Strong Bruhat order
(Björner-Brenti, Chapter)
It's an important poet on a Coxeter group W
partially ordered set
$=$ binary relation $x \leq y$

$$
\begin{aligned}
& \text { any relation } x \leq y \\
& \text { with } \begin{cases}x \leq x & \text { (reflexive) } \\
x \leq y, y \leq x \Rightarrow x=y & \text { (antisymmetric) } \\
x \leq y, y \leq z \Rightarrow x \leq z & \text { (nimsitive) }\end{cases}
\end{aligned}
$$

defined like this...
DEF'N: Given a Coxeter system (W, S) with reflections $T:=\bigcup_{w \in W} w \delta w^{-1}$ as casual,
the Bruhat graph on W is a directed graph with arcs $u \rightarrow \omega$ if $\omega=$ tu with $l(u)<l(\omega)$ for some $t \in T$ (and weill sometimes write $u \xrightarrow{t} w$ here).
The (string) Buhat order is the transitive, reflexive closure of $u \rightarrow \omega$, meaning $u \leqslant \omega$ if
\exists apath $u=u_{0} \rightarrow u_{1} \rightarrow-\ldots \rightarrow u_{k-i} \rightarrow u_{k}=\omega$
in the Buhhat graph

Benhat order

Brat $123=1$

In $W=\tilde{G}_{4}$, here is the (lower) interval

$$
[u, \omega]^{D F}:=\{v \in W: u \leq v \leq \omega\}
$$

$$
1234 \quad 2431
$$

PROPOSITION: $W=\sigma_{n}$ has Bunt covering relations:
$u<w \Leftrightarrow w=u \cdot(a, b)$ with $a<b$ and $u_{a}<u_{b}$
but $\nexists c$ with $a<c<b$ and $u_{a}<u_{c}<u_{b}$
$\Leftrightarrow \omega=u \cdot(a, b)$ with $\operatorname{inv}(w)=\operatorname{inv}(u)+1$
e.g. $u=2714635<2754631=\omega=u \cdot(1,5)$
but $u \notin \omega$, since $v=2734615 \quad$ (and $u<v$)
proof: If $w=u \cdot(a, b)$ with $u_{a}<u_{b}$, then $l(u)<l(\omega)$
so $u<\omega$ in Bunhat. And if furthermore $\# c$ with $a<c<b$ and $u_{a}<u_{c}<u_{b}$, can check $l(\omega)=\operatorname{mv}(\omega)=\operatorname{mv}(u)+1=l(u) t 1$, so $u<\omega$. But if such anindex c does exist, then $u<u \cdot\left(u_{a}, u_{c}\right)<\omega$

REMARK: Later well prove a faster algorithm for checking $u<w$ in G_{n}, called the Tableaux Criterion (T H+M. 2.63 in Bjomer-Brenti).

DIGRESSION: Where does Bunt order on W come form'?
For Wa Weyl group, one has a
semisumple complex tie group G

$$
\text { e.g. } G=\operatorname{Sn}(C) \quad m=3: \quad A=\left[\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right] \operatorname{det}=1
$$

with a choice of Bore subgroup $B<G$
and choice of a maximal toms $T<B$

$$
\text { e.g. } \left.T=\left\{\begin{array}{cc}
{ }^{*} * & * \\
0 & 0 \\
0 & *
\end{array}\right] \text { diagonal }\right\} \subset \begin{array}{r}
\\
\operatorname{Sln}_{n}(C) \\
n=3:
\end{array}
$$

$$
\text { with } W=N_{G}^{\sqrt{r}}(T) / T \text {. nompliser } \begin{gathered}
\text { of in } G
\end{gathered}
$$

This lefts one define $G / B:=$ generalized flag manifold

$$
\begin{aligned}
& \text { ecg. } S_{n} / B \cong\left\{[0] \subset V_{1} \subset V_{2} \subset \ldots \subset V_{n-1} \subset \mathbb{C}^{n}: \operatorname{dim} V_{i}=i\right\} \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
v_{1} V_{2} \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] B \mapsto\left(\{0\} \subset \mathbb{C}_{r_{1}} \subset \mathbb{C}_{V_{1}}+\mathbb{C}_{2} \subset \ldots \subset \mathbb{C}_{1}+\ldots \in \mathbb{V}_{n-1} \subset \mathbb{C}^{n}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& n=3:\left[\begin{array}{ll}
* * & * \\
0 & * \\
0 & * \\
0 & *
\end{array}\right]
\end{aligned}
$$

