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A matching in a bipartite graph is a subset of the edges with no common vertices. Alternatively,
it is a 1-regular subgraph. Here is an example of a matching having two edges:
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A complete match from X to Y in a bipartite graph with vertex bipartition (X,Y ) is a matching
containing every vertex in X. Here is an example of a complete match:
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Suppose G is a bipartite graph with bipartition (X,Y ). Suppose A ⊆ X. Let NG(A) denote the
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neighbors of A in G, that is, all the vertices in Y which are adjacent to at least one vertex in A.
For example, in the bipartite graph above, if A = {2, 4}, then NG(A) = {b, c}.

The Matching Theorem gives a simple condition which tells exactly when there exists a complete
match in a bipartite graph.

Theorem 1. Suppose G is a bipartite graph with vertex bipartition (X,Y ). There is a complete
match from X to Y if and only if for every A ⊆ X, |A| ≤ |NG(A)|.

The condition that for every A ⊆ X, |A| ≤ |NG(A)| is called the matching condition.

Proof. Suppose there is a complete match from X to Y and suppose A ⊆ X. Then the complete
match identifies each vertex in A with a unique vertex in NG(A), so that the number of vertices in
NG(A) is at least as great as the number of vertices in A.

The converse is more difficult. We must show that if the matching condition is satisfied, then there
is a complete match. The proof is by induction on the number of vertices in X. Suppose |X| = 1,
that is, X = {v}. If the matching condition is satisfied, then v is adjacent to at least once vertex
in Y , and the edge to such a vertex gives the complete match.

Now suppose that every bipartite graph H with bipartition (U, V ) and with 1 ≤ |U | < n which
satisfies the matching condition has a complete match from U to V . Let G be a bipartite graph
with bipartition (X,Y ), with |X| = n, which satisfies the matching condition. We must show that
there is a complete match from X to Y .

We consider two cases. The first case is that for every ∅ ⊂ A ⊂ X, |A| < |NG(A)|. That is, for
non-empty proper subset A, not only is the matching condition satisfied, but it is satisfied strictly.

The second case is that there is some A in X, which is neither ∅ nor X, such that |A| = |NG(A)|.
Note that exactly one of these two cases must occur.

In the first case, pick any vertex v ∈ X. The matching condition implies that v is adjacent to at
least one vertex w ∈ Y . Set the edge (v, w) aside and remove v from X and w from Y to form a
new bipartite graph H with bipartition (X − v, Y − w). Let ∅ ⊂ A ⊆ X − v. Since A is a proper
subset of X, we know that |A| < |NG(A)|. If NG(A) did not include w, then NH(A) = NG(A) and
so |A| < |NH(A)|. If NG(A) did include w, then NH(A) = NG(A)− {w}, so |A| < |NG(A)| implies
|A| ≤ |NH(A)|.

Therefore the matching condition is satisfied in H. Since X − v has one fewer vertex than X, the
inductive hypothesis implies that there is a complete match from X − v to Y − w. That match
together with the edge (v, w) gives a complete match from X to Y .

Now suppose there is A ⊂ X, A 6= ∅, such that |A| = |NG(A)|. We construct the match from X to
Y by first matching A to NG(A), then matching X −A to Y −NG(A).

Let H be the bipartite graph induced by the bipartition (A,NG(A)). Pick B ⊆ A. Since NG(B) ⊆
NG(A), it follows that NH(B) = NG(B), and so the matching condition is satisfied in H because
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it is satisfied in G. Furthermore, 1 ≤ |A| ≤ n− 1, so that by induction there is a complete match
M from A to NG(A).

Now let K be the bipartite graph induced by the bipartition (X−A, Y −NG(A)). Let B ⊆ X−A.
We must have NG(A ∪ B) = NG(A) ∪NK(B) since there are no edges between vertices in A and
vertices in Y −NG(A).

But A was chosen so that |NG(A)| = |A|, and the matching condition gives |A∪B| ≤ |NG(A∪B)|.
Therefore

|A|+ |B| = |A ∪B|
≤ |NG(A ∪B)|
= |NG(A) ∪NK(B)|
= |NG(A)|+ |NK(B)|
= |A|+ |NK(B)|

so that |B| ≤ |NK(B)|. That is, the matching condition is satisfied in K. But 1 ≤ |X−A| ≤ n−1,
so by induction, there is a complete match M ′ from X − A to Y − NG(A). Putting M and M ′

together gives a complete match from X to Y .

Notice that the first case used weak induction, but the second used strong induction. Also, note
that the requirement that A not be either X or ∅ played a key role in the second case: it guaranteed
that induction could be applied both to A and to X −A.

An important consequence of the Matching Theorem is the König-Egerváry Theorem. A vertex
cover in G is a subset of vertices Q such that every edge in G is incident upon at least one vertex
in Q. Let α′(G) be the maximum size matching and let β(G) be the minimum size vertex cover in
G.

Theorem 2. In a bipartite graph G, the maximum size matching equals the minimum size vertex
cover, i. e., α′(G) = β(G).

Proof. Each edge in any match will require at least one vertex in the vertex cover. Therefore
α′(G) ≤ β(G) for any graph (not necessarily bipartite) G. To show equality, we need only produce
a single match and a single vertex cover of the same size.

Let Q be the minimum vertex cover of bipartite G = (X,Y ). Let H be the bipartite graph
(Q ∩X,Y −Q ∩ Y ) and let K be the bipartite graph (Q ∩ Y,X −Q ∩X). Note that there are no
edges between Y − Q ∩ Y and X − Q ∩ X. We will construct a complete match from Q ∩ X to
Y −Q∩ Y in H and from Q∩ Y to X −Q∩X in K. Putting these two matches together will give
a match in G with |Q| edges, thus proving the result.

By symmetry, we need only show one of the complete matches exists. We use the Matching
Theorem. Pick A ⊆ Q ∩ X. Suppose |A| > |NH(A)|. Then NH(A) can be used instead of A in
Q to get a smaller vertex cover, since NH(A) covers all edges incident to A that are not covered
by Q ∩ Y . Since Q was smallest, this is impossible, and so |A| ≤ |NH(A)|. The existence of the
complete match then follows from the Matching Theorem.
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