Parabolic subgroups and longest element
We've already encountered...
DEF'N: For JCS inaCoxeter system (W, S), call the subgroup they generate $\langle J\rangle=: W_{J}$ a (standard) parabolic singoroup of W
PROP: $\left(W_{J}, J\right)$ is in itself a Coxeter system. with expected Coxeter matrix/diagram $\left(m_{i j}\right){ }_{i j j e J}$. proof: Buid the Coxester system (W ', J) that has that expected matrix ($\left.m_{i j}\right)_{i, j \in J}$ and its own geom. rep'n. $W^{\prime} \xrightarrow{\sigma^{\prime}} G L\left(V^{\prime}\right)$ where $V^{\prime} \cong \mathbb{R}^{\# J T}$. But then note that V^{\prime} is isometric to the \#J-dimil subspace $V_{J}:=\operatorname{span}_{\mathbb{R}}\left\{\alpha_{j}\right\}_{j \in \mathcal{J}} \subset V$ on which W_{J} acts faithfully, and one obtains an isomorphism

$$
\begin{gathered}
W^{\prime} c \sigma^{\prime} \\
i_{S} \\
\dot{S}^{\prime}\left(V^{\prime}\right) \\
W_{J} \stackrel{\sigma}{\hookrightarrow} \\
\| L\left(V_{J}\right)
\end{gathered}
$$

Let's also take care of our earlier worry about $l_{J}(\omega) \geq \ell(\omega)$:
PROPOSITION: When $\omega \in W_{J}, l_{J}(\omega)=l(\omega)\left(=l_{5}(\omega)\right)$. proof: Starting with any word $\omega=s_{j_{1}} s_{j_{2}} \cdots s_{j e}$ that only uses $s_{j} \in J$, the Deletion Condition lets us repeatedly omit letters to get to a reduced word (of (length $l(\omega)$) still only wing $s_{j} \in J$,

COROLCARY: For $s_{i} \in S, \quad s_{i} \in W_{J} \Longleftrightarrow s_{i} \in J$ so the map $\left.2^{S} \longrightarrow \begin{array}{c}\text { standard parabolic? } \\ \text { subgroups }\end{array}\right]$

$$
J \longmapsto W_{J}
$$

is a bijection.
(In particular, S minimally generates W.)
proof: If $s_{i} \in W_{J}$, then

$$
1=l\left(s_{i}\right)=l_{j}\left(s_{i}\right) \Rightarrow s_{i} \in J
$$

A ubiquitous tool that we've alreadyencomitered:
THEOREM (Parabolic factorization)
Given a Coxeter system (ω, S) and $J \subseteq S$, every wAW has a unique factorization $w=v \cdot u$
where (a) $u \in W_{J}$
and (b) $v \in W^{J} \stackrel{\text { DEFT }}{=}\{v \in W: l(v s)>\ell(v) \forall s \in J\}$.
Furthermore it satisfies ...
(c) $l(w)=l(v)+l(u)$ (length-additive)
(d) $l(v)=\min \left\{l\left(w^{\prime}\right): \omega^{\prime} \in \omega W_{J}\right\}$
(e) v is the unique element of the coset wW achieving this minimum length.

REMARK: As usual, $\omega \leftrightarrow w^{-1}$ gives this version. THM: Every wow has a unique factorization

$$
w=u \cdot v
$$

with
(a) $l(w)=l(a)+l(v)$
(b) $x \in W_{J}$
(c)

$$
\begin{aligned}
& v \in J_{W}=\{v \in W: l(s v)>\ell(v) \forall s \in J\} \\
&=\text { min length coset reps } \\
& \text { for } W_{J} w
\end{aligned}
$$

Before proving it, let's understand it for...
EXAMPLE

$$
\begin{aligned}
& \sigma_{n}=W\left(\begin{array}{llll}
0 & 0 & \cdots & 0 \\
s_{1} & s_{2} & \cdots & s_{m-2} \\
s_{n-1}
\end{array}\right) \\
& \left\{\begin{array}{ccc}
(11 \\
(12) & (1) \\
(23)
\end{array}, \cdots, \quad, \quad(n-1, n)\right\}=S
\end{aligned}
$$

