Irreducibility, nondegeneracy, chamber geometry and finiteness (Humphreys $\{6.1,6.3,5.13,6.2,6.4$)
To understand more about (W, S) and when W is finite, let's understand some apparent ways in which the geom. repin

$$
W \xrightarrow{\sigma} G L(V)
$$

would fail to be irreducible, i.e. $\exists W$. stable subspaces $\{0\} \nsubseteq W^{\prime} \underset{\nsubseteq}{ } W$.

PROPOSITION: If the Cox. diagram for (W, S) is disconnected, say

$$
S=J \cup S \backslash J \text { with } m_{i j}=2 \forall s_{j} \in J
$$

then $W \cong W_{J} \times W_{S / J}$ and the geom. rep'r is a direct sum:

$$
\begin{aligned}
& W \xrightarrow{W} \xrightarrow{\sigma} V \\
& W_{J} \times W_{S / J} \xrightarrow{\sigma_{J} \oplus \sigma_{S / J}} V_{J} \oplus V_{S / J}
\end{aligned}
$$

proof: One has W_{J} and $W_{S / J}$ centralizing each other, since their generators commute $s_{s_{j}}=s_{j} s_{i}$.
$\left.\begin{array}{c}\text { Hence } W_{J}, W_{S / J} \triangleleft W \\ W=W_{J} \cdot W_{S / J}\end{array}\right\}$ since $S=J \cup S / J$.
and $W=W_{J} \cdot W_{S / J}$
ard to check $W_{J} \cap W_{S / T}=\{1\}$:
if $\omega \in W_{J} \cap W_{S / J}$ and $\omega \neq 1$,
pick $\delta_{j} \in J$ with $l\left(\omega s_{j}\right)<l(\omega)$, so $s_{j} \in T_{R}(\omega)$.
But picking a reduced word for ω in $W_{S / J}$ shows $T_{R}(\omega) \subset W_{S / J}$, so $s_{j} \in J \cap W_{S / J} \sharp$ In the geom. rep'n $W \xrightarrow{\sigma} G L(W)$ one has $V_{J}=\operatorname{span}_{\mathbb{R}}\left\{\alpha_{j}\right\}_{s_{j} \in J}$ pontwise fixed by $W_{S / J}$

$$
\begin{aligned}
& V_{J}={\operatorname{span} \mathbb{R}\left[n_{j} s_{j j} \in J\right.}^{V_{S / J}=\operatorname{span}_{\mathbb{R}}\left\{\alpha_{i}\right]_{s_{i} \in S T}-u-b_{y} W_{J}} .
\end{aligned}
$$

since $\sigma_{i}\left(\alpha_{j}\right)=\alpha_{j}-2 B(\underbrace{\left(\alpha_{j}, \alpha_{i}\right)}_{=0} \alpha_{i}$ if $m_{i j}=2$

$$
=\alpha_{j}
$$

Hence $V=V_{J} \oplus V_{S / J}$ is the directsum of the geom repins $W_{J} \rightarrow G C\left(N_{J}\right)$

$$
W_{S / J} \rightarrow G L\left(V_{S / J}\right)
$$

DEF'N: Call (W, S) an irreducible Cox. system if the Cox, diagram is connected; reducible chemise.

EXAMPLE As an abstract group, $\begin{array}{cc}\text { EXAMPLE As an abstract group, } \\ \text { (Bjorner- } & W=\text { dihedral group of order } 12 \\ \text { Brent i } & \text { has both (} D \text {): }\end{array}$ has both ($\left.\begin{array}{l}\text { D } \\ 0\end{array}\right)$:
EXERC15E 1.1.2)

