Math 5251 Polynomials (Chap.10)
ACTIVE LEARNING
(1) Compute $\overline{20}$ in $\mathbb{Z} / 103$
(2) Can you compute

$$
\operatorname{GCD}\left(x^{5}+x^{3}, x^{4}+1\right) \text { in } \mathbb{F}_{2}[x] ?
$$

(Try Euclid's Algorithm!)

In fact, the same things we proved about division \& Euclidean algorithm in \mathbb{Z} also work in $\mathbb{F}[x]$ where \mathbb{F} is any field,

$$
\text { like } \mathbb{F}=\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{F}_{2}, \mathbb{F}_{P}
$$

prime and for essentially the same reasons...

PROPOSITION Given $f(x), g(x) \in \mathbb{F}[x]$ for a field \mathbb{F}, there is a unique $g(x), r(x)$ with

$$
f(x)=g(x) \cdot g(x)+r(x)
$$

and $0 \leq \operatorname{deg}(r)<\operatorname{deg}(g)$
proof: Use division algorithm $g(x) \left\lvert\, \frac{q(x)}{f(x)}\right.$
to find at least one such $g(x), r(x)$.
To see uniqueness, suppose

$$
\begin{aligned}
& f(x)=q_{1}(x) \cdot g(x)+r_{1}(x) \\
&=q_{2}(x) \cdot g(x)+r_{2}(x) \\
& \text { isth } o<\operatorname{dea}(r) \operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(g
\end{aligned}
$$

with $0 \leq \operatorname{deg}\left(r_{1}\right), \operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(g)$
Then subtracting gives

$$
\begin{aligned}
& \text { en subtracting gives } \\
& \begin{array}{c}
\text { degree } \geqslant \operatorname{deg}(g) \\
{ }_{i} q_{1} \neq q_{2} \\
\left(q_{1}(x)-q_{2}(x)\right) \cdot g(x)
\end{array}=\underbrace{r_{1}(x)-r_{2}(x)}_{\text {degree }<\operatorname{deg}(g)} \\
& \Rightarrow q_{1}-q_{2}=0=r_{1}-r_{2} \quad \text { i.e. } q_{1}=q_{2}, r_{1}=r_{2}
\end{aligned}
$$

PRoPOSITION For any $f(x), g(x) \in \mathbb{F}[x]$ with \mathbb{F} any field, there exists $d(x) \in \mathbb{F}[x]$ with

$$
\underbrace{\mathbb{F}[x \mid f(x)+\mathbb{F}[x] g(x)}_{=\left\{\begin{array}{c}
a(x) f(x)+b(x) g(x) ; \\
a, b \in \mathbb{F}[x]\}
\end{array}\right.}=\underbrace{\mathbb{F}(x] d(x)}_{\text {multiples of } d(x)}
$$

and $d(x)$ is unique if we further insist that it is monic, meaning $d(x)=x^{r}+d_{r-1} r^{r-1}+\ldots+d x+d_{0}$ for some $d_{0} d_{1,}, d_{r-1} \in \mathbb{F}$
Then we say $d(x)=\operatorname{GCD}(f(x), g(x))$, since

- $d(x)$ is a common divisor of both $f(x), g(x)$
- any other common divisor $e(x)$ of $f(x), g(x)$ has $e(x) \mid d(x)$.
Also $\exists a(x), b(x) \in \mathbb{F}[x]$ with

$$
\begin{aligned}
& , b(x) \in \mathbb{F}[x] \text { win } \\
& a(x) f(x)+b(x) g(x)=d(x) \\
& \text { fo } d(x) \text { via Euclid's a boor }
\end{aligned}
$$

and one can compute $d(x)$ via Euclid's algorithm and compute $a(x), b(x)$ va extended Euclid's a gorthm.

EXAMPLE What is $\operatorname{GCD}\left(x^{5}+x^{3}, x^{4}+1\right)$ in $\mathbb{T}_{2}[x]$?

