To understand more about (W,S) and
when W is finite, let's understand some
apparent ways in which the geom. rep'n
W => GL(V)
would fail to be include,
i.e. J. W. stable subspaces
$$ij \in W' \notin W$$
.

PROPOSITION: If the Cox. diagram
for
$$(W,S)$$
 is disconnected, say
 $S = J \sqcup S \setminus J$ with $m_{ij} = 2 \forall s; \in J$
 $s; \in S \setminus J$
then $W \cong W_J \times W_S / J$ and the
geom. rep'n is a direct sum:
 $W \xrightarrow{\sigma} V$
 IS
 $W_J \times W_{S/J} \xrightarrow{\sigma} U$
 $V_J \oplus V_{S/J}$

Proof: One has
$$W_J$$
 and W_{SJ} centralizing
each other, since their generators commute $s_is_j = s_js_i$.
Hence W_J , $W_{SJ} \rightarrow W$, since $S = J \cup S/J$.
and $W = W_J \cdot W_{SJ}$, since $S = J \cup S/J$.
Need to dreck $W_J \cap W_{S/J} = \{1\}$:
if $w \in W_J \cap W_{S/J}$ and $w \neq 1$,
pick $s_j \in J$ with $l(ws_j) < l(w)$, so $s_j \in T_R(w)$.
But picking a reduced word for w in W_{SJ}
shows $T_R(w) = W_{S/J}$, so $s_j \in J \cap W_{S/J}$
In the geom. rep in $W \xrightarrow{\sim} GL(W)$
one has $V_J = \text{span}_R[\alpha_j]_{s_j \in J}$ poindwise fixed by $W_{S/J}$
 $V_{SJ} = \text{span}_R[\alpha_j]_{s_j \in S \setminus J} - w - by W_J$
since $\sigma_i(\alpha_j) = \alpha_j - 2B(\alpha_j, \alpha_i)\alpha_i$ if $m_j = 2$
 $= \alpha_j$
Hence $V = V_J \oplus V_{S/J}$ is the direct sum
of the geom rep ins $W_J \rightarrow GU(V_J)$

DEF'N: Call (W,S) an irreducible Cox. system if the Cox, diagram is connected; reducide dhemise.

proof: When
$$(W,S)$$
 has isomeded low diagrams
we daim any proper, W-stable subspace
 $V' \subseteq V$ cannot contain any of the
simple voots $TT = \frac{1}{2} d_{1,1} - \frac{1}{2} d_{1,2} - \frac{1}{2} d_{1,2$

COROLLARY: When (W,S) is medneible, the only $\Psi \in End(V)$ that commute with the action of W -> GL(V) are the scalars $\Psi = c \cdot 1_v$, ceR. NB: We comit just apply Schuris Lemma -V may not be an inveducible W-repug and IR is not algebraically closed. proof: Given le End (V) commuting with W, pick any sies, and then 4 acts on the line Rai, since $\varphi(\alpha_i)$ lies in the (-1)-eigenspace for S_i : $S_{i}(\varphi(\alpha_{i})) = \varphi(S_{i}(\alpha_{i})) = \varphi(-\alpha_{i}) = - \varphi(\alpha_{i}).$ Then 4 scales Roi: by some c c R, and we claim $Q = c \cdot l_V$ since $V' = ker(Q - c \cdot l_V) \subseteq V$ is a <u>W-stable</u> subspace, but can't lie inside VI since it writins Rai. EXERCISE: Why? So V'= {of by PROP (a) above, meaning Q= c· 1v I To understand more about when (W,S) has W finite we need a try bit of (punt-set) topology commy from ...

The chambers and Tits cone inside
$$V^{\pm}$$

Aspects of the geometry for how W and Wy act
are easier to follow in V* them in V P
Given (W,S), we created V with R-basis
 $TT = \{\alpha_{1,2},...,\alpha_{n}\}$ and $B(\cdot, \cdot)$
to make the geom regin $W \xrightarrow{\sigma} GL(V)$
Now create $V^{\pm} = \{R\text{-linear hunchonals } f:V \rightarrow R\}$
evith dual basis $\{f_{2,3},...,f_{n}\}$
(i.e. $f_{1}(\alpha_{3}) + \begin{cases} 1 & i & i & i \\ 0 & else. \end{cases}$) to make the
contragredient geom regin $W \xrightarrow{\sigma} GL(V^{*})$
 $= f \circ \omega_{1}$
In matrix terms, $V \xrightarrow{\omega_{1}} V \xrightarrow{\sigma} R$
If $\sigma(w) = i \begin{bmatrix} A(w) \\ 0 \end{bmatrix}$ then $\sigma(w) = i \begin{bmatrix} A(w) \\ A(w) \end{bmatrix}$
DEF'N: The (por) fundamental chamber $C = V^{*}$
 $C := R_{20}f_{1} + ... + R_{20}f_{n} = \{feV^{*}; f(\alpha_{1}) \geq 0 \forall \alpha_{1} \in TI\}$
Hs closure is
 $D := C := R_{20}f_{1} + ... + R_{20}f_{n} = \{feV^{*}; f(\alpha_{1}) \geq 0 \forall \alpha_{1} \in TI\}$
The Tits cone $U := \bigcup w(D) = V^{*}$

