Name: \qquad
Signature:
Section and TA: \qquad
Math 1271. Lecture 060 (V. Reiner) Midterm Exam III Tuesday, November 24, 2009
This is a 50 minute exam. No books, notes, calculators, cell phones or other electronic devices are allowed. There are a total of 100 points. To get full credit for a problem you must show the details of your work. Answers unsupported by an argument will get little credit. Do all of your calculations on this test paper.
Problem Score
\qquad
2. \qquad
3. \qquad
4. \qquad

Total: \qquad

Problem 1. (25 points total) Compute the following.
a. (5 points)

$$
\int\left(e^{-t}+t^{4}\right) d t
$$

b. (5 points)

$$
\int_{1}^{3}\left(e^{-t}+t^{4}\right) d t
$$

c. (5 points) The Riemann sum approximating $\int_{1}^{3}\left(e^{-t}+t^{4}\right) d t$, using two equal length subintervals and taking right endpoints of the subintervals as sample points. Since you cannot use a calculator, leave numerical answers unevaluated.
c. (5 points)

$$
\frac{d}{d x} \int_{1}^{x}\left(e^{-t}+t^{4}\right) d t
$$

d. (5 points)

$$
\frac{d}{d x} \int_{1}^{x^{10}}\left(e^{-t}+t^{4}\right) d t
$$

Problem 2. (15 points) Find the area of the bounded region lying above the x-axis and below the graph $y=100-x^{2}$.

Problem 3. (30 points total) Compute the following limits. Indicate which limit rules or laws you are using.
a. (10 points)

$$
\lim _{x \rightarrow \pi} \frac{\sin (2 x)}{\sin (7 x)}
$$

b. (10 points)

$$
\lim _{x \rightarrow \pm \infty} x e^{-x^{2}}
$$

c. (10 points)

$$
\lim _{x \rightarrow 0} x e^{-x^{2}}
$$

Problem 4. (30 points) Let $f(x)=x e^{-x^{2}}$.
a. (10 points) Find all critical points $(c, f(c))$ of $f(x)$, and indicate whether they are local maxima, local minima, or neither.

Figure 1. Axes for your sketch in part (c) of the graph $y=f(x)=x e^{-x^{2}}$
b. (10 points) Find all inflection points $(c, f(c))$ of $f(x)$.
c. (10 points) On the axes above, give a rough sketch of the graph $y=$ $f(x)=x e^{-x^{2}}$, indicating the features you discussed in parts (a),(b) of this problem, as well as those features found in Problem 3 parts (b),(c).

Brief solutions.

1. a. (5 points)

$$
\int\left(e^{-t}+t^{4}\right) d t=-e^{-t}+\frac{t^{5}}{5}
$$

b. (5 points)

$$
\int_{1}^{3}\left(e^{-t}+t^{4}\right) d t=\left[-e^{-t}+\frac{t^{5}}{5}\right]_{1}^{3}=-e^{-3}+\frac{3^{5}}{5}-\left(-e^{-1}+\frac{1^{5}}{5}\right)
$$

c. (5 points) The Riemann sum approximating $\int_{1}^{3}\left(e^{-t}+t^{4}\right) d t$, using two equal length subintervals and taking right endpoints of the subintervals as sample points is

$$
(2-1)\left(e^{-2}+2^{4}\right)+(3-2)\left(e^{-3}+3^{4}\right)
$$

d. (5 points)

$$
\frac{d}{d x} \int_{1}^{x}\left(e^{-t}+t^{4}\right) d t=\left(e^{-x}+x^{4}\right)
$$

e. (5 points)

$$
\frac{d}{d x} \int_{1}^{x^{10}}\left(e^{-t}+t^{4}\right) d t=\left(e^{-x^{10}}+\left(x^{10}\right)^{4}\right) \cdot 10 x^{9}
$$

