Math 4707
 The Matching Theorem

Dennis White

November 3, 2010

A matching in a bipartite graph is a subset of the edges with no common vertices. Alternatively, it is a 1-regular subgraph. Here is an example of a matching having two edges:

A complete match from X to Y in a bipartite graph with vertex bipartition (X, Y) is a matching containing every vertex in X. Here is an example of a complete match:

Suppose G is a bipartite graph with bipartition (X, Y). Suppose $A \subseteq X$. Let $N_{G}(A)$ denote the
neighbors of A in G, that is, all the vertices in Y which are adjacent to at least one vertex in A. For example, in the bipartite graph above, if $A=\{2,4\}$, then $N_{G}(A)=\{b, c\}$.

The Matching Theorem gives a simple condition which tells exactly when there exists a complete match in a bipartite graph.
Theorem 1. Suppose G is a bipartite graph with vertex bipartition (X, Y). There is a complete match from X to Y if and only if for every $A \subseteq X,|A| \leq\left|N_{G}(A)\right|$.

The condition that for every $A \subseteq X,|A| \leq\left|N_{G}(A)\right|$ is called the matching condition.

Proof. Suppose there is a complete match from X to Y and suppose $A \subseteq X$. Then the complete match identifies each vertex in A with a unique vertex in $N_{G}(A)$, so that the number of vertices in $N_{G}(A)$ is at least as great as the number of vertices in A.

The converse is more difficult. We must show that if the matching condition is satisfied, then there is a complete match. The proof is by induction on the number of vertices in X. Suppose $|X|=1$, that is, $X=\{v\}$. If the matching condition is satisfied, then v is adjacent to at least once vertex in Y, and the edge to such a vertex gives the complete match.

Now suppose that every bipartite graph H with bipartition (U, V) and with $1 \leq|U|<n$ which satisfies the matching condition has a complete match from U to V. Let G be a bipartite graph with bipartition (X, Y), with $|X|=n$, which satisfies the matching condition. We must show that there is a complete match from X to Y.

We consider two cases. The first case is that for every $\emptyset \subset A \subset X,|A|<\left|N_{G}(A)\right|$. That is, for non-empty proper subset A, not only is the matching condition satisfied, but it is satisfied strictly.

The second case is that there is some A in X, which is neither \emptyset nor X, such that $|A|=\left|N_{G}(A)\right|$. Note that exactly one of these two cases must occur.

In the first case, pick any vertex $v \in X$. The matching condition implies that v is adjacent to at least one vertex $w \in Y$. Set the edge (v, w) aside and remove v from X and w from Y to form a new bipartite graph H with bipartition $(X-v, Y-w)$. Let $\emptyset \subset A \subseteq X-v$. Since A is a proper subset of X, we know that $|A|<\left|N_{G}(A)\right|$. If $N_{G}(A)$ did not include w, then $N_{H}(A)=N_{G}(A)$ and so $|A|<\left|N_{H}(A)\right|$. If $N_{G}(A)$ did include w, then $N_{H}(A)=N_{G}(A)-\{w\}$, so $|A|<\left|N_{G}(A)\right|$ implies $|A| \leq\left|N_{H}(A)\right|$.

Therefore the matching condition is satisfied in H. Since $X-v$ has one fewer vertex than X, the inductive hypothesis implies that there is a complete match from $X-v$ to $Y-w$. That match together with the edge (v, w) gives a complete match from X to Y.

Now suppose there is $A \subset X, A \neq \emptyset$, such that $|A|=\left|N_{G}(A)\right|$. We construct the match from X to Y by first matching A to $N_{G}(A)$, then matching $X-A$ to $Y-N_{G}(A)$.

Let H be the bipartite graph induced by the bipartition $\left(A, N_{G}(A)\right)$. Pick $B \subseteq A$. Since $N_{G}(B) \subseteq$ $N_{G}(A)$, it follows that $N_{H}(B)=N_{G}(B)$, and so the matching condition is satisfied in H because
it is satisfied in G. Furthermore, $1 \leq|A| \leq n-1$, so that by induction there is a complete match M from A to $N_{G}(A)$.

Now let K be the bipartite graph induced by the bipartition $\left(X-A, Y-N_{G}(A)\right)$. Let $B \subseteq X-A$. We must have $N_{G}(A \cup B)=N_{G}(A) \cup N_{K}(B)$ since there are no edges between vertices in A and vertices in $Y-N_{G}(A)$.

But A was chosen so that $\left|N_{G}(A)\right|=|A|$, and the matching condition gives $|A \cup B| \leq\left|N_{G}(A \cup B)\right|$. Therefore

$$
\begin{aligned}
|A|+|B| & =|A \cup B| \\
& \leq\left|N_{G}(A \cup B)\right| \\
& =\left|N_{G}(A) \cup N_{K}(B)\right| \\
& =\left|N_{G}(A)\right|+\left|N_{K}(B)\right| \\
& =|A|+\left|N_{K}(B)\right|
\end{aligned}
$$

so that $|B| \leq\left|N_{K}(B)\right|$. That is, the matching condition is satisfied in K. But $1 \leq|X-A| \leq n-1$, so by induction, there is a complete match M^{\prime} from $X-A$ to $Y-N_{G}(A)$. Putting M and M^{\prime} together gives a complete match from X to Y.

Notice that the first case used weak induction, but the second used strong induction. Also, note that the requirement that A not be either X or \emptyset played a key role in the second case: it guaranteed that induction could be applied both to A and to $X-A$.

An important consequence of the Matching Theorem is the König-Egerváry Theorem. A vertex cover in G is a subset of vertices Q such that every edge in G is incident upon at least one vertex in Q. Let $\alpha^{\prime}(G)$ be the maximum size matching and let $\beta(G)$ be the minimum size vertex cover in G.

Theorem 2. In a bipartite graph G, the maximum size matching equals the minimum size vertex cover, i. e., $\alpha^{\prime}(G)=\beta(G)$.

Proof. Each edge in any match will require at least one vertex in the vertex cover. Therefore $\alpha^{\prime}(G) \leq \beta(G)$ for any graph (not necessarily bipartite) G. To show equality, we need only produce a single match and a single vertex cover of the same size.

Let Q be the minimum vertex cover of bipartite $G=(X, Y)$. Let H be the bipartite graph $(Q \cap X, Y-Q \cap Y)$ and let K be the bipartite graph $(Q \cap Y, X-Q \cap X)$. Note that there are no edges between $Y-Q \cap Y$ and $X-Q \cap X$. We will construct a complete match from $Q \cap X$ to $Y-Q \cap Y$ in H and from $Q \cap Y$ to $X-Q \cap X$ in K. Putting these two matches together will give a match in G with $|Q|$ edges, thus proving the result.

By symmetry, we need only show one of the complete matches exists. We use the Matching Theorem. Pick $A \subseteq Q \cap X$. Suppose $|A|>\left|N_{H}(A)\right|$. Then $N_{H}(A)$ can be used instead of A in Q to get a smaller vertex cover, since $N_{H}(A)$ covers all edges incident to A that are not covered by $Q \cap Y$. Since Q was smallest, this is impossible, and so $|A| \leq\left|N_{H}(A)\right|$. The existence of the complete match then follows from the Matching Theorem.