G / B is not only a smooth manifold of dimension $l\left(\omega_{0}\right)=\left\lvert\, \begin{aligned} & \left|\Phi^{+}\right| \\ & \mid\end{aligned}\right.$
but hos an embedding $G / B \xrightarrow{P} \mathbb{P}^{N-1}:=\left(\mathbb{C}^{N}-\{0 j) / \mathbb{C}^{\alpha}\right.$ making it a projedre variety.

$$
\begin{aligned}
& \text { derived only pto simultameons socking }
\end{aligned}
$$

And G has a double coset decomposition (Buhat

$$
G=\frac{1}{w \in N} B_{W} B
$$

that turns into a cell decomposition of che flag manifold

$$
\begin{aligned}
G / B=\underset{\omega \in W}{L \cdot]} \underbrace{:=}_{X_{\omega}^{\text {open }}} & =(\text { open }) \text { Bu hat cell for w } \\
& \cong \mathbb{C}^{l(\omega)} \text { an affine pace }
\end{aligned}
$$

THEOREM: The closures $X_{i}=\overline{X_{\omega}^{\text {open }}}$, called Schubertvariefor, (Brat 1954) have $X_{u} \subset X_{w} \Leftrightarrow u \leq \omega$ in Buhatorder.

123
Bunbat order

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 10 \\
0 & 0 & 1
\end{array}\right] \mathbb{B} \stackrel{P}{\longmapsto}([1: 0: 0],[1: 0: 0]) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \quad X_{123}} \\
& X_{123}^{0 \mathrm{pman}} \\
& \text { itb抽 } \frac{\left\{\lim _{b \rightarrow \infty}\right.}{\uparrow} \\
& =\left([1: 0: 0],\left[1: \frac{1}{b}: 0\right]\right) \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & b & 1 \\
0 & 1 & 0
\end{array}\right] \stackrel{P}{\longmapsto}([1: 0: 0],[b: 1: 0])} \\
& \frac{\left\{\lim _{a \rightarrow \infty}\right.}{\left\{\left[1: \frac{1}{a}: 0\right][b: 1: 1]\right)} \\
& \text { if } a^{*} 0=\left(\left[1: \frac{1}{a}: 0\right],\left[b: 1: \frac{1}{a}\right]\right) \\
& \text { and } b=-d / a=([a: 1: 0],[a b: a: 1]) \\
& {\left[\begin{array}{lll}
a & d & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\text { xoem }
\end{array} \xrightarrow{p}([a: 1: 0],[-d: a: 1])\right.}
\end{aligned}
$$

Basic properties of Bumatorder ($B-B$ §2.2)
Most come from this...
LEMMA: Let $w=s_{1} s_{2} \cdots s_{q}$ reduced and assurne $u \in W$ has a reduced subexpression
(*) $u=s_{1} \ldots \hat{s}_{i_{1}} \ldots \hat{s}_{i_{2}} \ldots \hat{s}_{i_{k}} \ldots s_{q}$ with $1 \leq i_{1}<\ldots<i_{k} \leq q$.
Then $\exists v \in W$ with
(a) $l(v)=l(u)+1$
(b) $u<v$
(C) \vee also has a reduced subexpression of $s, \xi \cdots s_{q}$
proof: Choose the expression ($*$) for u with i_{k} minimal (leftmost).

Let $t:=s_{q} s_{q-1} \cdots s_{i_{k}} \ldots s_{q} s_{q}$
and $v:=u t=s_{1} \ldots \hat{s}_{i_{1}} \cdots \hat{s}_{i_{2}} \ldots \tilde{s}_{i_{k-1}} \ldots s_{q}$.
Hence $l(v) \leq l(u)+1$. We CLA(M: $l(v)>l(u)$ and hence all 3 of $(a),(b),(c)$ hold.
To prove the CLAIM, assume not, ie. $l(v)<l(u)$.
Strong Exchange implies either....