" irreducible

11 reducible

$$
W\left(\begin{array}{ccc}
0 & 3 & 0 \\
t_{1} & t_{2} & t_{3}
\end{array}\right)^{3}
$$

$$
V_{2} \cong \mathbb{R}^{3}
$$

We'll often assume (W, S) is irreducible, but there is still another obvious way for the geom. regin $W \underset{\longrightarrow}{\sigma} G(V)$ to have a nontrivial W-stable subspace:
Whenever $B(\cdot, \cdot)$ on V is degenerate,

$$
\begin{aligned}
& \text { meaning }\{0\} \underset{\neq}{c} \operatorname{ker} B:=V^{\perp} \\
& \text { since }=\{x \in V: B(x, \alpha)=0 \quad \forall \alpha \in V\} \\
& V=\operatorname{span}_{\mathbb{R}}\left(\alpha_{1},-o^{\alpha n}\right)=\left\{x \in V: B\left(x, \alpha_{i}\right)=0 \quad \forall \alpha \in \Pi\right\} \\
& =\hat{\Omega} V^{s_{i}} \\
& \begin{array}{l}
\text { since } \\
W=\left\langle\sin ,-s^{s}\right\rangle
\end{array}=V^{i=1}=\{x \in V: \omega(x)=x \quad \forall w \in W\}
\end{aligned}
$$

PROPOSITION: For (W,S) irreducible,
(a) Every proper W-stable subspace $V^{\prime} \mp V$ actually lies inside V^{\perp}, i.e. $V^{\prime} \subseteq V^{\perp}$. In particular,
(b) when $B(\cdot, \cdot)$ is degenerate, $W \xrightarrow{\sigma} G L(V)$ is not completely reducible, because one cannot have a W-stable complement U for V^{\perp}, i.e. $V \notin V^{\perp} \oplus U$.
(c) and when $B(-,-)$ is non-degenerate, $W \xrightarrow{\sigma} G L(V)$ is iweducilde.
proof: When (W,S) has connected Cor. diagrams we daim any proper, W-stable subspace $V^{\prime} \underset{\neq}{C} V$ cannot contain any of the simple roots $T=\left\{\alpha_{1},-, \alpha_{n}\right\}$: otherwise if $V^{\prime} \ni \alpha_{i}$, it will also contain any α_{j} for which $O_{s_{i}}^{m_{i j}} s_{j}$ with $m_{i j} \neq 2$
via the calculation

$$
V^{\prime} \rightarrow s_{j}\left(\alpha_{i}\right)=\alpha_{i}-2 \underbrace{B\left(\alpha_{i} \alpha_{j}\right)}_{=-\cos \left(\frac{\pi}{m_{i j}}\right) \neq 0} \cdot \alpha_{j} \text {. }
$$

Hence $V^{\prime} \supset\left\{\alpha_{1,}, \alpha_{n}\right\}$ so $V^{\prime}=V$.
But now we claim $V^{\prime} \subset V^{s_{i}}=\alpha_{i}^{1}$ for each $i=1,2,-, n$ (and hence $V^{\prime} c \bigcap_{i=1}^{n} V^{s i}=V^{\perp}$) by the following reasoning.
When s_{i} acts on V^{\prime} it acts semi simply (its minimal polynomial on V^{\prime} divides its man poly on V, which is $\left.x^{2}-1=(x-1)(x+1)\right)$,
so $V=\alpha_{i}^{\perp}$

$\oplus \quad \mathbb{R} \alpha_{i}$

$$
\left.\begin{array}{c}
U \\
\text { spare } \\
s_{i}
\end{array}\right) \oplus\binom{(-1) \text {-eigenspace }}{\text { for } S_{i}}
$$ must be \{0\}, since $\alpha_{i} \notin V^{\prime}$.

$$
\left[\begin{array}{l}
(b),(c) \text { are } \\
\text { direct from }(a)
\end{array}\right]
$$