For $J \subseteq S, W_{J}=\tilde{G}_{\alpha_{1}} \times \tilde{S}_{\alpha_{2}} \times \ldots \times \tilde{S}_{\alpha_{m}}=: S_{\alpha}$
for a composition $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of n subgroup

$$
\begin{align*}
& \text { ecg. } \tilde{U}_{n}=W\left(\begin{array}{ccccccc}
s_{1} & s_{2} & s_{3} & s_{4} & s_{3} & s_{0} & s_{7} \\
s_{8} \\
0 & - & s_{8} \\
(12) & (23) & (34) & 0 & 0 & 0 & 0 \\
(50) & (56) & (67) & (38) & (81)
\end{array}\right)=W \\
& J=\left\{\begin{array}{c}
s_{1}, s_{2}, \\
s_{4}, s_{5}, \delta_{6}, \\
l_{1}
\end{array}\right\} \\
& \left.\begin{array}{l}
s_{4}, \delta_{5}, \delta_{6}, \\
s_{8}
\end{array}\right\} \\
& {\underset{U}{(3,4,2)}}=W\left(\begin{array}{cc}
s_{1} & s_{2} \\
0 & 0 \\
(12) & (23)
\end{array}\right. \tag{5}\\
& =\sigma_{3} \times \sigma_{4} \times \sigma_{2} \\
& =\widetilde{G}_{\{1,23\}} \times \widetilde{C}_{\{45,6,73} \times \tilde{E}_{\{8,9\}} \\
& \left.\begin{array}{ll}
s_{4} s_{5} s_{6} & s_{8} \\
0-50 & 0 \\
(53)(56)(97) & (8)
\end{array}\right)=W_{J}
\end{align*}
$$

Parabolic factorizations of $w=\left(\begin{array}{lll}1 & 23456789 \\ 719285463\end{array}\right)$:

$$
\begin{aligned}
& =v \cdot u \text { in } W^{J} \cdot W_{J} \\
& w=\binom{123456789}{719285463}=\binom{123456789}{123754698}\binom{123456789}{418295673} \\
& =u \cdot v \text { in } W_{J} \cdot{ }^{\top} W \text { a shuffle of increasing } \text { alphabets } 123 \Psi 456749
\end{aligned}
$$

THEOREM (Parabolic factorization)
Given a Coxeter system (w, s) and $J \leqslant S$,
every $\omega \in W$ has a unique factorization
$W=V \cdot u$
$w=v \cdot u$
where (a) $u \in W_{J}$
and (6) $v \in W^{J} \stackrel{\text { Div }}{=}\{v \in W: Q(v)>\ell(v) \forall s \in J\}$.
Furthermore it satisfies...
(c) $l(w)=l(v)+l(u) \quad($ length -additive)
(d) $l(v)=\min \left\{\ell\left(w^{\prime}\right): \omega^{\prime} \in \omega W_{J}\right\}$
(e) v is the unique element.
of the coset $w W_{J}$ achieving chis mininumin length
proof: Existence: Pick any $v \in \omega W_{J}$ of minimum length,
so $l(v s)>l(v) \quad \forall s \in J$ and hence $v \in W^{J}$.
Then $w=v \cdot u$ for some $u \in W_{J}$.
To show (c), note $l(\omega) \leq l(v)+l(u)$. But we claim
this must be an equality: otherwise,
write $\left\{\begin{array}{l}r=s_{i_{1}} s_{i_{2}}-s_{i_{l(v)}} \text { reduced } \\ u=s_{j_{1}} s_{j_{2}}-s_{j_{l(u)}} \text { reduced and } s_{j} \in J \text {, }\end{array}\right.$
and Deletion Condition says we can omit two generators from

$$
\text { tors from } w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{e(v)}} \cdot s_{j_{1}} s_{j_{2}} \cdots s_{j e(u)} \text { to shorten it. }
$$

Neither one can come from V, by our choice of v, so both would come from u, contradicting $u=s_{j_{1}} s_{j_{2}} \cdots s_{j_{\ell}(u)}$ reduced.