- $t=s_{q} S_{q} \cdots S_{p} \cdots s_{q u} S_{q}$ for some $p>i_{k}$, leading to the contradiction $\omega=t^{2}=s_{1} s_{2} \cdots \hat{s}_{i_{k}} \cdots \hat{s}_{i_{p}} \ldots s_{q}$ of length $<q=l(\omega)$
or $\quad t=s_{q_{q}} s_{q-1}-\hat{s}_{i_{k}}-\hat{S}_{i_{d}}-s_{r}-\hat{s}_{i_{d}}-\hat{S}_{i_{k}}-s_{q-1} s_{q}$ for some $\begin{array}{r}r<i_{k} \\ r \neq i_{j}\end{array}$
leading to

$$
\begin{aligned}
u=u t^{2} & =\left(s_{i} \cdots \hat{s}_{i_{1}}-\hat{s}_{i_{k}} \cdots s_{q}\right) \cdot\left(s_{q}-\hat{s}_{i_{k}} \cdots s_{r} \cdots \hat{s}_{i_{k}}-s_{q}\right)\left(s_{q} \cdots s_{i_{k}} \cdots s_{q}\right) \\
& =s_{i} \cdots \hat{s}_{i_{1}} \cdots \hat{s}_{r} \cdots s_{i_{k}} \cdots s_{q}
\end{aligned}
$$

contradicting i_{k} being minimal
COROLLARY (Subword characterization of Bruhat) (B-BThm 2.2 .2 Cor 2.2.3)
For any Cox. sys. (w, S) and $u, w \in W$, TFAE:
(i) $n \leqslant w$ in Buhhat order
(ii) Every reduced word for w contains a reduced subexpression for u.
(iii) Some reduced word for w contains a reanced subex pression for u.

ExAmple:

$$
\begin{gathered}
=[1234,2481] \\
\text { in } E_{4}
\end{gathered}
$$

proof:
$(i i) \Rightarrow(i \hbar):$ Clear.
(iii) $\Rightarrow(i):$ If $w=S_{1}-\cdots S_{\S}$ reduced contains a reduced subexpression $u=s_{1} \cdots s_{i_{1}} \cdots \hat{s}_{i_{k}} \cdots s_{\xi}$, then induct on $k=l(\omega)-l(u)$ to conclude $u \leq \omega$, using LeMMA above to find v apter $u<v, l(v)=l(u)+1$ and v also has such a reduced subexpression of $s_{1} \ldots s_{T}$.
$(i) \Rightarrow(i)$: Given $u \leq \omega$, 80 there exists a path $u=u_{0} \rightarrow u_{1} \rightarrow \ldots \rightarrow u_{k-1} \rightarrow u_{k}=\omega$ in the Bmhat graph, assume we are given any reduced word $\omega=\delta_{1} s_{2} \cdots s_{q}$.
Since $u_{k-1} \xrightarrow{t} \omega$ for some $t \in T$, Strong Exchange shows $u_{k-1}=\omega t=s_{1} s_{2} \cdots \hat{s}_{i} \cdots s_{q}$ for some i.

Repeating this k times, one condudes u has some expression (possibly not reduced) that is a subexpression of $s_{1} s_{2}-s_{q}$. But then Deletion condition lets one conclude u also has a reduced such subexpression.

A few immediate consequences...
COROLLARY
(i) Bwhat order is ranked with $\operatorname{rank}(\omega)=\ell(\omega)$, meaning if $u \leq \omega$ then \exists a chain

$$
u=u_{0}<u_{1}<\ldots<\cdot u_{l(\omega)-1}<u_{l(\omega)}=\omega
$$

(ii) Bruhat imlervals $[u, \omega]$ are always finite, with $\#[u, \omega] \leq 2^{l(\omega)}$.
(iii) $u \leq \omega \Leftrightarrow u^{-1} \leq \omega^{-1}$.