COROLCARY: When (W, S) is irreducible, the only $\varphi \in \operatorname{End}(V)$ that commute with the action of $W \xrightarrow{\sigma} \mathrm{GL}(V)$ are the scalars $\varphi=c \cdot l_{v}, c \in \mathbb{R}$.
NB: We can't just apply Schur's Lemma \checkmark may not be an irreducible W- repin, and \mathbb{R} is not algebraically closed.
proof: Given $\varphi \in$ fud (V) commuting with W, pick any $s_{i} \in S$, and then φ acts on the line $\mathbb{R} \alpha_{i}$, since $\varphi\left(\alpha_{i}\right)$ lies in the (-1)-eigenspace for S_{i} :

$$
s_{i}\left(\varphi\left(\alpha_{i}\right)\right)=\varphi\left(s_{i}\left(\alpha_{i}\right)\right)=\varphi\left(-\alpha_{i}\right)=-\varphi\left(\alpha_{i}\right)
$$

Then φ scales $\mathbb{R} \alpha_{i}$ by some $c \in \mathbb{R}$, and we claim $\varphi=c \cdot l_{V}$ since $V^{\prime}=\operatorname{ker}\left(\varphi-c \cdot l_{V}\right) \nsubseteq V$ is a W-stable subspace, but cant lie Exercise:
Why? inside V^{\perp} since it contains \mathbb{R}_{α}.

So $V^{\prime}=\{0\}$ by $\operatorname{PROP}(a)$ above, $\operatorname{meaning} \varphi=c \cdot l_{V}$

To understand more about when (W, S S) has W finite we need a tiny bit of (puint-set) topology coning from...

The chambers and Tits cone inside V^{*}
Aspects of the geometry for how W and W_{J} act are easier to follow in V^{*} than in V ?
Given (W, S), we created V with \mathbb{R}-basis

$$
\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \text { and } B(\cdot, \cdot)
$$

to make the geom. rep $W \xrightarrow{\sigma} G L(V)$
Now create $V^{*}=\{\mathbb{R}$-linear fundionals $f: V \rightarrow \mathbb{R}\}$
with dual basis $\left\{f_{1}, \ldots, f_{n}\right\}$
(i.e. $f_{i}\left(a_{j}\right)=\left\{\begin{array}{ll}1 & f i=i=j \\ 0 & \text { eve. }\end{array}\right]$) to make the
coutragredient geom. repin.

$$
\begin{aligned}
W \xrightarrow{\sigma^{*}} & G\left(V^{*}\right) \\
w \longmapsto & \sigma^{*}(w)(f) \\
& =f_{0} \bar{w}_{1} \\
V \xrightarrow{\omega^{-1}} & V f^{\rightarrow} \mathbb{R}
\end{aligned}
$$

In mabix terms,

DEF'N: The (open) fundamental chamber $C \subset V^{*}$

$$
\begin{aligned}
& \text { DEF'N: The (open) fundamental chamber } C \subset V^{\top} \\
& C:=\mathbb{R}_{>0} f_{1}+\ldots+\mathbb{R}_{>0} f_{n}=\left\{f \in V^{*}: f\left(\alpha_{i}\right)>0 \forall \alpha_{i} \in \Pi\right\}=\left\{f \in V^{*}: f(\beta)>0 \forall \beta \in \Phi^{*}\right\}
\end{aligned}
$$

Its closure is

$$
\text { Hs closure is }{ }_{D}:=\bar{C}:=\mathbb{R}_{30} f_{1}++\mathbb{R}_{20} f_{n}=\left\{f \in V^{*}: f\left(\alpha_{i}\right) \geq 0 \quad \forall \alpha_{i} \in \Pi\right\}
$$

The Tits cone $U:=\bigcup_{\omega \in W} \omega(D) \subset V^{*}$

EXAMPLES (1) $W=G_{3}=I_{2}(3)=W\left(\begin{array}{ll}\alpha_{1} & o_{3} \\ s_{2}\end{array}\right)$
$V=\mathbb{R}^{2}$ with basis $\left\{\alpha_{1}, \alpha_{2}\right\}, B\left(\alpha_{1}, \alpha_{2}\right)=-\cos \left(\frac{\pi}{3}\right)=-\frac{1}{2}$
and $\sigma: W \rightarrow \operatorname{GL}(V)$ has