Uniqueness: If we had another such factorization

$$
\begin{aligned}
& w=v^{\prime} \cdot u^{\prime} \text { with } u^{\prime} \in W_{J} \\
& v^{\prime} \in W^{J}
\end{aligned}
$$

then $v^{\prime} \in W W_{J}$ shows $v^{\prime}=v \cdot u^{\prime \prime}$ with $n^{\prime \prime} \in W_{J}$ and V achieving min length in $w W_{J}$ from before and $l\left(v^{\prime}\right)=l(v)+l\left(u^{\prime \prime}\right)$, from the proof of (c).
But then $l\left(v^{\prime} s\right)>l\left(v^{\prime}\right) \forall s \in J$
forces $u^{\prime \prime}=1$: else pick $s \in J$ with $l\left(u^{\prime \prime} s\right)<l\left(n^{\prime \prime}\right)$ and get the contradiction

$$
\begin{aligned}
\text { and get } \\
\begin{aligned}
l\left(v^{\prime} s\right)=l\left(v u^{\prime \prime} s\right) & \leq l(v)+l\left(u^{\prime \prime} s\right) \\
& <l(v)+l\left(u^{\prime \prime}\right)=l\left(v^{\prime}\right)
\end{aligned}
\end{aligned}
$$

CONCLUSION: $V^{\prime}=V$,
and every $v \in W^{J}$ is the unique element of $v W_{J}$ achieving the minimum length in that coset.

The uniqueness of length addiove parabolic factorization $\begin{aligned} W & =W^{J} \cdot W_{J} \\ w & =v \cdot u\end{aligned}$

$$
\begin{gathered}
w=v \cdot u \\
l(\omega)=l(v)+l(n)
\end{gathered}
$$

has consequences for length-generating functions..

DEF' N: Given a Cox. system (w, s)
and $A \subseteq W$, define $A(g):=\sum_{W \in A} q^{l(\omega)} \in \mathbb{Z}\left[\left[_{q}\right]\right]$
EXAMPLES: $W(q)=\sum_{\omega \in W} g^{l(\omega)}$
(1) For $W=W\left(\begin{array}{ll}0 & m_{1} \\ s_{1} & s_{2}\end{array}\right)=I_{2}(m)$,

If $m<\infty$, one has

$$
\begin{aligned}
& \Rightarrow W(q)=q^{0}+2 q+2 q^{2}+2 q^{3}+\cdots+2 q^{m-1}+q^{m} \\
& =(1+q)\left(1+q+q^{2}+\ldots+q^{m-1}\right) \\
& =[2]_{q}[m]_{q}
\end{aligned}
$$

If $m=\infty$, one has

$$
\begin{aligned}
W(q) & =1+2 q+2 q^{2}+2 q^{3}+\cdots \\
& =1+2 \frac{q}{1-q}=\frac{1-q+2 q}{1-q}=\frac{1+q}{1-q}
\end{aligned}
$$

(2) For $W=W\left(\frac{3_{0} 3^{3}}{s_{1} s_{2}} \ldots \frac{3}{s_{n 1}}\right)=\sigma_{n}$,

$$
\begin{aligned}
& W(q)=\sum_{\omega \in W} q^{p(\omega)}=\sum_{\omega \in G_{n}} q^{i n v(\omega)} \\
& \quad \text { CAM }\left(1+q+q^{2}+\ldots+q^{n-1}\right) \sum_{\hat{\omega} \in G_{n-1}} q^{\operatorname{inv}(\hat{\omega})}=[n] \cdot \hat{q} \cdot \hat{W}(q) \\
& \text { where } \hat{W}=G
\end{aligned}
$$ where $\hat{W}=G_{n-1}$

since for each $\hat{\omega} \in \sigma_{n-1}$, can add new letter n before $n-1$ letters, creating $n-1$ inversions or $n-2$ or $:$

$$
\begin{aligned}
& \text { ecg. } n=4 \\
& \text { COROnARY: } W(q)=[n]_{\sigma}[n-1]_{\sigma} \cdots[3]_{\sigma}[2]_{q}[1]_{\sigma} \\
& \left.\begin{array}{c}
\text { (by induction } \\
\text { in }
\end{array}\right) \text { for } W=\sigma_{n}=:[n]!q
\end{aligned}
$$