2. (15 points) The area of the bounded region lying above the x-axis and below the graph $y=100-x^{2}$ is

$$
\int_{-10}^{10}\left(100-x^{2}\right) d x=\left[100 x-\frac{x^{3}}{3}\right]_{-10}^{10}=\left(100 \cdot 10-\frac{10^{3}}{3}\right)-\left(100(-10)-\frac{(-10)^{3}}{3}\right)
$$

3. (30 points total)
a. (10 points)

$$
\lim _{x \rightarrow \pi} \frac{\sin (2 x)}{\sin (7 x)} \stackrel{\text { L'Hôpital }}{=} \lim _{x \rightarrow \pi} \frac{2 \cos (2 x)}{7 \cos (7 x)} \stackrel{\text { continuity of }}{\cos (2 x), \cos (7 x)} \frac{2 \cos (2 \pi)}{7 \cos (7 \pi)}=\frac{2(1)}{7(-1)}=-\frac{2}{7} .
$$

b. (10 points)]

$$
\lim _{x \rightarrow \pm \infty} x e^{-x^{2}}=\lim _{x \rightarrow \pm \infty} \frac{x}{e^{x^{2}}} \stackrel{\text { L'Hôpital }}{=} \lim _{x \rightarrow \pm \infty} \frac{1}{2 x e^{x^{2}}}=\frac{1}{ \pm \infty}=0 .
$$

c. (10 points)]

$$
\lim _{x \rightarrow 0} x e^{-x^{2}} \stackrel{\text { product law }}{=} \lim _{x \rightarrow 0} x \cdot \lim _{x \rightarrow 0} e^{-x^{2} \text { continuity of } x, e^{-x^{2}}}=0 \cdot e^{-0^{2}}=0 \cdot 1=0
$$

4. Let $f(x)=x e^{-x^{2}}$.
a. (10 points)] To find all critical points $(c, f(c))$ of $f(x)$, compute

$$
f^{\prime}(x)=1 \cdot e^{-x^{2}}+x(-2 x) e^{-x^{2}}=\left(1-2 x^{2}\right) e^{-x^{2}}
$$

Since $e^{-x^{2}}$ is always positive, $f^{\prime}(x)=0$ if and only if $1-2 x^{2}=0$, that is when $x= \pm \sqrt{\frac{1}{2}}$. Also note that $f^{\prime}(x)$ is

- negative for $x<-\sqrt{\frac{1}{2}}$,
- positive for $-\sqrt{\frac{1}{2}}<x<+\sqrt{\frac{1}{2}}$,
- negative for $x>+\sqrt{\frac{1}{2}}$.

Hence at $x=-\sqrt{\frac{1}{2}}$ the function reaches a local minimum, and at $x=+\sqrt{\frac{1}{2}}$ a local maximum.
b. (10 points)] To find all inflection points $(c, f(c))$ of $f(x)$, compute

$$
\begin{aligned}
f^{\prime \prime}(x) & =-4 x e^{-x^{2}}+\left(1-2 x^{2}\right)(-2 x) e^{-x^{2}}\left(-4 x-2 x+4 x^{3}\right) e^{-x^{2}} \\
& =\left(-6 x+4 x^{3}\right) e^{-x^{2}} \\
& =2 x\left(2 x^{2}-3\right) e^{-x^{2}}
\end{aligned}
$$

Since $e^{-x^{2}}>0$, one has $f^{\prime \prime}(x)=0$ if and only if $2 x\left(2 x^{2}-3\right)=0$, that is when $x=0, \pm \sqrt{\frac{3}{2}}$. Also note that $f^{\prime \prime}(x)$ is

- negative for $x<-\sqrt{\frac{3}{2}}$,
- positive for $-\sqrt{\frac{3}{2}}<x<0$,
- negative for $0<x<+\sqrt{\frac{3}{2}}$,
- and negative for $x>+\sqrt{\frac{3}{2}}$.

Thus there is an inflection point above each of the three x-values $x=$ $0, \pm \sqrt{\frac{3}{2}}$.
c. (10 points) Here is what Maple's plotter gives:

Figure 2. The graph of $y=f(x)=x e^{-x^{2}}$.