$$
\begin{aligned}
& \sigma_{1}=\alpha_{\alpha_{2}}\left[\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
-1 & 1 \\
0 & 1
\end{array}\right] \\
& \left.\Rightarrow \sigma_{1}^{*}=\begin{array}{cc}
f_{1} & f_{2} \\
f_{2} & -1 \\
1 & 0 \\
1 & 1
\end{array}\right] \\
& \sigma_{2}=\alpha_{1}\left[\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
1 & 0 \\
1 & -1
\end{array}\right] \\
& {\left[\begin{array}{c}
\text { since, } e . g \cdot s \\
\sigma_{2}\left(\alpha_{1}\right)= \\
\alpha_{1}-2 B\left(\alpha_{1}, \alpha_{2}\right) \alpha_{2}= \\
\alpha_{1}-2\left(\left.-\frac{1}{2} \right\rvert\, \alpha_{2}=\right. \\
\alpha_{1}+\alpha_{2}
\end{array}\right]} \\
& \left(\sigma_{1} \sigma_{2}\right)^{*} \\
& \sigma_{2}^{*}=f_{1}\left[\begin{array}{cc}
f_{1} & f_{2} \\
1 & 1 \\
f_{2} & -1
\end{array}\right] \\
& \sigma_{1}^{*} \sigma_{2}^{*}=\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]={ }_{f_{2}}^{h_{2}}\left[\begin{array}{cc}
f_{1} & f_{2} \\
-1 & -1 \\
1 & 0
\end{array}\right] \\
& \left(\sigma_{2}^{\prime \prime} \sigma_{1}\right)^{*} \\
& \sigma_{1}^{*} \sigma_{2}^{*} \sigma_{4}^{*}=\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right]=\hat{f}_{1}\left[\begin{array}{cc}
f_{1} & f_{2} \\
0 & -1 \\
-1 & 0
\end{array}\right]=\sigma_{2}^{*} \sigma_{1}^{*} \sigma_{2}^{*}=\omega_{0}^{*}
\end{aligned}
$$

Picture in V^{*} :

$$
V=\text { all of } V^{*}
$$

Compare with pictures in V

which looks pretty similar if we identify $V \cong V^{*}$ via $B(\because ;)$

(2) $W=I_{2}(\infty)=W\left(\begin{array}{lll}0 & \infty & 0 \\ s_{1} & s_{2}\end{array}\right)$
$Y=\mathbb{R}^{2}$ with basis $\left\{\alpha_{1}, \alpha_{2}\right\}, \quad B\left(\alpha_{1}, \alpha_{2}\right)=-\cos \left(\frac{m}{\infty}\right)=-1$
$\left(\sigma_{2}\right)^{*} \subset$

$$
U=\text { almost an }
$$

$$
\text { open half-space of } V^{*} \left\lvert\, \begin{array}{llll}
x & x & x & x
\end{array} x\right.
$$

