Bjömer-Brenti #1.3

$$a_1 \in (12)(34)$$
 have $a_1a_2 = (345)$ of order 3
 $a_2 = (12)(45)$ $a_1a_3 = (13)(24)$ of order 2
 $a_3 = (14)(23)$ $a_2a_3 = (15423)$ of order 5
and $a_1^2 = a_2^2 = a_3^2 = 1$, so get a well-defined homomorphism
 $W(H_3) = W(\underbrace{0 \longrightarrow 0}_{s_1, s_2, s_3} \underbrace{\psi}_{s_3, s_3} \land G_5$
 $s_1 \longmapsto a_1$
 $s_2 \longmapsto a_3$

Since each of $a_{1,}a_{2,}a_{3}$ ties in the atternating group $C_{5,}$ which has cardinality $|C_{5}| = \frac{1}{2}|C_{5}| = \frac{5!}{2} = 60$, and $\langle a_{1,}a_{2,}a_{3}\rangle \geq \langle a_{1}a_{2}\rangle \qquad \text{size } 3$ $\geq \langle a_{2}a_{3}\rangle \qquad \text{size } 3$ $\geq \langle a_{4}, a_{5}\rangle = [1, a_{1,}a_{3}, a_{4}a_{3}] \leftarrow \text{size } 4$, one concludes $|\langle a_{1,}a_{2,}a_{3}\rangle| \geq |cun(3,4,5)| = 60$ and hence Ψ surjects onto $C_{4,5,}$.

On the other hand, recell Cls is generated by its 3 cycles {(ijk)] isisjekss. So if we pick $\{\omega_{ijk}\}\in W(H_3)$ having $\Psi(\omega_{ijk})=(ijk)$, then $\varphi(\omega_{ijk}^2) = (ijk)^2 = (ikj)$ also generate l_5 . Thus 4 maps the subgroup $\langle i \omega_{ijk}^2 \rangle \longrightarrow \mathcal{O}_5$, and this subgroup lies inside the attennating subgroup $\mathcal{O}(\mathcal{W}(H_3))$, because $sgn(\omega_{ijk}^2) = sgn(\omega_{ijk})^2 = (\pm 1)^2 = 41$. However $|\mathcal{OL}(W(H_3))| = \frac{1}{2}|W(H_3)| = \frac{1}{2}(120) = 60 = |\mathcal{O}_5|,$ so q maps (U(W(H3)) ~~> Ols isomorphically.

Björner-Brenti #1.6 (a) $T = \{(i,j): 1 \le i \le j \le n\} = transpositions in <math>\mathfrak{S}_{h}$ Identifying $A \subseteq T$ with a subset of edges in the complete graph Kn on vertex set {1,2, _, n}, one can see that $\langle A \rangle = G_n$ if and only if A connects the vertex set {1,2, __n]: if the connected components of A are V=[1,2,-,ng=V, × ... × Vk for some k 22, then $\langle A \rangle \leq \mathcal{G}_{V_1} \times ... \times \mathcal{G}_{V_L} \stackrel{<}{=} \mathcal{G}_{n_1}$

while $G_n = \langle G_{1,2,n-1}, (in) \rangle$ for any $ki \leq n-1$ shows that <A>= En if A connects {1,2,-,n}. But then the inclusion-minimal subjects A of edges of Kn chot connect 21,2,-,ny are its spanning trees. (6) If the tree A is linear, then by re-indexing it looks like 1-2-3-4-...-n, i.e. $A = \{(12), (23), \dots, (n-1, n)\}$ S_1 S_2 S_{N-1} which we know are Coxeter system (W,S) for Gn. If the tree A is not linear, it has a vertex of degree ≥3, and so by re-indexing it contains (1,2), (1,3), (1,4). If A gave a Coxeter system (W,S), then these three generators would give a parabolic subsystem $(W_{J,J})$. But since (12)(13) = (132)(12)(14) = (142)(13)(14) = (143)all have order 3, this $W_J = W(3/3) = W(A_J)$, an infinite Coxeter group. This contradicts Wy = Gh.

Bjöner-Brenti #1.10.
Given
$$t \in T = \bigcup_{u \in W} usvi'$$
, find a palerduonic reduced
ses
expression for t as follows. Start with any reduced
expression $t = s_i s_2 - \cdots s_{R(t)}$ (*).
Since $l(t,t) = l(t) = 0 < l(t)$, $t \in T_L(t)$ and hence
 \exists some $k \in [1, 2, \dots, R(t)]$ with
 $t = s_1 s_2 - \cdots s_{k-1} s_k^{s_k} s_{k-1} - s_2 s_1$ (**)
palindromic, $2k-1$ betters total
CASE 1: $k \leq l(t)+1$ i.e. $2k-1 \leq l(t)$
Then one must have equalify $2k-1 = l(t)$
and (**) must be reduced, so we're done.
CASE 2: $k > l(t)+1$ i.e. $2k-1 > l(t)$
Then $t = t^1 = s_{l(t)} - \cdots s_{k-1} s_k s_{k-1} - \cdots s_k s_1$ from (*)
and $t = s_1 s_2 - \cdots s_{k-1} s_k s_{k-1} - \cdots s_k s_1$ from (*)
 $and t = s_1 s_2 - \cdots s_{k-1} s_k s_{k-1} - \cdots s_k s_1$ from (*)
 $\Rightarrow s_1 s_2 - \cdots s_{k-1} s_k s_{k-1} - \cdots s_k s_1$ from (*)
 $\Rightarrow s_1 s_2 - s_{k-1} = s_{l(t)} - \cdots s_{l(t)}$
 $\Rightarrow t = s_1 s_2 - s_{k-1} s_k s_{k-1} - \cdots s_k s_1$ from (*)
 $since 2k-1 > l(t)$

CRM-LACKM spring School
EXERCISE #2
Want to show that a robunal function
$$f(t) = \frac{1}{(t-t^{d_1})\cdots(t-t^{d_m})}$$

with $d_1 \le d_2 \le \dots \le d_n$ has the multiset winghely
determined, i.e. if $\frac{1}{\prod[t-t^{d_1}]} = \frac{1}{\prod[t-t^{d_1'}]}$
then $m=n$ and if $d_1 \le \dots \le d_n$, one has $d_1 = d_1' \lor i$.
 $d_1' \le \dots \le d_n'$
Show this by induction on max[mm].
Since (*) implies $\prod[t-t^{d_1}] = \prod_{j=1}^{T}(t-t^{d_1'})$ in $\mathbb{Z}[t_1]$
one can use unique factorization into interducibles in $\mathbb{Z}[t_1]$.
Recall the interducible factorization for $1-t^d$ is
 $1-t^d = \prod_{d \in T} \Phi_e(t)$ where $\Phi_e(t) := e^{th} cyclotomic
divisors e^{td} where $\Phi_e(t) := e^{th} cyclotomic
divisors $t = 0$ and $t = 0$ and $t = 0$.$$

Fundhamore, the multiplicity μ of $d_n = d_n'$ in either list $d_1 \leq \dots \leq d_n$ or $d'_1 \leq \dots \leq d'_n'$ must be the same, since they are both the multiplicity μ of $\overline{\Phi}_{d_n}(t) = \overline{\Phi}_{d'_n}(t)$ as a factor on either side of (mx). Now cancel these factors of $(-t^{d_n})^n = (-t^{d'_n})^n$ from both sides of (**), and proceed by induction.