EXAMPLES (i)
$$W = \mathcal{G}_{3} = I_{2}(3) = W(\frac{q^{2}}{q^{2}}, \mathcal{G}_{2})$$

 $V = \mathbb{R}^{2}$ which beams $\{\alpha_{1}, \alpha_{2}\}$, $\mathcal{B}(\alpha_{1}, \alpha_{2}) = -\cos[\frac{\pi}{3}] = -\frac{1}{2}$
and $G: W \rightarrow GU(V)$ has
 $G_{1} = a_{1}^{d} \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}$, $G_{2} = a_{1}^{d} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$, $G_{2} = a_{1}^{d} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$, $G_{2} = a_{1}^{d} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{1}^{d} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{1}^{d} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{1}^{d} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{1}^{d} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{1}^{d} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{1}^{d} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{1}^{d} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{2}^{d} G_{1}^{d} = a_{2}^{d} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{2}^{d} G_{1}^{d} = a_{2}^{d} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{2}^{d} G_{1}^{d} = a_{2}^{d} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{2}^{d} G_{1}^{d} = a_{2}^{d} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{2}^{d} G_{1}^{d} = a_{2}^{d} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{2}^{d} G_{1}^{d} = a_{2}^{d} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{2}^{d} G_{1}^{d} = a_{2}^{d} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $G_{2} = a_{2}^{d} G_{1}^{d} =$

(2)
$$W = I_{3}(\omega) = W(\frac{\omega}{s_{1}}, \frac{\omega}{s_{2}})$$

 $V = R^{2}$ with basis $|\alpha_{1}, \alpha_{2}|$, $B(\alpha_{1}, \alpha_{2}) = -\omega s\binom{|m|}{\omega} = -1$
and $W \xrightarrow{\sigma} GL(V)$ has
 $\sigma_{1} = 4\left[\frac{1}{2}, \frac{2}{2}\right]$, $\sigma_{2} = 4\left[\frac{1}{2}, \frac{2}{2}, -1\right]$
 $\Rightarrow \sigma_{1}^{*} = f_{1}\left[\frac{1}{2}, \frac{2}{2}\right]$, $\sigma_{2}^{*} = f_{1}\left[\frac{1}{2}, \frac{2}{2}, -1\right]$
 $g_{2}^{*} = f_{1}\left[\frac{1}{2}, \frac{2}{2}\right]$, $g_{3}^{*} = f_{1}\left[\frac{1}{2}, \frac{2}{2}\right]$
 $(\sigma_{2})^{*}$
 $(\sigma_{2})^{*}$

These chambers
$$W(C)$$
 (:= $\sigma^{*}(\omega)(C)$) inside the
These one MV^{*} let us reinterpret yet again
 $T_{L}(\omega)$:= $\{t \in T : L(t\omega) < l(\omega)\}$ left-associated
reflections of ω
= $\{t_{\beta} : \beta \in \mathbb{F}^{+}$ and $\omega^{*}(\beta) \in \mathbb{F}^{-}\}$
Every $\beta \in \mathbb{F}^{+}$ disjointly decomposes V^{*} into
a hyperplane H_{β}° := $\{t \in V^{*} : f(\beta) = \circ\}$
and two
open haltopares H_{β}^{+} := $\{f \in V^{*} : f(\beta) > \circ\}$ (>C $\forall \beta \in \mathbb{F}^{+}$)
 H^{-} := $\{f \in V^{*} : f(\beta) < \circ\}$
Proposition: For any well and $\beta \in \mathbb{F}^{+}$,
 $l(t_{\beta}\omega) > l(\omega) \iff \omega(C) \subset H_{\beta}^{+}$