$$
\begin{aligned}
& \text { and } W \xrightarrow{\sigma} G L(V) \text { has } \\
& \sigma_{1}=\alpha_{1}\left[\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
-1 & 2 \\
0 & 1
\end{array}\right] \\
& \sigma_{2}=\alpha_{1}\left[\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
e . g . \\
\sigma_{2}\left(\alpha_{1}\right)
\end{array}=\alpha_{1}-2(-1) \alpha_{2}, ~=\alpha_{1}+2 \alpha_{2}\right] \\
& \sigma_{2}=\alpha_{1}\left[\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
e \cdot g . \\
\sigma_{2}\left(\alpha_{1}\right)=\alpha_{1}-2(-1) \alpha_{2} \\
\\
\\
\end{array}\right. \\
& \Rightarrow \sigma_{1}^{*}=f_{1}\left[\begin{array}{cc}
f_{1} & f_{2} \\
f_{2} & -1 \\
2 & 0
\end{array}\right] \\
& \sigma_{2}^{*}=f_{1}\left[\begin{array}{cc}
f_{1} & f_{2} \\
1 & 2 \\
f_{2} & -1
\end{array}\right] \\
& \left.\sigma_{2}^{*} \sigma_{1}^{*}=\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
2 & 1
\end{array}\right]=\begin{array}{c}
f_{1} \\
f_{1} \\
f_{1} \\
f_{2} \\
-2
\end{array} 2-1\right] \\
& \left.\begin{array}{l}
\left.\sigma_{1}^{*} \sigma_{2}^{*}=\left[\begin{array}{cc}
-1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right]=\begin{array}{c}
f_{1} \\
\sigma_{2} f_{2} \\
\sigma_{2}
\end{array}\right]-20 \\
f_{2} \\
2
\end{array}\right] \\
& \left(\sigma_{1} \sigma_{2}\right)^{*} \\
& \left(\sigma_{1} \sigma_{2}\right)^{*}=\begin{array}{cc}
\sigma_{1}^{*} \sigma_{2}^{*} \sigma_{4}^{*}=\left[\begin{array}{cc}
f_{1} \\
f_{2} & f_{2} \\
-3 & -2 \\
4 & 3
\end{array}\right] & \sigma_{2}^{*} \sigma_{1}^{*} \sigma_{2}^{*}=f_{1}\left[\begin{array}{cc}
f_{1} & f_{2} \\
3 & 4 \\
-2 & -3
\end{array}\right] \\
\vdots & \left(\sigma_{2} \sigma_{1} \sigma_{1}^{*}\right.
\end{array}
\end{aligned}
$$

These chambers $\omega(C)\left(:=\sigma^{*}(\omega)(C)\right)$ inside the Tits cone $M V^{*}$ let us reinterpret yet again

$$
\begin{aligned}
T_{L}(\omega) & :=\{t \in T: \ell(t \omega)<\ell(\omega)\} \quad \text { leff-assoicated } \\
& =\left\{t_{\beta}: \beta \in \Phi^{+} \text {and } \omega^{-1}(\beta) \in \Phi^{-}\right\}
\end{aligned}
$$

Every $\beta \in \Phi^{+}$disjointly dewmposes V^{*} into a hyperplane $H_{\beta}^{0}:=\left\{f \in V^{*}: f(\beta)=0\right\}$
a hyperplane
and to
open halfopaces $H_{\beta}^{+}:=\left\{f \in V^{*}: f(\beta)>0\right\}$$\left(\supset C \quad \forall \beta \in \Phi^{+}\right)$

$$
H^{-}:\left\{f f V^{*}: f(\beta)<0\right\}
$$

PROPOSITION: For any we W and $\beta \in \Phi^{+}$,

$$
l\left(t_{\beta} \omega\right)>l(\omega) \Leftrightarrow \omega(C) \subset H_{\beta}^{+}
$$

i.e. H_{β}^{0} does not separate $($ from $w(C)$

$$
H_{\beta}^{-} \leftarrow \mid \rightarrow H_{\beta}^{+}
$$

$$
{ }_{\beta}^{+}<c
$$

哈

$$
l\left(t_{\beta} \omega\right)<l(\omega) \Leftrightarrow \omega(c) \subset f_{\beta}
$$

ie. H_{β}° separates C from $\omega(C)$
proof: Translate:

$$
\begin{aligned}
& \text { proof: Translate: } \\
& \begin{array}{l}
l\left(f_{\beta} \omega\right)<l(\omega)
\end{array} \Rightarrow \omega^{-1}(\beta) \in \Phi^{-} \\
& \Rightarrow f\left(\omega^{-1}(\beta)\right)<0 \text { for } f \in C \\
& \quad\left(f . \omega^{-1}\right)(\beta)=\sigma^{*}(\omega)(f)(\beta) \text { ie. } \omega(c) c H_{\beta}^{-}
\end{aligned}
$$