$$
\begin{aligned}
\begin{array}{ll}
\frac{x}{x^{4}+1 \sqrt{x^{5}+x^{3}}} & =\operatorname{GCD}\left(x^{4}+1, x^{3}+x\right) \\
\frac{x^{5}+x}{x^{3}+x} & \\
& =\operatorname{GCD}\left(x^{2}+1, x^{3}+x\right) \\
\frac{x}{x^{3}+x \sqrt{x^{4}+1}} & =x^{2}+1 \quad E=(x+1)^{2} \\
\frac{x^{4}+x^{2}}{x^{2}+1} & \uparrow
\end{array} \quad \begin{array}{l}
\text { since, }
\end{array}
\end{aligned}
$$

$$
\begin{array}{rl}
x^{2}+1 & x \\
& \frac{x^{3}+x}{3} \\
& \frac{x^{3}+x}{0}
\end{array}
$$

$$
\begin{aligned}
\text { since } \\
\begin{aligned}
(x+1)^{2} & =x^{0}+2^{2}+1 \\
& \left.=x^{2}+1\right)
\end{aligned}
\end{aligned}
$$

compare this with these
factorizations in $\mathbb{F}_{2}[x]$:

$$
\begin{aligned}
& x^{5}+x^{3}=x^{3}\left(x^{2}+1\right)=x^{3}(x+1)^{2} \\
& x^{4}+1=(x+1)^{4}
\end{aligned}
$$

- GCD is $(x+1)^{2}=x^{2}+1$

Weill come back to factorization later!
(sketch) proof of PROP: Very similar to proof that $m \mathbb{Z}+n \mathbb{Z}=d \mathbb{Z}$ for $d=$ smallest nonnegative integer in $m \mathbb{Z}+n \mathbb{Z}$

Now we let $d(x)$ be the smallest degree monic polynomial in $\mathbb{F}(x) \cdot f(x)+\mathbb{F}[x] \cdot g(x)$. Then similarly show

$$
\mathbb{F}[x] d(x)=\mathbb{F}[x] f(x)+\mathbb{E}[x] g(x)
$$

and $d(x)$ has the other properties.
REMARK IF being a field does play a vole here.
For example, \mathbb{Z} is not a field and in $\mathbb{Z}[x]$, one can check that

$$
\mathbb{Z}[x] \cdot x+\underset{y}{\mathbb{Z}[x] \cdot 2 \neq \mathbb{Z}[x] \cdot d(x)}
$$

for any polynomial $d(x)$.

Euler's and Fermat's Theorems $(\$ \$ 6.10,6.9)$
= seme amazing features of our finite nings \mathbb{Z} / m
DET'N: In aung R, the set of units is $R^{x}:=\left\{u \in R: u\right.$ has a mult.inverse $\left.u^{-1}\right\}$ i.e. $u \cdot u^{-1}=1$

Examples
(1) Fields \mathbb{F} are exactly the vings for which $\mathbb{F}^{x}=\mathbb{F}-\{0\}$
so

$$
\begin{aligned}
& \mathbb{R}^{x}=\mathbb{R}-\{0\} \\
& \mathbb{C}^{x}=\mathbb{C}-\{0\} \\
& \mathbb{Q}^{x}=\mathbb{Q}-\{0\}
\end{aligned}
$$

$\mathbb{F}_{p}^{x}=\mathbb{F}_{p}-\{\Delta\}$ if p is prome
(2)
(3)

$$
\begin{aligned}
& \begin{aligned}
&(\mathbb{Z} / 12)^{x}=\{\phi, 1, \beta, \beta, \gamma, \psi, 5, \phi, 7, \psi, \phi, 1 \phi, 11\} \\
&=\{1,5,7,11\} \\
& \text { so } \varphi(12):=\left|(\psi / 12)^{x}\right|=4
\end{aligned}
\end{aligned}
$$

Euder phi finction

DEF'N: The power table for $(\mathbb{Z} / m)^{x}$ lists \bar{x}^{i} for $i=1,2, \ldots, \varphi(m)$
EXAMPLE $m=12 \quad(\mathbb{Z} / 12)^{x}=\{1,5,7,11\}$

power				1
x	2	3	$4=\varphi(12)$	
2	1	1	1	1
5	5	1	5	1
7	7	1	7	1
11	11	1	11	1

ACTIVE LEARNING
(1) Write down ($4(\mathrm{~m})^{x}$ and its power table for $m=5,6,7$. Make a conjecture based on this.
(2) Try to factor these polynomials as far as possible:

$$
\begin{array}{ll}
x^{2}-x & \text { in } \mathbb{F}_{2}[x] \\
x^{3}-x & \text { in } \mathbb{F}_{3}[x] \\
x^{5}-x & \text { in } \mathbb{F}_{5}[x]
\end{array}
$$

THEOREM: In aring R where R^{x} is finite, say of cardinality $N:=\left|R^{x}\right|$, one has

$$
\begin{aligned}
& u^{N}=1 \quad \forall u \in \mathbb{R}^{*} . \\
& \|_{\text {Take }} R=\mathbb{Z} / m, \text { so } N=\varphi(m)=\left|(\mathbb{E m} \cdot \mathrm{m})^{x}\right|
\end{aligned}
$$