PROPOSTIION: For (w, S) and $J \subseteq S$ one has $\quad W(q)=W^{J}(q) \cdot W_{J}(q)$ or equralently $W^{\top}(q)=\frac{W(q)}{W_{丁}(q)}$ proof: Comes from unique length-additive factorization

$$
\begin{aligned}
& \begin{aligned}
\omega & =v \cdot u \\
l(\omega) & =l(v)+l(u) \text { with } v \in W^{J}, u \in W_{J}
\end{aligned} \\
& \Rightarrow W(g)=\sum_{\omega \in W^{\prime}} g(\omega)=\sum_{\substack{(v, u) \\
e W^{J} \times W_{J}}} g^{l(v)+l(u)}=\sum_{v \in W^{\top}} g^{l(v)} \sum_{n \in W_{J}}^{l(n)} \\
&=W^{J}(g) \cdot W_{J}(q) .
\end{aligned}
$$

ExAMPLES (1) For $W\left(\underset{\substack{2 \\ i_{2} \\ \hline \\ p_{2}}}{\stackrel{n}{0}}\right)=I_{2}(m)$, take $J=\left\{s_{1}\right\}$

$$
\begin{aligned}
& W(q)=[2]_{q}[m]_{q} \quad \text { if } m<\infty \\
& =(1+q)\left(1+q+q^{2}+\ldots+q^{m-1}\right) \\
& =W_{[0,5}(q) \cdot W^{[5.3}(q)
\end{aligned}
$$

$$
W_{\left\{s_{1}\right\}}=\left\{1, s_{1}\right\} \quad W^{\left\{s_{1}\right\}}=\left\{1, s_{2}, s_{2} s_{2}, s_{2} s_{1} s_{2}, \ldots \ldots\right\}
$$

(and same when $m=\infty, W(q)=\frac{1+q}{1-q}=(1+q)\left(1+q^{2}+q^{2}+\ldots\right)$)

(2) When $W=W\left(\begin{array}{cccc}0_{1}^{3} & 0^{3} & \cdots & \frac{3}{s_{1}} \\ s_{2} & & -0 \\ S_{n-1}\end{array}\right)=G_{n}$, we saw
any $J \subseteq S$ cowresponds to $W_{J}=\sigma_{\alpha}=G_{\alpha_{1}} \times G_{\alpha_{2}} \times \ldots \times G_{\alpha}$ for $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ some composifon of n.
Then $W(q)=\sigma_{n}\left(q_{q}\right)=[n]!q$

$$
\begin{aligned}
& W_{J}(q)=G_{\alpha_{1}}(q) \cdots G_{\alpha_{m}}(q)=\left.\left[\alpha_{1}\right]!q_{q}\left[\alpha_{2}\right]_{0 q} \cdots\left[\alpha_{m}\right]\right|_{q} \\
& \text { and } W^{J}(q)=\frac{W(q)}{W_{J}(q)}=\frac{[n]!q_{q}}{\left.\left[\alpha_{1}\right] \cdot q \ldots\left[\alpha_{n}\right]\right]_{q}}=\left[\begin{array}{c}
n \\
\alpha_{1} \\
\alpha_{2} \ldots
\end{array} \ldots \alpha_{m}\right]_{q} \\
& \text { g-mutinomial } \\
& \sum_{\text {shuffles } \omega \text { of }} q^{i n v(\omega)}=\sum_{i} q^{i n v(\omega)} \\
& \text { shuntfes } \omega \text { of multiset shuffles } \omega \text { of } \\
& \begin{array}{lll}
\left.1<2<\alpha_{4}<2<\alpha_{1}\right) & \alpha_{1} & 1 / s \\
\alpha_{0}+1<\alpha_{1}+\alpha_{2}, & \alpha_{2} & 2 \text { 's }
\end{array} \\
& \begin{array}{lll}
\alpha_{2} & 2 & \\
\alpha_{3} & 3^{\prime} s
\end{array} \\
& \text { e.g. } n=4 \quad \alpha=(2,2) \\
& \stackrel{s_{1}}{s_{1}} s_{2} s_{3} W=G_{4} \\
& 0 \quad 0 W_{J}=\sigma_{2} \times \sigma_{2} \\
& W^{\top}(q)=J W(q)=\frac{[4]!q_{q}}{[2]![2]!q_{q}}=\left[\begin{array}{c}
4 \\
2,2
\end{array}\right]_{q} \\
& =\frac{[4]_{q}(3]_{q}}{[2]_{q}[1]_{q}}=\frac{\left(1+q+q^{2}+q\right)\left(1+q+q^{2}\right)}{(1+q)(1)} \\
& =\left(1+q^{2}\right)\left(1+q+q^{2}\right)^{1+q} \\
& =1+q+2 q+q^{3}+q^{4}
\end{aligned}
$$

