma(W) \underset{\uparrow}{\cong} W$ conclusion: Anything we prove about TiM Part) general loxeter systems (w, S) will apply to real refin groups W^{\prime}.
(2) In particular, when $m_{i j}<\infty$ (and re-index $\sum_{i=1}^{i=1}$) EXAMPLE (1) above applies to $V^{\prime}=\operatorname{span}_{\mathbb{R}}\left\{\alpha_{1}, \alpha_{2}\right\}$ where $B(;)$ restricts to a positive definite inner product, and
$W^{\prime}:=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ acts as a real ref ingroup
$\cong I_{2}\left(m_{i j}\right)=$ dihedral group of order $2 m_{i j}$

We also have $V=V^{\prime} \oplus\left(V^{\prime}\right)^{\perp} \quad$ since
 basis $\left\{e_{1}, e_{2}\right\}$ for V^{\prime} and wite any $x \in V$ as $\left\{\begin{array}{l}\text { basis }\left\{e_{1}, e_{2}\right\} \text { for } V_{\epsilon} \text { and } \\ x=\underbrace{\left(B\left(x, e_{1}\right) e_{1}+B\left(x, e_{2}\right) e_{2}\right)}_{\epsilon V^{\prime}}+\underbrace{\left(x-B\left(x, e_{1}\right) e_{1}-B\left(x, e_{2}\right) e_{2}\right)}_{\epsilon\left(V^{\prime}\right)^{\perp}} \\ V^{\prime} \cap\left(V^{\prime}\right)^{\perp}=\{0\} \text { since } B(,, \cdot) \text { is pos. def. on } V^{\prime}\end{array}\right.$
$\Rightarrow \sigma_{1} \sigma_{2}$ acts with order m on V^{\prime}, as $1_{\left(V^{\prime}\right)^{2}}$ an $\left(V^{\prime}\right)^{\perp}$,
$\Rightarrow \sigma_{1} \sigma_{2}$ acts with order m on V.

This already proves (i), (ii) here (but not (iii) yet):
THEOREM $s_{i} \stackrel{\sigma}{\longrightarrow} \sigma_{i}$ does extend to a
\checkmark (i) homomorphism $W \xrightarrow{\sigma} \operatorname{GL}(V)$
\checkmark (ii) with image in the isometry group $O(V, B(i))$
(iii) and which is infective.

Example

$$
\left.\begin{array}{l}
\text { EXAMPLE } \\
\text { (3) } W\left({ }_{s_{1}}^{\infty} s_{2}\right) \text { i.e. } m_{12}=m_{21}=\infty \\
\Rightarrow B(-,) \text { hos Gram mabix } \\
\text { on } V=\mathbb{R}^{2}
\end{array} \alpha_{1}\left[\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
-1 & 1
\end{array}\right] \begin{array}{l}
1
\end{array}\right] \begin{aligned}
& \text { degenerate, } \\
& \text { ie. singular }
\end{aligned}
$$

with $\lambda:=\alpha_{1}+\alpha_{2} \in V^{\perp}$ since $B\left(\lambda, \alpha_{i}\right)=1+(-1)=0$ fri $i=1,2$
Check: $\sigma_{1}\left(\alpha_{2}\right)=\alpha_{2}-2 B\left(\alpha_{2} \alpha_{1}\right) \alpha_{1}=\alpha_{2}-2(-1) \alpha_{1}=2 \alpha_{1}+\alpha_{2}=\lambda+\alpha_{1}$ $\sigma_{2}\left(\alpha_{1}\right)=\lambda+\alpha_{2}$ by symmetry

$$
\begin{aligned}
\sigma_{2} \sigma_{1}\left(\alpha_{2}\right)=\sigma_{2}\left(\lambda+\alpha_{1}\right) & =\lambda+\alpha_{1}-B\left(\lambda+\alpha_{1} \alpha_{2}\right) \alpha_{2} \\
& =\lambda+\alpha_{1}+2 \alpha_{2}=2 \lambda+\alpha_{2}
\end{aligned}
$$

$\sigma_{1} \sigma_{2}\left(\alpha_{1}\right)=2 \lambda+\alpha_{1}$ by symmetry

$$
\frac{\sigma_{1} \sigma_{2}\left(\alpha_{1}\right)=\alpha 1+u_{1} \text { of summery }}{\left(\sigma_{1} \sigma_{2}\right)^{k}\left(\alpha_{1}\right)=2 k \lambda+\alpha_{1},\left(\sigma_{2} \sigma_{1}\right)^{k}\left(\alpha_{2}\right)=2 k \lambda+\alpha_{2} .}
$$

is easy to check by induction on k.

PICTURE for $W\left(\begin{array}{ll}\stackrel{\infty}{s_{1}} & s_{2}\end{array}\right)$

CONCLUSION: The Coxeler presentation

$$
W=\left\langle S \mid s_{1}^{2}=1=\left(s_{i} s_{j}\right)^{m_{i j}}\right\rangle
$$

always leads to order of $s_{i} s_{j}$ being exactly $m_{i j}$, with no further collapsing.