COROLLARY 1: Every $\alpha \in(\mathbb{Z} / m)^{x}$
(Euleris Thm)

$$
\text { has } \alpha^{\varphi(m)}=1 \text { in } \mathbb{Z} / m
$$

$$
\begin{aligned}
\| \text { Let } m=p \text { a prime, so } \begin{aligned}
& N=\varphi(p)=\left|(\mathbb{Z} / p)^{x}\right| \\
&=\mid \mathbb{Z}(p-\{0\} \mid=p-1 \\
& \text { COROLCARY 2: Every } \alpha \in \mathbb{F}_{p}^{x}=(\mathbb{Z} / p)^{x} \\
& \text { (Femat'slittle Thu) }=\mathbb{F}_{p}\{0\} \\
& \text { satisfies } \alpha^{p-1}=1 .
\end{aligned}
\end{aligned}
$$

Consequently, every $\alpha \in \mathbb{F}_{p}$ satisfies $\alpha^{p}=\alpha$ is therefore a root of $f(x)=x^{p}-x$.
proof of THEOREM
A clever idea: list the elements of R^{x} as $r_{1}, r_{2}, \ldots, r_{N}$

$$
\text { e.g. } R=\mathbb{Z} / 12, R^{x}=(4 / 12)^{x}=\left\{\begin{array}{l}
\overline{1}, \overline{5}, \overline{7}, \overline{11}\} \\
r_{1} r_{2} r_{3} r_{4}
\end{array} \quad N=4\right.
$$

Fix some $u \in R^{X}$, for which we want to show $u^{N}=1$.
Note that multiplication by u is a bijection $R^{x} \rightarrow R^{x}$ (Why- What is the inverse bijection?)

$$
\text { e.g. } u=5, R^{x}=\{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}
$$

$$
\left\{\begin{array}{ccc}
\{\overline{5}, \overline{25}, \overline{35}, \overline{55} \\
\frac{11}{1} & \frac{11}{11} & \frac{11}{7} \\
u r_{1} & u r_{2} u r_{3} u r_{4}
\end{array}\right\}
$$

Therefore, we should have

$$
r_{1} r_{2} \cdots r_{N}=\prod_{\alpha \in R^{*}} \alpha=\left(u r_{1}\right)\left(u r_{2}\right) \cdots\left(u r_{N}\right)=u^{N} \cdot r_{1} r_{2} \cdots r_{N}
$$

$$
\left\{\begin{array}{l}
\text { mull e. by } \\
r_{1}^{-1} r_{2}^{-1}-\cdots r_{N}^{-1}
\end{array}\right.
$$

So since $f(x)=x^{p}-x$ has every $\alpha \in \mathbb{F}_{p}$ as a root for p prime, we'd like to conclude we can factor

$$
x^{p}-x=\prod_{\alpha \in \mathbb{F}_{p}}(x-\alpha) \text { in } \mathbb{F}_{p}[x]
$$

e.g. $x^{5}-x=x(x-1)(x-2)(x-3)(x-4)$
and that this factorization is unique, since each factor $x-\alpha$ is irreducible

Ccan't befactored further
Does this work in $\mathbb{F}_{p}[x]$? ?
(Disturbing/cantionary) EXAMPLE
Let $f(x)=x^{2}-5 x=x(x-\overline{5})$ in $\mathbb{Z} / 6[x]$
But also $f(x)=(x-\overline{2})(x-\overline{3})$

$$
=x^{2}-(\overline{2}+\overline{3}) x+\overline{6}=x^{2}-5 x
$$

So $x(x-\overline{5})=(x-\overline{2})(x-\overline{3})$ in $\mathbb{Z} / 6[x]$
No unique factorization!
Also, $f(x)$ has $\overline{0}, \overline{5}, \overline{2}, \overline{3}$ as distinct roots, but 2 is not divisible by $(x-\overline{0})(x-\overline{5})(x-\overline{2})(x-\overline{3})=\left(x^{2}-\overline{5} x\right)^{2}$

Not to worn: \mathbb{F}_{p} beingatield fixes both problems...
PROPOSITION: When \mathbb{F} is a field, and $f(x) \in \mathbb{F}[x]$ that has l distinct roots $\alpha_{1}, \ldots, \alpha_{l} \in \mathbb{F}$ will have $f(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{l}\right) g(x)$ for some $g(x) \in \mathbb{F}[x]$ with $\operatorname{deg}(g)=\operatorname{deg}(f)-l$. In particular $l \leq \operatorname{deg}(f)$ so $f(x)$ can't have more than deg (f) distinct roots. proof: Induction on l.