$$\begin{aligned} (f_{g}\omega) & \neq \omega(c) \leftarrow f_{g} \\ i.e. \quad H_{g}^{*} \text{ does not separate } (f_{g}\omega) \leftarrow f_{g} \\ l(f_{g}\omega) \leftarrow l(\omega) \leftrightarrow \omega(c) \leftarrow f_{g} \\ i.e. \quad H_{g}^{*} \text{ separates } C \text{ from } \omega(c) \qquad H_{g}^{*} \leftarrow f_{g}^{*} \\ \hline f_{g}\omega \leftarrow f_{g}^{*} \\ f_{g}\omega \leftarrow f_{g}\omega \leftarrow f_{g}^{*} \\ f_{g}\omega \leftarrow f_{g}$$

proof: When
$$wG \cap w'G \not \neq \emptyset$$
, reduce to the case where
 $w': 1$ by multiplying on left by $\overline{w'}$, i.e. need to show
 $wG \cap G \not \neq \emptyset \iff J=J'$ and $w \in W_J$ (to $wG = C_J = C_J \cdot \cdot$)
The backword implication (\Leftarrow) is easy, and for the
forward (\Longrightarrow), proceed by induction on $l(w)$.
Nrite $w = s_i \cdot s_i w$ for some s_i in S with $l(s_i w) < l(w)$.
By the previous PEOP, $wC = H_{a_i}^{-1}$
 $orderwide d \implies wD = H_{a_i}^{-1}$
 $f(w): V^* \to V^*$
Since $D = H_{a_i}^{-1} = f(eV^*; s_i(f) = f)$
 U
 $wC_J \cap C_J (\neq \emptyset)$
Prick some $f \in wG_J \cap G'$, and since $f \in C_J i$ and $si(f) = f_j$
 $one concludes $s_i \in J'$. But also, applying s_i , one has
 $s_i wC_J \cap S_i' \neq \emptyset$
 $= s_i wC_J \cap G'$, so induction applies to give $J = J'$
and $s_i w \in W_J = W_J'$.
And then also $w \in W_J$$

Tor the furthermore statement, since
$$U := \bigcup_{u \in W} \bigcup_{u \in W}$$
,
every $f \in \bigcup$ has some image $w(f) \in D$. If it had
two of them, say $w(f) = w'(f) \in D = \coprod_{J \leq S} G$,
 $\exists some J, J'$ with $w(f) \in C_J$ i.e. $f \in w'(G)$
so $J = J'$ and $w'W_J = (w')'W_J$ and $w(f) = w'(f)$ \boxtimes
This has a nontrivial consequence about the induced
topology of $\sigma^*(W) \subset GL(V^*) \subset \mathbb{R}^{n^2}$
and $\sigma(W) \subset GL(V) \subset \mathbb{R}^{n^2}$
 $or Romer ARY: Both o''(W), o(W) corry thediscrete topology as subsets of \mathbb{R}^{n^2} even if W is infinite.
 $W_{M} \in W$ for open subset $O \subseteq \mathbb{R}^{n^2}$ with $O_M \circ W = GW$.
proof: Grouph to show it for $\sigma^*(W)$, since $\mathbb{R}^{n^2} \to \mathbb{R}^{n^2}$
 $is a homeomorphism.$
Trix $f \in C = open fundamental chamber in V*Then wC is an open veightorhood of wfo) in V*(=\mathbb{R}^{n}).$$

Consider the map
$$GL(V^*) \xrightarrow{\varphi} V^*$$

 $g \xrightarrow{\varphi} g(f_0)$
which is continuous, since if $g=(g_{ij})$ and $b=\begin{bmatrix}a_i\\ \vdots\\a_n\end{bmatrix}$
then $g(f_0)=\begin{bmatrix}\sum g_{ij}a_i\\ \vdots\\ g_{ij}a_j\end{bmatrix}$.
Hence $(\bigcup_{ij}:=\overline{\varphi}(\omega C))$ is an open subset in $GL(V^*) \subset \mathbb{R}^{n^2}$
and one has $\overline{\varphi}(\omega C) \cap \sigma^*(W) = \{\sigma^*(\omega)\}$
since veW has $\sigma^*(v) \in \overline{\varphi}(\omega C)$
 $\Leftrightarrow \varphi(\sigma^*(v)) \in \omega C$
 $\sigma^*(v)(f_0)$
 $r(f_0)$
 $\forall v=\omega$ by previous THEDREM \mathbb{Z}

This finally allows us to the finiteness of W in (W,S) with positive definiteness of B(·,·) (and finite real refin groups).