This helps us disjointly decompose the Tits cone into faces and understand their stabilizers.
First decompose
${ }^{\circ}{ }^{[} C_{\left\{s_{2}\right\}}$
$C=C_{\phi}$
$C_{S}=\{0\}$

$$
D=\bar{C}=\underset{J \subseteq S}{1 \cdot J} C_{J}
$$

and then note this implies a (not necessarily disjoint)

$$
\text { where } C_{J}:=\bigcap_{s_{j} \in J} H_{\alpha_{j}}^{\infty} \cap \bigcap_{s_{i} \in S i J} H_{\alpha_{i}}^{+}
$$

$$
\text { covering } Q:=\bigcup_{\omega \in W} \omega D=\bigcup_{\substack{J \leq S \\ \omega \in W}} \omega C_{J}
$$

THEOREM: H is disjoint:

$$
\omega C_{J} \cap \omega^{\prime} C_{J^{\prime}} \neq \phi \Leftrightarrow J=J^{\prime} \text { and } \omega C_{J}=\omega^{\prime} C_{J}
$$

Furthermore, D is a fundamental domain for the W-action on U : every $f \in U$ has a unique image $\omega(f) \in D$.

ExAMPLE:

proof: When $w C_{J} \cap w^{\prime} C_{J} \prime \neq \phi$, reduce to the case there $\omega^{\prime}=1$ by multiplying on left by ω^{-1}, i.e. need to show $\omega C_{J} \cap C_{J^{\prime}} \neq \phi \Leftrightarrow J=J^{\prime}$ and $\omega \in W_{J}\left(\right.$ so $\omega C_{J}=C_{J}=C_{J^{\prime}}$.)
The backward implication $(\leqslant$) is easy, and for the forward $(\Rightarrow$), proceed by induction on $l(\omega)$.
Write $\omega=s_{i} \cdot s_{i} \omega$ for some s_{i} in S with $l\left(s_{i} \omega\right)<l(\omega)$.
By the previous PROP, $w C \subset H_{\alpha_{i}}^{-}$
$\sigma(\omega): V^{*} \rightarrow V^{*}$ Since $D \subset \overline{H_{\alpha_{i}}^{+}}$, one concludes

$$
\begin{aligned}
& \omega D \cap D \subset \bar{H}_{\alpha_{i}}^{+} \cap \overline{H_{\alpha i}^{-}}=H_{\alpha_{i}}^{0}=\left\{f \in V^{*}: s_{i}(f)=f\right\} \\
& \quad U \\
& \omega C_{J} \cap C_{J^{\prime}}(\neq \phi)
\end{aligned}
$$

Pick some $f \in \omega G \cap G^{\prime}$, and since $f_{E} C_{J^{\prime}}$ and $s_{i}(f)=f$, one concludes $s_{i} \in J^{\prime}$. But also, applying s_{i}, one has $s_{i} \omega C_{J} \cap s_{i} C_{J^{\prime}} \neq \phi$
$=s_{i} w C_{J} \cap C_{J} \prime$, so induction applies to give $J=J^{\prime}$ and $s_{i} \omega \in W_{J}=W_{J^{\prime}}$.

$$
\text { And then also } \omega \in W_{J}
$$

For the furthermore statement, since $U:=\bigcup_{w \in W} W D$, every $f_{E} U$ has some image $w(f) \in D$. If it had two of them, say $\omega(f)=\omega^{\prime}(f) \in D=\frac{\cup_{J s s}}{} C_{J}$, \exists some J, J^{\prime} with $\omega(f) \in C_{J}$ ie. $f \in w^{-1} C_{J}$

$$
\omega^{\prime \prime}(f) \in C_{J^{\prime}} \text { ie. } f \in\left(\omega^{\prime}\right)^{-1} C_{J^{\prime}}
$$

so $J=J^{\prime}$ and $\omega^{-1} W_{J}=\left(\omega^{\prime}\right)^{-1} W_{J}$ and $\omega(f)=\omega^{\prime}(f)$
This has a nontrivial consequence about the induced topology of $\sigma^{*}(W) \subset G\left(V^{*}\right) \subset \mathbb{R}^{n^{2}}$
and $\sigma(w) \subset G L(V) \subset \mathbb{R}^{n^{2}}$
COROLCARY: Both $\sigma^{*}(W), \sigma(w)$ carry the discrete topology as subsets of $\mathbb{R}^{n^{2}}$, even if W is infinite.
¿ $\forall_{\omega} \in W$ ヨ an open subset $\theta_{w} \subset \mathbb{R}^{n^{2}}$ with $\theta_{\omega} \cap c^{*}(W)=\left\{0^{*} \omega\right\}$.

is a homeomorphism.
Fix $f_{0} \in C=$ open fund amental chamber in V^{*}
Then ωC is an open neighborhood of $\omega\left(f_{0}\right)$ in $V^{*}\left(=\mathbb{R}^{n}\right)$.