BASE CASE: $l=1$
If $\alpha_{1} \in \mathbb{F}$ is a root of $f(x)$, use division algorithm to write $f(x)=\left(x-\alpha_{1}\right) q(x)+r$

$$
x-\alpha_{1} \sqrt{f(x)}
$$

$$
\text { with } 0 \leq \operatorname{deg}(r)<1
$$

$$
\text { so } r \in \mathbb{F} \quad \operatorname{deg}\left(x-\alpha_{1}\right)
$$

But then $0=f\left(\alpha_{1}\right)=\left(\alpha_{1}-\alpha_{1}\right) q\left(\alpha_{1}\right)+r$

$$
\begin{aligned}
& \Rightarrow 0=r \\
& \Rightarrow f(x)=\left(x-\alpha_{1}\right) q(x)
\end{aligned}
$$

with $\operatorname{deg}(q)=\operatorname{deg}(f)-1 r$

INDUCTIVE STEP: Assume $\ell \geq 2$.
Since $\alpha_{1}, \ldots, \alpha_{l-1}$ are distinct roots of $f(x)$, we know by induction $f(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{p-1}\right) \hat{g}(x)$ where $\operatorname{deg}(\hat{g})=\operatorname{deg}(f)-(l-1)$.
But since α_{l} is also a \cot of $f(x)$,

$$
\begin{aligned}
o=f\left(\alpha_{l}\right) & =(\underbrace{\left(\alpha_{l}-\alpha_{1}\right.}_{\neq 0}) \cdots(\underbrace{\alpha_{l}-\alpha_{l-1}}_{\neq 0}) \hat{g}\left(\alpha_{l}\right) \\
& \left\{\begin{array}{l}
\text { mull. by } \\
\\
\left(\alpha_{l}-\alpha_{1}\right) \cdots\left(\alpha_{l}-\alpha_{l-1}\right)^{-1} \\
\left.\mathbb{F}_{a} \text { field }\right)
\end{array}\right.
\end{aligned}
$$

$0=\hat{g}\left(\alpha_{l}\right)$, i.e. α_{l} is a wot of $\hat{g}(x)$.
Hence $\hat{g}(x)=\left(x-\alpha_{l}\right) g(x)$

$$
\text { and } \begin{aligned}
f(x) & =\left(x-\alpha_{1}\right)-\left(x-\alpha_{l-1}\right) \hat{g}(x) \\
& =\left(x-\alpha_{1}\right)-\left(x-\alpha_{l-1}\right)\left(x-\alpha_{l}\right) g(x) \\
\text { where } \operatorname{deg}(g)=\operatorname{deg}(\hat{g})-1 & =\operatorname{deg}(f)-(l-1)-1 \\
& =\operatorname{deg}(f)-l \text { 圈 }
\end{aligned}
$$

What about unique factorization in $\mathbb{F}[x]$?
First, what should it mean...
DEFIN: Say $f(x) \in \mathbb{F}[x]$ is irreducible if the only factorizations $f(x)=g(x) h(x)$ have either $g(x)$ or $h(x)$ of degree 0 , meaning a scalar in \mathbb{F}^{x}.

Example

$$
\begin{aligned}
& \text { MPLE } \\
& x^{3}-1=(x-1)\left(x^{2}+x+1\right) \text { in } \mathbb{R}[x]
\end{aligned}
$$

is not irreducible,
but $\left.\begin{array}{c}x-1 \\ x^{2}+x+1\end{array}\right\}$ are both irreducible (even though $x-1=\frac{1}{2} \cdot(2 x-2)$

$$
\begin{aligned}
& x-1=\frac{1}{2} \cdot(2 x-2) \\
& \left.x^{2}+x+1=3 \cdot\left(\frac{1}{3} x^{2}+\frac{1}{3} x+\frac{1}{3}\right)\right)
\end{aligned}
$$

Unique factorization into irreducibles in $\mathbb{F}[x]$ means one can write $f(x)=f_{1}(x) f_{2}(x) \ldots f_{r}(x)$ with f_{i} irreducible, uniquely up to re-indexing or factoring ont scalars in \mathbb{F}^{x}

ExAmple

$$
\begin{aligned}
x^{3}-1 & =(x-1)\left(x^{2}+x+1\right) \\
& =\left(x^{2}+x+1\right)(x-1) \\
& =\left(2 x^{2}+2 x+2\right)\left(\frac{1}{2} x-\frac{1}{2}\right) \\
& =\ldots
\end{aligned}
$$

does not contradict unique factorization in $\mathbb{R}[x]$; they are all considered the same factorization.

