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Math 1271. Lecture 060 (V. Reiner) Midterm Exam III
Tuesday, November 24, 2009

This is a 50 minute exam. No books, notes, calculators, cell phones or
other electronic devices are allowed. There are a total of 100 points.
To get full credit for a problem you must show the details of your work.
Answers unsupported by an argument will get little credit. Do all of
your calculations on this test paper.

Problem Score
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2.

3.

4.

Total:

1
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Problem 1. (25 points total) Compute the following.

a. (5 points)
∫

(e−t + t4)dt

b. (5 points)
∫ 3

1

(e−t + t4)dt
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c. (5 points) The Riemann sum approximating
∫ 3

1
(e−t+t4)dt, using two

equal length subintervals and taking right endpoints of the subinter-
vals as sample points. Since you cannot use a calculator, leave numer-
ical answers unevaluated.

c. (5 points)
d

dx

∫ x

1

(e−t + t4)dt

d. (5 points)

d

dx

∫ x10

1

(e−t + t4)dt
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Problem 2. (15 points) Find the area of the bounded region lying above
the x-axis and below the graph y = 100 − x2.
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Problem 3. (30 points total) Compute the following limits. Indicate
which limit rules or laws you are using.

a. (10 points)

lim
x→π

sin(2x)

sin(7x)

b. (10 points)

lim
x→±∞

xe−x2

c. (10 points)

lim
x→0

xe−x2
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Problem 4. (30 points) Let f(x) = xe−x2

.
a. (10 points) Find all critical points (c, f(c)) of f(x), and indicate
whether they are local maxima, local minima, or neither.
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Figure 1. Axes for your sketch in part (c) of the graph

y = f(x) = xe−x2

b. (10 points) Find all inflection points (c, f(c)) of f(x).

c. (10 points) On the axes above, give a rough sketch of the graph y =
f(x) = xe−x2

, indicating the features you discussed in parts (a),(b) of
this problem, as well as those features found in Problem 3 parts (b),(c).
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Brief solutions.

1. a. (5 points)
∫

(e−t + t4)dt = −e−t +
t5

5

b. (5 points)

∫ 3

1

(e−t + t4)dt =

[

−e−t +
t5

5

]3

1

= −e−3 +
35

5
− (−e−1 +

15

5
)

c. (5 points) The Riemann sum approximating
∫ 3

1
(e−t + t4)dt, us-

ing two equal length subintervals and taking right endpoints of the
subintervals as sample points is

(2 − 1)(e−2 + 24) + (3 − 2)(e−3 + 34)

d. (5 points)

d

dx

∫ x

1

(e−t + t4)dt = (e−x + x4)

e. (5 points)

d

dx

∫ x10

1

(e−t + t4)dt = (e−x10

+ (x10)4) · 10x9

2. (15 points) The area of the bounded region lying above the x-axis
and below the graph y = 100 − x2 is
∫ 10

−10

(100−x2)dx =

[

100x −
x3

3

]10

−10

= (100·10−
103

3
)−(100(−10)−

(−10)3

3
).

3. (30 points total)
a. (10 points)

lim
x→π

sin(2x)

sin(7x)

L’Hôpital
= lim

x→π

2 cos(2x)

7 cos(7x)

continuity of cos(2x),cos(7x)
=

2 cos(2π)

7 cos(7π)
=

2(1)

7(−1)
= −

2

7
.

b. (10 points)]

lim
x→±∞

xe−x2

= lim
x→±∞

x

ex2

L’Hôpital
= lim

x→±∞

1

2xex2
=

1

±∞
= 0.

c. (10 points)]

lim
x→0

xe−x2 product law
= lim

x→0
x · lim

x→0
e−x2 continuity of x,e−x

2

= 0 · e−02

= 0 · 1 = 0.
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4. Let f(x) = xe−x2

.
a. (10 points)] To find all critical points (c, f(c)) of f(x), compute

f ′(x) = 1 · e−x2

+ x(−2x)e−x2

= (1 − 2x2)e−x2

.

Since e−x2

is always positive, f ′(x) = 0 if and only if 1− 2x2 = 0, that

is when x = ±

√

1
2
. Also note that f ′(x) is

• negative for x < −

√

1
2
,

• positive for −
√

1
2

< x < +
√

1
2
,

• negative for x > +
√

1
2
.

Hence at x = −

√

1
2

the function reaches a local minimum, and at

x = +
√

1
2

a local maximum.

b. (10 points)] To find all inflection points (c, f(c)) of f(x), compute

f ′′(x) = −4xe−x2

+ (1 − 2x2)(−2x)e−x2

(−4x − 2x + 4x3)e−x2

= (−6x + 4x3)e−x2

= 2x(2x2
− 3)e−x2

Since e−x2

> 0, one has f ′′(x) = 0 if and only if 2x(2x2
− 3) = 0, that

is when x = 0,±
√

3
2
. Also note that f ′′(x) is

• negative for x < −

√

3
2
,

• positive for −
√

3
2

< x < 0,

• negative for 0 < x < +
√

3
2
,

• and negative for x > +
√

3
2
.

Thus there is an inflection point above each of the three x-values x =

0,±
√

3
2
.

c. (10 points) Here is what Maple’s plotter gives:
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Figure 2. The graph of y = f(x) = xe−x2

.