Proof: (i): comes from Subword Charadenzation and the Lemma at the beginning.
(ii): $\omega=s_{1} s_{2}-s_{l(\omega)}$ has at most $2^{l(\omega)}$ subexpressions.
(iii) : comes from Subword Characterization

Here's a subtle property of Bumhat order...
PROPOSITION (The Lifting/Zig-zag /N/Z Property)
Suppose u, ω have $s \in S$ with $s \in D_{L}(\omega) \backslash D_{L}(u)$.
Then any of the three Buhat order relations $u<\omega, u<s w$, su<w shown here implies the other two:

proof: Since sw<w and u<su, by transitivity it suffices to show only the lefturnost diagram implications. So assume $u<\omega$ (can't have $u=\omega$ if $\left.s \in D_{L}(\omega) \backslash D_{L}(u)\right)$. Pick a reduced expression $s w=s_{1} s_{2} \cdots s_{q}$.

少
$\omega=S S_{1} S_{2} \cdots S_{q}$ is also reduced since $s \in D_{L}(\omega)$.
By Subword Characterization, u has a reduced subexpression

$$
s_{i} i_{i} s_{i_{2}} \cdots s_{i_{k}} \quad \text { of } \quad \underset{c}{w}=\underset{\text { call this }}{s_{0}} s_{s_{0}}^{s} s_{1} s_{2} \cdots s_{q_{0}} .
$$

Then $s_{i_{1}} \neq s_{0}=s$ since $s u>u$, so $u<s s_{2} \cdots s_{q}=s w$.
Also $s u=s s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ is reduced since $s \notin D_{l}(u)$, hence $s u<\omega$.

Here's an application of Lifting Property: coROLLARY: Brwhat order is always a directed poset, meaning $\forall u, v \in W \quad \exists w \in W$ with $w \geq u, v$. In particular, if W is finite, the longest element $\omega_{0} \geq \omega \forall \omega \in W$.

EXAMPLE:
$I_{2}(m)$
$m=5$:

$m=\infty$:

proof: Prove $\omega \geqslant u, v$ exists by induction on $l(u)+l(v)$.
BASE CASE where $l(u)+l(v)=0$, so $u=v=1$ is trivial.
INDUCTIVE STEP:
W.L.O.G. $\ell(u) \geqslant 1$, so $\exists \mathrm{se}$. with $s u<u$.

By induction, $\exists w \in W$ with $\omega \geqslant s u, v$
Either sw<w and use lifting sworn to get $\omega>u$
or sw>w and use biffing, sw l to get $s \omega>4$

When W is finite, since ω_{0} is the unique element of the longest length $l\left(\omega_{0}\right)=\# T$, for any $w \in W$, it must be the common upper bound of ω, ω_{0}. So $\omega_{0} \geq \omega$

Not only does w_{0} give a top element in Buhat order for finite W, it also gives a pose anti-automorphism:
PROPOSTTION: When W is finite,
(i) $l\left(\omega \omega_{0}\right)=l\left(\omega_{0}\right)-l(\omega) \quad\left(=l\left(\omega_{0} \omega\right)\right)$
(ii) $u \leq \omega \Longleftrightarrow u \omega_{0} \geqslant \omega \omega_{0}\left(\Leftrightarrow \omega_{0} u \geqslant \omega_{0} \omega\right)$
(iii) $T_{L}\left(\omega \omega_{0}\right)=T \backslash T_{L}(\omega) \quad\left(\right.$ and $\left.T_{R}\left(\omega_{0} \omega\right)=T \backslash T_{R}(\omega)\right)$
proof: (ii), (iii) follow from (i), since (i) implies
for any $t \in T$ that one has

$$
\begin{aligned}
& t \in T_{L}(u) \Leftrightarrow l(t u)<l(u) \Longleftrightarrow \text { tu } \xrightarrow{t} u \\
& \text { in Buhat } \\
& \mathbb{N}_{(i)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { in Bruhaf } \\
& \text { graph }
\end{aligned}
$$

For (i), the inequality $l\left(\omega \omega_{0}\right) \geqslant l\left(\omega_{0}\right)-l(\omega)$ comes from

$$
l\left(\omega_{0}\right)=l\left(\omega^{-1} \cdot \omega \omega_{0}\right) \leq l\left(\omega^{-1}\right)+l\left(\omega \omega_{0}\right)=l(\omega)+l\left(\omega \omega_{0}\right) .
$$