The key here is a property of irreducibles in $\mathbb{F}[x]$ similar fo primes p in \mathbb{Z} :
if a prime $p \mid a b$, then fla or plo

ExAmples
(1) $\quad{ }^{\text {not prime }} 12 \mid 8.15=120$ but $12 \nmid 8,12 \nmid 15$ while $\underset{\text { prime }}{ } 3 \mid 8.15=120$ forcing $\underset{\text { NO }}{3 / 8 / 5 \text { or } 3 / 15}$
(2) In $\mathbb{Z} / 6[x], x-\overline{2}$ is irreducible and $x \mid x^{2}-\overline{5} x=(x-\overline{2})(x-\overline{3})$, but $x \nmid x-\overline{2}, x \not x x-\overline{3}$

PROPOSTTION: If \mathbb{F} is a field and $f(x) \in \mathbb{F}(x)$ is irreducible, then $f(x) \mid g(x) h(x)$

$$
\Rightarrow f(x) \mid g(x) \text { or } f(x) \mid h(x) .
$$

proof:
suppose $f \mid g \cdot h$, but $f \times g$. Well show $f \mid h$.
Let $d(x)=\operatorname{BCD}(f(x), g(x))$.
Then since $d \mid f$ and f is irreducible, either $d(x)=1$ or $d(x)=f(x)$.

Cant happen,

$$
\begin{aligned}
& \text { else } f(x)=d(x) \mid g(x) \\
& \text { (but ftg) }
\end{aligned}
$$

So $\quad 1=d(x)=\operatorname{aCD}(f(x), g(x))$

$$
\begin{aligned}
& \Rightarrow 1=a(x) f(x)+b(x) g(x) \quad \text { for some } \\
& \text { s malt, by } h(x) \\
& \begin{aligned}
h(x)= & \underbrace{a \operatorname{divir} b y}_{\text {divi.by } f(x) f(x) h(x)+b(x) g(x) h(x)} f \\
& \Rightarrow \text { div. by } f \text {, so } f \mid h .
\end{aligned}
\end{aligned}
$$

COROLLARY For \mathbb{F} a field, every $f(x) \in \mathbb{F}[x]$
cam be written $f(x)=f_{1}(x) \cdots f_{r}(x)$
with each f_{i} irreducible, uniquely up to reindexing and multiplying fib by scalar o in \mathbb{F}^{x}.
proof: Existence of some irreducible factorization is pretty easy by induction on $\operatorname{deg}(f)$: either f is reducible, or factor it $f=g \cdot h$ with $\operatorname{deg}(g), \operatorname{deg}(h)>0$

$$
\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)
$$

Ul induction

$$
g=g_{i}-g_{l}, h=h_{i}-h_{m}
$$

each g_{i}, h_{j} irreducible

$$
f=g_{1}-g_{l} h_{1}-h_{m}
$$

For uniqueness, also induct on $\operatorname{deg}(f)$.
Assume $f=f_{1} f_{2} \cdots f_{r}=g_{1} g_{2} \cdots g_{s}$ with all f_{i}, g_{j} irreducible.
Since $f_{1} \mid f=g_{1} \cdot g_{2}--g_{s}$, either

$$
\begin{array}{cc}
f_{1} \mid g_{1} \text { or } f_{1} \mid g_{2}-g_{5} \\
\Downarrow & \mathbb{~} \\
f_{1}=c g_{1} & \text { keep going! }
\end{array}
$$

for some $c \in \mathbb{F}^{x}$
Eventually you conclude $f_{1}=c g_{j}$ for some $c \in \mathbb{F}^{x}$. and index j,
so re-index to make $j=1$, and rescale the g_{1}, g_{2} to make $f_{1}=g_{1}$. Then $f=f_{1} f_{2}-f_{r}$

$$
=f_{1} g_{2}-\cdots g_{s}
$$

so $0=f_{1} f_{2}-f_{r}-f_{1} g_{2}-g_{3}=f_{1}\left(f_{2} \cdots f_{r}-g_{2}-g_{s}\right)$
a now zero in $\mathbb{F}[x]$ this must be the zero polynomial
$\Rightarrow f_{2} \cdots f_{r}=g_{2}-g_{s}$ and by induction on degree, can re-index and rescale to make $r=s, f_{i}=g_{i}$ 图