Consider the map $G L\left(V^{*}\right) \xrightarrow{\varphi} V^{*}$

$$
g \longmapsto g\left(f_{0}\right)
$$

which is contimous, since if $g=\left(g_{i j}\right)$ and $f_{0}=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$

$$
\text { then } g\left(f_{0}\right)=\left[\begin{array}{c}
\sum_{j} g_{i j} a_{j} \\
\vdots \\
\sum_{j} g_{j j} a_{j}
\end{array}\right] \text {. }
$$

Hence $\theta_{\omega}:=\varphi^{-1}(\omega C)$ is an open subset in $G L\left(V^{*}\right) \subset \mathbb{R}^{n^{2}}$
and one has $\varphi^{-1}(\omega C) \cap \sigma^{*}(W)=\left\{\sigma^{*}(\omega)\right\}$
since $v \in W$ has $\sigma^{*}(v) \in \varphi^{-1}(\omega C)$

$$
\begin{gathered}
\Leftrightarrow \varphi\left(\sigma^{*}(v)\right) \in \omega C \\
\sigma^{\prime \prime}\left(f_{0}\right) \\
r\left(f_{0}^{\prime \prime}\right)
\end{gathered}
$$

$\Leftrightarrow r=\omega$ by previous THEDREM
This finally allows us to tie finiteness of W in (W, S) with positive definiteness of $B(, \cdot)$ (and finitereal refin groups).

THEOREM : For a Coxeter system (W, S), T.F.A.E:
(a) The bilinear form $B(;)$ on V is positive definite.
(b) W is finite.
(c) W acts on V via the geom. rep'n $W \xrightarrow{\sigma} G L(V)$ as a (finite) real rein group.
proof: H's enough to show $(a) \Leftrightarrow(b)$,
since $(c) \Rightarrow(b)$, and if we know $(a) \Rightarrow(b)$ then we also know $(a) \Rightarrow(c)$.
For $(a) \Rightarrow(b)$, note that since $B(\cdot$,$) is$ positive definite on V, one can find an orthonormal basis e_{1}, , en for V via Gram-Schmidt, and so

$$
W \xrightarrow{\sigma} \mathrm{O}_{n}(\mathbb{R}) \subset G(V)
$$

$\left\{\right.$ orthogonal matrices A in $\left.\mathbb{R}^{n \times n}\right\}$ i.e. $A^{\top} A=I_{n}$

However $O_{n}(\mathbb{R}) \subset \mathbb{R}^{n^{2}}$ is compact, because it is

- closed (defined by the equations $A^{\top} A=I_{n}$)
- bounded (each column vector v_{i} has $\left\|v_{i}\right\|_{=}^{2}=v_{i}^{T} v_{i}=1$, so $O_{n}(\mathbb{R})$ lies inside sphere of radius $\sqrt{n}{ }^{\prime}$)

Recall the subset $\sigma(W) \subset O_{n}(\mathbb{R})$ has the discrete topology by a previous corollary.

We claim this forces $\sigma(W)$ to be finite by the following reasoning, using the discreteness twice:

- $\sigma(W)$ is closed inside $O_{n}(\mathbb{R})$ by a general...

LEMMA: Discrete subgroups of Hausdorff topological groups are closed.
proof: see Math stack Exchange \#29515
"Why is every discrete subgroup of a tiansdorf group closed?" and the answer by user Two two in lecture 10/21/2022 for a relatively quick proof.