THEOREM: For a loxeter system (W,S), T.F.A.E.: (a) The bilinear form B(·,·) on V is positive definite. (6) W is finite. (c) Wacts on V via the geom. rep'n W-SGL(V) as a (finite) real refin group. proof: It's enough to show $(a) \iff (b)$, since $(c) \Rightarrow (b)$, and if we know $(a) \Rightarrow (b)$ then we also know $(a) \Longrightarrow (c)$. For $(a) \Rightarrow (b)$, note that since $B(\cdot, \cdot)$ is positive definite on V, one can find an orthonormal basis ei, en for V via Gram-Schmidt, and so $\mathbb{W} \xrightarrow{\sigma} \mathcal{O}_n(\mathbb{R}) \subset GL(\mathbb{V})$ n { orthogonal matrices A in R] i.e. ATA = In

However
$$O_n(\mathbb{R}) \subset \mathbb{R}^{n^2}$$
 is compact, because it is
. closed (defined by the equations $A^T A = I_n$)
. bounded (each column vector v. has $\|v_i\|_a^a v_i^T v_i = 1$,
so $O_n(\mathbb{R})$ lies inside sphere of radius \sqrt{r})
Recall the subset $\sigma(W) \subset O_n(\mathbb{R})$ has the
discrete topology by a previous correctary.
We claim this forces $\sigma(W)$ to be finite by the
following reasoning, using the discreteness twice:
- $\sigma(W)$ is closed inside $O_n(\mathbb{R})$ by a general...
LEMMA: Discrete subgroups of Hausdorff
topological groups are closed.
proof: see Math Stack tochange # 29515
"Why is even discrete subgroup of attendent"
over closed?"
and the answer by usen Two Two
for a relatively guck proof. E

For
$$(b) \Rightarrow (a)$$
, assume W is finite.
WLOGI we can assume (W,S) is inveducible,
since obtainise $W = W_1 \times W_2 \times ... \times W_m$
 $Y = V_1 \oplus V_2 \oplus ... \oplus V_m$
 $1 \oplus V_2 \oplus ... \oplus V_m$
Then by Maschke's Theorem, $W = \neg GL(V)$ is completely
reducible since W is finite, and a prior result tells us
that $\int B(\cdot, \cdot)$ is nondegenerate on V, and
The only $\Psi: V \rightarrow V$ commuting with W
are scalars $\Psi = c \cdot 1_V$

We want to compare
$$B(\cdot, \cdot)$$
 with a positive definite
W-minimum from on V, which we can create as follows:
• Start with any positive definite form $B'(\cdot, \cdot)$ on V,
 $e \cdot g \cdot B'(x, y) := \sum_{i=1}^{n} x_i y_i$ if $x = \sum_{i=1}^{n} x_i e_i$, $y = \sum_{i=1}^{n} y_i e_i$
for some basis $e_{i,-2e_i} dV$
• Average it to get one that is W-invariant:
Define $B''(x, y) := \frac{1}{4W} \sum_{u \in W} B'(u(u), u(y))$
 $Gassards: \int_{i=1}^{N} B' is R-billinear, symmetric because B' is
 $B'' is pos. def.$ because $B' is$
 $B'' is pos. def.$ because $B' is$
 $B'' is pos. def.$ because $B' is$
 $V \longrightarrow V^* < V$
Now we claim that $\exists c \in R-lo]$ with $B(x,y) = c B'(x,y)$
because the composite of two R-linear isomorphisms
 $V \longrightarrow V^* < V$
 $x \longmapsto B(x_i)$
 $B''(y_i) = 1$
leads an R-linear isomorphism $V \longrightarrow V$ that
commutes with $W \longrightarrow GL(V)$:$

if
$$P(x)=y$$
, so that $B(x,-)=B''(y,-)$
meaning $B(x,z)=B''(y,z)$ $\forall z\in V$
then for any we W one has $P(u(x))=u(y)$ since
 $B(u(x),z)=B(\overline{u}u(x),\overline{u}(z))$ W -invariance
 $=B(x,\overline{u}'(z))$
 $=B''(y,\overline{u}'(z))$
 $=B''(u(y),u\overline{u}'(z))$ W -invariance
 $dB(r)$
 $=B''(u(y),z)$
Once one knows $B(x,y)=c\cdot B''(x,y)$, one knows $c>0$
 $since B(\alpha,\alpha)=1$
 $B''(\alpha,\alpha)>0$.
Hence $B(\cdot, \cdot)$ is also positive definite, since $B'(\cdot, \cdot)$ is.