But why does $W \xrightarrow{\sigma} O(V, B(\cdot, \cdot))$

$$
s_{i} \longmapsto \sigma_{i}
$$

end up irijective?
Need roots $\Phi \ldots$

DEF'N: Starting with the simple roots $\Pi=\left\{\alpha_{1}, \rightarrow \alpha_{n}\right\}$ used to define $V=\mathbb{R}^{n}$ and $B(\cdot, \cdot)$,
and define the root system $\Phi:=\left\{\omega\left(\alpha_{i}\right): \omega \in W\right.$, $\left.\alpha_{i} \in \mathbb{T}\right\}$
really means

$$
\begin{aligned}
& \text { really means } \\
& \sigma(w)\left(\alpha_{i}\right) \in V
\end{aligned}
$$

Since $s_{i}\left(\alpha_{i}\right)=-\alpha_{i} \in \Phi$, one has $\omega s_{i}\left(\alpha_{i}\right)=\omega\left(-\alpha_{i}\right)$

$$
{ }_{\text {so }} \Phi=-\Phi
$$

positive $\Phi^{+}:=\{\alpha \in \Phi$: the unique expansion

$$
\begin{aligned}
& \text { the unique expansion } \\
& \left.\alpha=\sum_{\alpha_{i} \in \Pi} c_{i} \alpha_{i} \text { has } c_{i} \geqslant 0 v_{i}\right\}
\end{aligned}
$$

$\begin{aligned} \substack{\text { negative } \\ \text { boots } \\ \Phi^{-}} & =\left\{\alpha \in \Phi: \quad \alpha=\sum_{\alpha_{i} \in \pi} c_{i} \alpha_{i} \text { with } c_{i} \leq 0 \forall_{i}\right\} \\ & =-\Phi^{+}\end{aligned}$

$$
\Phi \supseteq \Phi^{+} \cdot \Phi^{-}
$$

^not dear yet that this is an equality, but it is...

THEOREM: $\Phi:=\left\{\omega\left(\alpha_{i}\right): \alpha_{i} \in \Pi\right.$, $\left.\omega \in W\right\}$
because (f) $l\left(\omega s_{i}\right)>l(\omega) \Rightarrow \omega\left(\alpha_{i}\right) \in \Phi^{+}$
(b) $l\left(\omega s_{i}\right)<l(\omega) \Rightarrow \omega\left(\alpha_{i}\right) \in \Phi^{-}$
(and hence both of these \Rightarrow are \Leftrightarrow)
This has many consequences, induding-COROUARY: The geometric resin $W \xrightarrow{\sigma} O(V, B(,-))$ is injective.
proof ot COR fum THM: If $\omega \in \operatorname{ker}(\sigma)$ and $\omega \neq 1$, then pick any $s_{i} \in S$ with $l\left(\omega s_{i}\right)<\ell(\omega)$ (say $s_{i}=s_{i}$ in a reduced expression $\omega=s_{i} s_{i} \cdots s_{i l}$). $l=l(\omega)$, ie. minningum $_{\text {langue }}$ longhineppssion One has $\omega\left(\alpha_{i}\right) \in \Phi^{-}$,

$$
s_{0} \omega\left(\alpha_{i}\right) \neq \alpha_{i}\left(\in \Phi^{+}\right) \xi
$$

Left's prove ...
THEOREM:
because
(a) $l\left(\omega s_{i}\right)>l(\omega) \Rightarrow \omega\left(\alpha_{i}\right) \in \Phi^{+}$
(b) $l\left(\omega s_{i}\right)<l(\omega) \Rightarrow \omega\left(\alpha_{i}\right) \in \Phi^{-}$
proof: Note (b) follows from (a):
if $l\left(\omega s_{i}\right)<l(\omega)$ then $l\left(\left(\omega s_{i}\right) s_{i}\right)=l(\omega)>l\left(\omega s_{i}\right)$

$$
\begin{aligned}
s_{0}(a) & \Rightarrow \Phi^{+} \ni \omega s_{i}\left(\alpha_{i}\right)=\omega\left(-\alpha_{i}\right)=-\omega\left(\alpha_{i}\right) \\
& \Rightarrow \Phi^{-} \ni \omega\left(\alpha_{i}\right)
\end{aligned}
$$

To prove (a), induct on $l(\omega)$ with base case $l(\omega)=0$ having $\omega=1$, where $l\left(\omega s_{i}\right)=1>0=l(\omega)$ and $\omega\left(\alpha_{i}\right)=\alpha_{i} \in \Phi^{+}$

In the inductive step, find some $s_{j}\left(\neq s_{i}\right)$ with $l\left(\omega s_{j}\right)=l(\omega)-1$, ie., picking s_{j} to be rightmost in some reduced expression $\omega=s_{j_{1}} s_{2} \cdots . S_{j_{(\omega)}}$.

