Math 8680 Fall 2022
Solutions to selected exercises
Bjömer-Brenti \#1.3
$a_{1}=(12)(34)$ have $a_{1} a_{2}=(345)$ of order 3

$$
\begin{array}{ll}
a_{2}=(12)(45) & a_{1} a_{3}=(13)(24) \text { of order } 2 \\
a_{3}=(14)(23) & a_{2} a_{3}=(15423) \text { of order } 5
\end{array}
$$

and $a_{1}^{2}=a_{2}^{2}=a_{3}^{2}=1$, so get a well-defined homomorphism

$$
\begin{aligned}
& \text { and } a_{1}=a_{2}=a_{3}=1, \text { so get a well-achea } \\
& W\left(H_{3}\right)=W\left(\underset{s_{1} s_{2} s_{3}}{\infty}\right) \xrightarrow{\varphi}\left\langle a_{1}, a_{2}, a_{3}\right\rangle \subset \widetilde{S}_{5} \\
& s_{1} \longmapsto a_{1} \\
& s_{2} \longmapsto a_{2} \\
& s_{3} \longmapsto a_{3}
\end{aligned}
$$

Since each of a_{1}, a_{2}, a_{3} ties in the aftemating group a_{5}, which has cardinality $\left|C_{5}\right|=\frac{1}{2}\left|G_{5}\right|=\frac{5!}{2}=60$,
and $\left.\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right\rangle\left\langle a_{1} a_{2}\right\rangle \longleftarrow$ size 3

$$
\begin{aligned}
& \rangle\left\langle a_{2} a_{3}\right\rangle \\
& \rangle\left\langle a_{1}, a_{3}\right\rangle=\left\{1, a_{1}, a_{3}, a_{1} a_{3}\right\} \leftarrow \text { size } 4,
\end{aligned}
$$

one conderdes $\left(\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right) \geqslant \operatorname{com}(3,4,5)=60$ and hence φ swjects onto C_{5}.

On the other hand, recall C_{5} is generated by its 3-aycles $\{(i j k)\}_{1 \leq i<j<k \leq s}$. So if we pick $\left\{\omega_{i j k}\right\} \in W\left(H_{3}\right)$ having $\varphi\left(\omega_{i j k}\right)=(i j k)$, then $\varphi\left(\omega_{i j k}^{2}\right)=(i j k)^{2}=(i k j)$ also generate C_{5}.
Thus φ maps the subgroup $\left\langle\left\{\omega_{i, j k}^{2}\right\}\right\rangle \rightarrow C_{5}$, and this subgroup lies inside the alternating subgroup $A\left(W\left(H_{3}\right)\right)$, because $\operatorname{sgn}\left(\omega_{i j k} k^{2}\right)=\operatorname{sgn}\left(\omega_{i j k}\right)^{2}=(\pm 1)^{2}=+1$.
However $\left|a\left(w\left(H_{3}\right)\right)\right|=\frac{1}{2}\left|w\left(H_{3}\right)\right|=\frac{1}{2}(120)=60=\left|C_{5}\right|$, so φ maps $C\left(w\left(H_{3}\right)\right) \xrightarrow{\sim} a_{5}$ isomorphically. Bjorner-Brenti \#1.6
(a) $T=\{(i, j): 1 \leq i<j \leq n\}=$ transpositions in G_{n} Identifying $A \subseteq T$ with a subset of edges in the complete graph K_{n} on vertex set $\{1,2, \ldots, n\}$, one car see that $\langle A\rangle=\sigma_{n}$ if and only if A connects the vertex set $\{1,2, \longrightarrow n\}$: if the connected components of A are $V=\{1,2,-, n\}=V_{1} \times \ldots \times V_{k}$ for some $k \geqslant 2$, then $\langle A\rangle \leqslant \widetilde{S}_{V_{1}} \times \ldots \times \widetilde{S}_{V_{k}} \not \equiv \widetilde{S}_{n}$,
while $\tilde{S}_{n}=\left\langle\widetilde{S}_{\{\{, 2,-n-1\}},(i n)\right\rangle$ for any $\mid \leqslant i \leqslant n-1$ shows that $\langle A\rangle=\widetilde{S}_{n}$ if A connects $\{1,2,,, n\}$. But then the inclusion-minimal subsets A of edges of K_{n} chat connect $\{1,2,-, n\}$ are its spanning trees.
(b) If the tree A is linear, then by re-indering it looks like $1-2 \rightarrow 3-4-\ldots-n$,

$$
\text { ie. } A=\left\{\begin{array}{ccc}
(12),(23), \ldots, & (n-1, n) \\
s_{1} & 11 \\
s_{2} & 11 \\
s_{n-1}
\end{array}\right\}
$$

which we know are Coxeter system (w, s) for \widetilde{S}_{n}.
If the tree A is not linear, it has a vertex of degree $\geqslant 3$, and so by re-indexing it contains $(1,2),(1,3),(1,4)$. If A gave a Coxefer system (ω, s), then these three generators would give a parabolic subsystem

$$
\begin{aligned}
& \text { generators would give } \\
&\left(W_{J,}, J\right) \text {. But since }(12)(13)=(132) \\
&(12)(14)=(142) \\
&(12),(13),(14)\}
\end{aligned}
$$

all have order 3, this $W_{J}=W\left(\Omega_{3}^{3}\right)=W\left(\tilde{A}_{2}\right)$, an infinite Coxeter group. This contradict o $W_{5} \leqslant G_{n}$.
(c) Inside a dihedral group like $I_{2}(\underset{11}{30})=W\left(\begin{array}{ll}30 & 0 \\ 3, & \xi\end{array}\right)$ we know one can generate it by 2 reflections in T, e.g. s_{1}, s_{2} whose refin lines have a dihedral angle of $\frac{\pi}{30}$.