Conjugacy of simple systems \& longest element
Recall that $\Pi=\left\{\alpha_{1},-, \alpha_{n}\right\} \subset \Phi$
(i) are a basis for V and
(ii) $\Phi^{+}:=\mathbb{R}_{20} \cdot \pi \cap \Phi$
has $\Phi=\Phi^{+} \dot{U}^{5}-\Phi^{+}$disjontunion
DE'N: Call any subset $\pi \subset \Phi$
satisfying (i), (ii) a simple system for Φ
(and Φ^{+}its associated positive system)
NOTE: Π uniquely determines Φ^{+}by (ii), but also It miquely determines π by

$$
\left.\Pi=\left\{\beta \in \Phi^{+}: \beta \neq \sum_{i=1}^{m} c_{i} \beta_{i} \text { with } \beta_{i} \in \Phi^{+} \backslash \mid \beta\right\} \text { and ant least } \begin{array}{c}
\text { two } c_{i}>0
\end{array}\right\}
$$

Simple systems are not unique in general, since $\forall \omega \in W$, WIT (with $\omega\left(\Phi^{+}\right)$) gives another one

ω

When W is finite, there are no others:
proposition: A finite W acts simply transitively on the simple systems $\Pi c \Phi$, i.e. any two π, π^{\prime} have a unique we W with $\omega(\pi)=\pi^{\prime}$.
REMARK: False if $\# W=\infty$, egg.

There is no $\omega \in W$ with $\omega(\pi)=\pi^{\prime}$.
proof: For transivity, given π, π^{\prime} induct on $\# \Phi^{+} \cap-\left(\Phi^{+}\right)^{\prime}(<\infty$ sine $\underset{\text { is }}{ } W$ BASE (ANE: \# $\Phi^{+} \cap-\left(\Phi^{+}\right)^{\prime}=0$

$$
\begin{aligned}
& \Rightarrow \Phi^{+}=\left(\Phi^{+}\right)^{\prime} \\
& \Rightarrow \pi=\pi^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& W=I_{2}(\infty)
\end{aligned}
$$

inductive step: if \# $\Phi^{+} n-\left(\Phi^{+}\right)^{\prime}=: r>0$, then \exists some $\alpha_{i} \in \Pi \cap-\left(\Phi^{+}\right)^{\prime}$.
But then $s_{i}\left(\Phi^{+} \backslash\left\{\alpha_{i}\right\}\right)=\Phi^{+} \backslash\left\{\alpha_{i}\right\}$ and $s_{i}\left(\alpha_{i}\right)=-\alpha_{i} \in\left(\Phi^{+}\right)^{\prime}$,

$$
\text { so } \quad s_{i}\left(\Phi^{+}\right) \cap-\left(\Phi^{+}\right)^{\prime}=r-1
$$

and by induction, $\exists w \in W$ with $w s_{1}\left(\Phi^{+}\right)=\left(\Phi^{+}\right)$.
Simple transitivity then follows because
if $\omega \Pi=\Pi$ then $\omega\left(\alpha_{i}\right) \in \Pi \subset \Phi^{+} \quad \forall \alpha_{i} \in \Pi$

$$
\begin{aligned}
& \Rightarrow l\left(\omega s_{i}\right)>1 \quad \forall s_{i} \in S \\
& \Rightarrow \omega=1
\end{aligned}
$$