Let's re-index $s_{1}=s_{i}, s_{2}=s_{j}$ so $l\left(\omega s_{1}\right)=l(\omega)+1$

$$
l\left(\omega s_{2}\right)=l(\omega)-1
$$

NEN IDEA: parabolic factorization
Factor $w=v \cdot u$
with (a) $u \in W_{\left\{s_{1}, s_{2}\right]}:=\left\langle\left\{s_{1}, s_{2}\right\}\right\rangle$ parabolic subgroup
(b) $l(w)=l(v)+l_{\left\{s, 5_{2}\right\}}$
$(u) \simeq \operatorname{longh}$ wong
(c) V shortest $(l(v)$ smallest) with (a), (b)

We hopeto apply induction on length to v.
Note $l(v) \leq l(\omega)-1 \quad$ since $\omega=\omega S_{2} \cdot s_{2}$
is one such factorization as in $(a),(5)$.
We claim $l\left(u s_{1}\right)>l(v)$, else if $l\left(v s_{1}\right)<l(\omega)$ then

$$
\begin{aligned}
& l(\omega)=l(v u)=l\left(v s_{1} \cdot s_{1} u\right) \\
& \leq l\left(v s_{1}\right)+l(\delta, u)
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \left.x \in W_{[S, 5,5}\right] \\
& \leq l(v)-1+l_{\left\{s_{1}, 5_{2}\right\}}(u)+1 \\
& =l(v)+l_{[5, j]}(u)=l(\omega)
\end{aligned}
$$

forcing equality, throughout, induding here so $v s_{1}$ beats r, a contradiction.

Same argument shows $l\left(v s_{2}\right)>l(v)$.
Hence induction in THM shows $v\left(\alpha_{1}\right), v\left(\alpha_{2}\right) \in \Phi^{+}$, and hence any $\beta \in \Phi \cap\left(\mathbb{R}_{20} \alpha_{1}+\mathbb{R}_{30} \alpha_{2}\right)$ also has $v(\beta) \in \Phi^{+}$.
Since $w=v \cdot u \Rightarrow w\left(\alpha_{1}\right)=v \cdot u\left(\alpha_{1}\right)$,
it remains to show $u\left(\alpha_{1}\right) \in \mathbb{R}_{\geq 0} \alpha_{1}+\mathbb{R}_{\geq 0} \alpha_{2}$,
which weill argue with some dihedral geometry inside $\mathbb{R} \alpha_{1}+\mathbb{R}_{\alpha_{2}}$?
Note $\ell_{\{1}\left(u s_{1}\right)>\ell_{\left[r_{2}\right]}(u)$, else

$$
\begin{aligned}
l\left(\omega s_{1}\right)=l\left(v u s_{1}\right) & \leq l(v)+l\left(u s_{1}\right) \\
& \leq l(v)+l_{\left[s_{1}, s_{2}\right]}\left(u s_{1}\right) \\
& <l(v)+l_{\left\{s_{1}, s_{2}\right\}}(u)=l(\omega) \sum_{l\left(w s_{1}\right) \geq l(v)}
\end{aligned}
$$

So a shortest $\left\{s_{1}, s_{2}\right\}$-word for u ends in s_{2}, and iscther

$$
u=s_{1} s_{2} s_{1} s_{2}-s_{1} s_{2}=\left(s_{1} s_{2}\right)^{k}
$$

or $u=s_{2} s_{1} s_{2} s_{1} s_{2}-s_{1} s_{2}=s_{2}\left(S_{1} s_{2}\right)^{k}$ for some k,
with $k<\frac{m}{2}$ if $m=m_{12}<\infty$, she $\underset{m \text { leffews }}{s_{1} s_{2} s_{1} s_{2}}=\underset{m \text { letters }}{s_{2} s_{1} s_{2} s_{1} \cdots}$

CASE 1. $m=m_{12}=\infty$. We already computed that

$$
\begin{aligned}
\left(\delta_{1} \delta_{2}\right)^{k}\left(\alpha_{1}\right) & =\alpha_{1}+2 k \lambda \quad \text { where } \lambda:=\alpha_{1}+\alpha_{2} \\
\text { so } s_{2}\left(s_{1} s_{2}\right)^{k}\left(\alpha_{1}\right) & =\alpha_{1}+2 k \lambda-2 B\left(\alpha_{1}+2 k \lambda, \alpha_{2}\right) \alpha_{2} \\
& =\alpha_{1}+2 k \lambda+2 \alpha_{2}=\alpha_{2}+(2 k+1) \lambda
\end{aligned}
$$

both lying in $\mathbb{R}_{30} \alpha_{1}+\mathbb{R}_{30} \alpha_{2}$, as desired.
CASE 2. $m=m_{12}<\infty$. Letting $Q:=\frac{\pi}{m}=$ dihedral angle of $H_{1}=\alpha_{1}^{\perp}, H_{2}=\alpha_{2}^{2}$, then $s_{1} s_{2}$ rotates $\frac{2 \pi}{m}$ clockwise here:

$$
\text { (的 } 1 \beta_{1}^{s}=s_{2}\left(s_{1} s_{2}\right)^{k}\left(\alpha_{1}\right)=s_{2}(\beta)
$$

$=$ rotation of α_{1} through $k \cdot \frac{2 \pi}{m}(<\pi)$
α_{2} Can check both β, β^{\prime} lie in $\mathbb{R}_{30} \alpha_{1}+R_{20} \alpha_{2}$, as desired. TiA