Now take 3 refins t_{1}, t_{2}, t_{3} whose dihedral angles are as shown here:

Then we find that pairwise they all generate dihedral subgroups $\left\langle t_{1}, t_{2}\right\rangle \cong I_{2}(6)$ of size 12
$\left\langle t_{2}, t_{3}\right\rangle \cong I_{2}(10)$ of size 20
$\left\langle t_{1}, t_{3}\right\rangle \cong I_{2}(15)$ of size 30
and so $\left|\left\langle t_{1}, t_{2}, t_{3}\right\rangle\right| \geqslant \operatorname{lcm}(12,20,30)=60=\left|I_{2}(30)\right|$

$$
\Rightarrow\left\langle t_{1}, t_{2}, t_{3}\right\rangle=I_{2}(30)
$$

with $A=\left\{t_{1}, t_{2}, t_{3}\right\} \subset T$ an inclusion-minimal generating ref of 3 reflections, not 2 .

Bjöner-Brenti \#1. 10.
Given $t \in T=\bigcup_{W \in W} W^{-1} w^{-1}$, find a palindromic reduced
expression for t os follows. start with any reduced expression $t=s_{1} s_{2} \cdots s_{l(t)}(*)$.
Since $l(t-t)=l(1)=0<l(t), \quad t \in T_{L}(t)$ and hence \exists some $k \in\{1,2, \ldots, l(t)\}$ with

$$
t=\underbrace{s_{1} s_{2} \cdots s_{k-1} s_{k} \rho_{k-1} \cdots s_{2} s_{1}}_{\text {palindromic, } 2 k-1 \text { letters total }} \quad(* *)
$$

CASE 1: $k \leq \frac{l(t)+1}{2}$ i.e. $\quad 2 k-1 \leq l(t)$
Then one must have equality $2 k-1=l(t)$ and $(* *)$ must be reduced, so were done.

CASE 2: $k>\frac{l(t)+1}{2}$ i.e. $2 k-1>l(t)$
Then $t=t^{-1}=\quad s_{l(t)}^{2} \cdots s_{k+1} s_{k} s_{k-1} \cdots s_{2} s_{1}$ from (*) and $t=s_{1} s_{2} \ldots \ldots, s_{k-1} s_{k} s_{k-1} \cdots s_{2} s_{1}$ from (***)

$$
\begin{aligned}
& \Rightarrow s_{1} s_{2} \cdots s_{k-1}=s_{l(t)} \cdots s_{k+1} \\
& \Rightarrow t=s_{1} s_{2} \cdots s_{k-1} s_{k} s_{2+1} \cdots s_{l(t)} \\
& =\underbrace{s_{Q(t)} \cdots s_{k+1} \cdot s_{k} s_{k+1} \cdots s_{l(t)}}_{\text {\# of letters }=2(l(t)-k)+1=2 l(t)-(2 k-1)} \\
& <2 l(t)-l(t)=l(t) \\
& \text { since } 2 k-1>l(t) \\
& \text { Contradiction. 乡 }
\end{aligned}
$$

CRM-LACMM Spring School EXERCISE \#2
Want to show that a rational function $f(f)=\frac{1}{\left(1-t^{d_{1}}\right) \cdots\left(1-t^{d_{n}}\right)}$
with $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$ has the multiset mignely determined, i.e. if $\frac{1}{\prod_{i=1}^{n}\left(1-t^{d_{i}}\right)} \stackrel{(*)}{=} \frac{1}{\prod_{j=1}^{m}\left(1-t^{d_{i}^{\prime}}\right)}$
then $m=n$ and if $d_{1} \leq \ldots \leq d_{n}$, one has $d_{i}=d_{i}^{\prime} \forall_{i}$.

$$
d_{1}^{\prime} \leq \ldots \leq d_{n}^{\prime}
$$

Show this by inductor on $\max \{n, m\}$.
Since $(*)$ implies $\quad \prod_{i=1}^{n}\left(1-t^{d_{i}}\right) \stackrel{(* *)}{=} \prod_{j=1}^{m}\left(1-t^{d_{i}^{\prime}}\right)$ in $\mathbb{Z}[t]$
one can use unique fadorizafon into ire ducildes in $\mathbb{Z}[t]$.
Recall the irreducible factorization for $1-t^{d}$ is

$$
\begin{aligned}
& 1-t^{d}=\prod_{\text {divisors }} \Phi_{e}(t) \quad \text { where } \Phi_{e}(t):=e^{\text {th } c y c l o f o m i c ~} \\
& \text { polynomial } \\
& =\prod_{1}(t-\xi) \\
& \text { primitive } \\
& \begin{array}{l}
\substack{\text { nhmitione } \\
e^{\text {throws }}\left\{ \\
\operatorname{in} C^{x}\right.}
\end{array}
\end{aligned}
$$

Hence ($* *$) implies

$$
d_{n}=d_{n}^{\prime}=\max \left\{e: \Phi_{e}(t) \text { divides either side of }(x * x)\right\}
$$

Furthermore, the multiplicity μ of $d_{n}=d_{n}^{\prime}$ in either list $d_{1} \leq \ldots . \leq d_{n}$ or $d_{1}^{\prime} \leq \ldots \leq d_{n}^{\prime}$ must be
the same, since they are both the multiplicity μ of $\Phi_{d_{n}}(t)=\Phi_{d_{n}}(t)$ as a factor on either side of $(* * x)$.
Now cancel these factors of $\left(1-t^{d_{n}}\right)^{\mu}=\left(1-t^{d_{n}^{\prime}}\right)^{\mu}$ from both sides of $(* *)$, and proceed by induction.