For the reverse inequality $l\left(\omega \omega_{0}\right) \leq l\left(\omega_{0}\right)-l(\omega)$, one proceeds by induction on $l\left(\omega_{0}\right)-l(\omega)$.
BASE CASE: $\omega=\omega_{0}$, so $l\left(\omega_{0} \omega_{0}\right)=l(1)=0=l\left(\omega_{0}\right)-l\left(\omega_{0}\right) \Omega$
INDUCTIVE STEP: If $l\left(\omega_{0}\right)-l(\omega) \geqslant 1$, so $\omega \neq \omega_{0}$, then we know $D_{L}(\omega) \neq S$, so $\exists s \in S$ with $s \omega>\omega$.
Then $l\left(\omega \omega_{0}\right) \leq l\left(s \omega \omega_{0}\right)+1$ $\leqslant \ell\left(\omega_{0}\right)-\ell(s \omega)+1$ by induction

$$
=l\left(\omega_{0}\right)-(l(\omega)+1)+1=\ell\left(\omega_{0}\right)-l(\omega) \text {. }
$$

corollary when W is finite,
(a) $\left.\omega \longmapsto \omega \omega_{0} \underset{\omega \mapsto \omega_{0}}{\omega \longmapsto}\right\}$ are poset anti-acutomouphisms of Bmbat
$\left.\begin{array}{l}\text { (b) } \omega \mapsto \omega^{-1} \\ \omega \mapsto \omega_{0} \omega \omega_{0}\end{array}\right\}$ are poset automouphisms of Bruhat
(c) $s_{i} \stackrel{\sigma}{\mapsto} s_{j}=\omega_{0} s_{i} \omega_{0}$ is a (Coxeter) diagram automouphism, meaning σ pamutes S, and $m_{\sigma(i),\left(\sigma_{j}\right)}=m_{i j}$

EXAMPLES (1) For $\tilde{S}_{n}=W\left(\begin{array}{cccc}- & 0 & \ldots & -0 \\ s_{1} & s_{2} & & -s_{n-1}\end{array}\right), w=\left(\begin{array}{llll}1 & 2 & -n \\ w_{1} & w_{2} & \cdots w_{n}\end{array}\right)$

$$
\text { has } w w_{0}=\left(\begin{array}{cccc}
1 & \cdots & n \\
\omega_{n} \omega_{n-1} & \cdots & 1
\end{array}\right) \quad \omega_{0} w=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
n+1-\omega_{1} n+1-\omega_{2} & n+1-\omega_{n}
\end{array}\right)
$$

$$
\omega_{0} \omega \omega_{0}=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
n+1-\omega_{n} n+1-\omega_{n-1} & & n+1-\omega_{n}
\end{array}\right)
$$

ariti-antomouphisms

anto mouphisms

(2) For $W=W\left(B_{n}\right)=W\left(C_{n}\right)=$ signed permutations

$$
w_{0}=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
-1 & -2 & \cdots & -n
\end{array}\right)=\left[\begin{array}{ccc}
-1 & & 0 \\
-1 & \ddots \\
0 & \ddots & -1
\end{array}\right]
$$

so $\omega_{0} \omega=\omega \omega_{0}=\left(\begin{array}{ccc}1 & 2 & \ldots\end{array}\right)$ n $\left.\begin{array}{c}-w_{1}-w_{2}\end{array}-\omega_{n}\right)$ and $\omega_{0} w \omega_{0}=\omega$

$$
\begin{array}{lll}
0-4 \\
0 & 0 & 0
\end{array}
$$

(3) For $W\left(D_{n}\right)=$ signed permutations with evenly many negative signs, and $\sigma\left(s_{i}\right)=\omega_{0} s_{i} \omega_{0}$ does this: $\left\{\begin{array}{llll}0-0 & \cdots & -0 \\ 0 & 0 & 0,5 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0\end{array}\right.$

ExERCIsE When W is finite, show T. F.A.E.
(a) $\omega_{0}=-1_{V}$ in the geom. resin $W \xrightarrow{\sigma}$ GL(V)
(b) $w \mapsto \omega_{0} w \omega_{0}$ is the trivial diagram antompnohism
(c) The center $Z(W)=\left\langle\omega_{0}\right\rangle=\left\{1, \omega_{0}\right\}$.