DEFIN COROLCARY: In a finite refingroup W or in any Coxeter system (W, S) with W finite, \exists a unique element, called the longest element ω_{0}, characterized by any of these properties:
(a) $\omega \Pi=-\pi$
(b) $\omega \Phi^{+}=\Phi^{-}$
(c) $N(\omega)=\Phi^{+}$
(d) $l(\omega)=\left|\Phi^{+}\right|=|T|$
(e) $l\left(\omega s_{i}\right)<l(\omega) \quad \forall s_{i} \in S$
(f) $\omega\left(\alpha_{i}\right) \in \Phi^{-} \forall \alpha_{i} \in \Pi$ i.e. $\omega(\pi) \subset \Phi^{-}$
proof: Since $-\Pi$ is another simple system,
simple transitivity of W shows \exists a unique $\omega_{0} \in W$ with (a) $\sim \Pi=-\Pi$.
Then check $(a) \Leftrightarrow(b) \Rightarrow(c) \Rightarrow(d) \Rightarrow(e) \Rightarrow(f)$
are all pretty easy.

EXAMPLES
(1)

$$
\begin{aligned}
& \text { IDLES } \\
& \left.\begin{array}{rl}
I_{2}(m) & \left(m \left(\frac{m}{o}\right.\right. \\
S_{1} \beta_{2}
\end{array}\right) \text { has } \omega_{0}=\underbrace{s_{1} s_{1} s_{1}-\cdots}_{m}=\underbrace{s_{2} s s_{2} \ldots .}_{m} \\
& =\left\{1, s_{1}, s_{2}, s_{2} s_{2} s_{2}, \ldots, \omega_{0}\right\} \text { if } m<\infty
\end{aligned}
$$

$l\left(\omega_{0}\right)=m=|T|=|\Phi+|$
$\omega_{0}= \begin{cases}\text { rotation through } 180^{\circ} & \text { if } m \text { even } \\ \text { a reflector } & \text { if }\end{cases}$
(and if $m=\infty$,
$I_{2}(\infty)$ contains no ω_{0})

(2) $\sigma_{n}=W\left(\begin{array}{lll}0_{1} \\ S_{1} & r_{2}^{3} & \cdots\end{array} \frac{3}{S_{n+1}}\right)$
has $\omega_{0}=\left(\begin{array}{ccccc}1 & 2 & 3 & - & n-1 \\ n & n-1 & n & n \\ n & \cdots & 2 & 1\end{array}\right)$ with $\delta\left(\omega_{0}\right)=\operatorname{inv}\left(\omega_{0}\right)=|T|=\left|\Phi^{+}\right|$

$$
=\#\{(i, j): 1 \leq i<j \leq n\}=\binom{n}{2}
$$

Having an element like $\omega_{0} \in W$ actually characterizes the finite case:
PROPOSTITIN: For a Cox. sys. (W, S)
$\exists \omega \in W$ with $\omega(\pi)=-\pi \Leftrightarrow W$ is finite.
proof: We showed (\Leftarrow) already.

$$
\begin{aligned}
\text { For }(\Rightarrow), \omega(\pi)=-\Pi & \Rightarrow \omega\left(\Phi^{+}\right)=-\Phi^{+} \\
& \Rightarrow N(\omega)=\Phi^{+} \\
& \Rightarrow \Phi^{+} \text {is finite } \\
& \Rightarrow \Phi \text { is finite }
\end{aligned}
$$

$\Rightarrow \widetilde{S}_{\Phi}$ is a finite group
But the permutation repin $W \longrightarrow{S_{\Phi}}$ on rots

$$
\omega \longmapsto(\beta \stackrel{\$}{\longleftrightarrow} \omega(\beta))
$$

is faithful (injective): if $\omega(\beta)=\beta \forall \beta \in \Phi$

$$
\text { then } \omega\left(\alpha_{i}\right)=\alpha_{i} \quad \forall \alpha_{i} \in \Pi
$$

So $\omega=1$.
Hence $\# W \leq\left|\Xi_{\Phi}\right|=|\Phi|$! (finite) 四