- if $\sigma(w)$ were infinite, it would have an accumulation point g_{0} in the compact set $O_{n}(\mathbb{R})$, and g_{0} would also lie in $\sigma(w)$ by its closure, which would violate $\sigma(w)$'s discrete topology.

Thus of) is finite, and hence W is finite, since $W \xrightarrow{\sigma} G L(V)$ is faithful.

For $(b) \Rightarrow(a)$, assume W is finite. WLOG we can assume (W, S) is irreducible, since othemise $W=W_{1} \times W_{2} \times \ldots \times W_{m}$

$$
V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{m} \quad \text { orthogonal direct }
$$

Then by Maschke's Theorem, $W \xrightarrow{\sigma} \operatorname{FL}(V)$ is completely reducible since W is finite, and a prior result tells us that $\left\{\begin{array}{l}B(\cdot,) \text { is non degenerate on } V, \text { and } \\ \text { The only } \varphi: V \rightarrow V \text { commuting with } W \\ \text { are scalars } \varphi=c \cdot 1\end{array}\right.$ are scalars $\varphi=c \cdot 1 /$

We want to compare $B(\cdot$,$) with a positive definite$ W-mvariont form on V, which we can create as follow:

- Start with any positive definite form $B^{\prime}(,$,$) on V$, e.g. $B^{\prime}(x, y):=\sum_{i=1}^{n} x_{i} y_{i}$ if $x=\sum_{i=1}^{n} x_{i} e_{i}, y=\sum_{j=1}^{n} y_{j} e_{j}$ for some basis $e_{1, y}$ on ad V
- Average it to get one that is W-invariant:

Define $B^{\prime \prime}(x, y):=\frac{1}{\# W} \sum_{\omega \in W} B^{\prime}(\omega(x), \omega(y))$
Checks: $\left\{\begin{array}{l}B^{\prime \prime} \text { is } \mathbb{R} \text {-bilinear, symmetric because } B^{\prime} \text { is } \\ B^{\prime \prime} \text { is pos. def. because } B^{\prime} \text { is } \\ B^{\prime \prime} \text { is W-invaciant, ie. } B^{\prime \prime}(v(x), v(y))=B^{\prime \prime}(x, y)\end{array}\right.$
Now we cham that $\exists c \in \mathbb{R}-\{0\}$ with $B(x, y)=c B^{\prime \prime}(x, y)$) because the composite of two \mathbb{R}-linear isomorphisms

$$
\begin{aligned}
V \xrightarrow{\sim} & V^{*} \longleftarrow \sim \\
x \longmapsto & B(x,-) \\
& B^{\prime \prime}(y,-) \longleftarrow
\end{aligned}
$$

leads an \mathbb{R}-linear isomorphism $V \xrightarrow{\varphi} V$ that commutes with $W \xrightarrow{\sigma} G L(V)$:
if $\varphi(x)=y$, so that $B(x,-)=B^{\prime \prime}(y,-)$
meaning $B(x, z)=B^{\prime \prime}(y, z) \quad \forall z \in V$
then for any we W one has $\varphi(\omega(x))=\omega(y)$ since

$$
\begin{aligned}
& B(\omega(x), z)=B\left(\omega^{-1} \omega(x), \omega^{-1}(z)\right) \\
& =B\left(x, \omega^{-1}(z)\right) \\
& =B^{\prime \prime}\left(y, \omega^{-1}(z)\right) \\
& \text { " } B^{\prime \prime}\left(\omega(y), \omega \omega^{-1}(z)\right) \\
& \begin{array}{l}
\text { invariance } \\
+(B),
\end{array} \\
& =B^{\prime \prime}(\omega(y), z) \text {. }
\end{aligned}
$$

Once one knows $B(x, y)=c \cdot B^{\prime \prime}(x, y)$, one knows $c>0$ since $B(\alpha, \alpha)=1$

$$
B^{\prime \prime}(\alpha, \alpha)>0 .
$$

Hence $B(,$,$) is also positive definite, since B^{\prime \prime}($,$)) is.$

