Mach 5251 Polynomials (Chap. 10) ACTIVE LEARNING (1) Compute 20⁻¹ in 2/103 (2) Can you compute $GCD(x^{5}+x^{3}, x^{4}+1) \to \mathbb{F}_{2}[x]$? (Try Enclid's Algorithm!)

PROPOSITION Given
$$f(x), g(x) \in F[x]$$
 for a field F_{j}
there is a unique $g(x), r(x)$ with
 $f(x) = g(x) \cdot g(x) + r(x)$
and $0 \leq \deg(r) < \deg(q)$
proof: Use division algorithm $g(x) \cdot f(x)$
 \downarrow_{i}
 \downarrow_{i}

PROPOSITION For any f(x), g(x) eff(x) with F any field, there exists d(x) E [F[x] with F[x]f(x)+F[x]g(x)=F[x]d(x)muttydes of dk) $= \{ \alpha(x) f(x) + b(x) g(x) :$ a, beffxj 1 and d(x) is unique if we further insist that it is movic, meaning d(x)= x+drx+dx+do for some dog di, __ dr_i eff Then we say d(x)= GCD(f(x),g(x)), since . d(x) is a common divisor of both f(x), g(x) any other common divisor e(x) of f(x), g(x) has e(x) | d(x). Also I a(x), b(x) e IF [x] with a(x)f(x)+b(x)g(x)=d(x)and one can compute d(x) via Enclid's algorithm and compute a(x), b(x) via extended findid's algorithm.

Now we let
$$d(x)$$
 be the smallest degree
monic polynomial in $F(x) \cdot f(x) + F(x) \cdot g(x)$.
Then smillarly show
 $F(x) \cdot d(x) = F(x) \cdot f(x) + F(x) \cdot g(x)$
and $d(x)$ has the other properties. E

REMARK IF being a field does play a role here. For example, Z is not a field and in ZG2], one can check that $ZG2J \cdot x + ZG2J \cdot 2 \neq ZG2J \cdot d(x)$ Gramy plynomial d(x).

Euler's and Fermet's Theorems (§§6.10,6.9)
= some amazing features of our finite rings Z/m
DET'N: In a ring R, the set of units is

$$R^{\times} := \{u \in R : u \text{ has a mult inverse u'}\}$$

i.e. $u \cdot u' = i$
EXAMPLES
(1) Fields F are exactly the rings
for which $F^{\times} = F - i \circ j$
So $R^{\times} = R - i \circ j$
 $C^{\times} = C - i \circ j$
 $Q^{\times} = Q - i \circ j$
 $F^{\times} = F_{p} - i \circ j$ if p is prime
(2) $Z^{\times} = \{\pm 1\} \neq Z - i \circ j$
(3) $(Z/12)^{\times} = \{\pm, 1, \pm, 5, 5, 5, 7, 5, 5, 5, 7, 15, 5, 16, 71\}$
so $Q(12) := [(Z/12)^{\times}] = 4$
Give pic function

(1) Write down R/m)^x and its power table
for m= 5,6,7. Make a conjecture based on this.
(2) Try to factor these polynomials as far as possible: x²-x in ff₂[x] x³-x in ff₃[x] x⁵-x in ff₅[x]

THEOREM: In aring R where
$$R^{\times}$$
 is finite,
say of cardinality $N:=|R^{\times}|$, one has
 $u^{N}=1$ $\forall u \in R^{\times}$.
If Take $R=Z(m)$, so $N=\varphi(m)=|Q(m)^{T}|$
(Every $\alpha \in (Z/m)^{X}$
(Every $\alpha \in (Z/m)^{X}$)
has $\alpha^{\varphi(m)}=1$ in Z/m
If Let $m=p$ a prime, so $N=\varphi(p)=|(Q(p)^{X})|$
 $=|Z(p-i\phi)|=p-i$
OROLLARY 2:
(Fermatis Little Thm) $EVery \ \alpha \in \mathbb{F}_{p}^{\times}=(Z(p)^{X})$
(Fermatis Little Thm) $=\mathbb{F}_{p}^{-1}(\alpha)$
Satisfies $\alpha^{P-1}=1$.
Consequently, every $\alpha \in \mathbb{F}_{p}$ satisfies $q^{P}=\alpha$
is therefore a voot of $f(x)=x^{P}-x$.

proof of THEOREM
A clever idea: list the elements of
$$\mathbb{R}^{x}$$
 as $r_{i_{1}}r_{2_{3}-r_{1}}r_{N}$
e.g. $\mathbb{R} = \mathbb{Z}/2$, $\mathbb{R}^{x} = \mathbb{R}/(2)^{x} = \{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$ N=4
 $r_{1}r_{2}r_{3}r_{4}$
Fix some $u \in \mathbb{R}^{x}$, for which we want to show $u^{N} = 1$.
Note that multiplication by u is a bijection $\mathbb{R}^{x} \to \mathbb{R}^{x}$
(Why - What is the Inverse bijection ?)
e.g. $u=5$, $\mathbb{R}^{x} = \{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$
mult. by $u=5$ $\int mult. by \overline{u}^{2} = 5^{-1}$
 $\{\overline{5}, \overline{25}, \overline{35}, \overline{55}\}$
 $ur_{1}ur_{2}ur_{3}ur_{3}$
Therefore, we should have
 $r_{1}r_{2}-r_{N} = \prod \alpha = (ur_{1})[ur_{2})-(ur_{N}) = u^{N} r_{1}r_{2}-r_{N}$
 $ur_{1}ur_{2}ur_{3}ur_{3}ur_{3}$

So since +(x)=x²-x has every x ∈ IFp as a not for p prime, we'd like to conclude we can factor $x^{p}-x = \prod (x-\alpha)$ in $\mathbb{F}_{p}[x]$ xeffp e.g. $\chi^{5} = \chi(\chi-1)(\chi-2)(\chi-3)(\chi-4)$ and that this factorization is unique, since each factor x-x is irreducible Ecan't be factored letter Does this work in Hp[x] ?? (Disturbing/cantionary) EXAMPLE Let $f(x) = x^2 - 5x = x(x - 5)$ in $\mathbb{Z}/6[x]$ But also $f(x) = (x-\bar{2})(x-\bar{3})$ $= \chi^2 - (\bar{2} + \bar{3}) \times + \bar{6} = \chi^2 - \bar{3} \times$ So $\chi(x-\bar{5}) = (x-\bar{2})(x-\bar{3})$ in $\mathbb{Z}/6[x]$ No unique factorization. Also, f(x) has 0, 5, 2, 3 as distinct nots, but is not divisible by $(x-\overline{0})(x-\overline{5})(x-\overline{2})(x-\overline{3}) = (\chi^2 - \overline{5}x)$

Not to worry: IFp being a field fixes both problems...

PROPOSITION: When IF is a field, and
$$f(x) \in IF[x]$$

that has l distinct roots $\alpha_1, ..., \alpha_l \in IF$ will have
 $f(x) = (x - \alpha_1) \cdots (x - \alpha_l) g(x)$ for some $g(x) \in IF[x]$
with $deg(g) = deg(f) - l$. In particular $l \leq deg(f)$
so $f(x)$ can't have more draindeg(f) distinct roots.
proof: Induction on l .
BASE CASE: $l = 1$
If $\alpha_1 \in IF$ is a root of $f(x)$, use division algorithm
to write $f(x) = (x - \alpha_1) g(x) + r$
 $x - \alpha_1$, $f(x)$
 $promotion = f(\alpha_1) = (\alpha_1 - \alpha_1) g(\alpha_1) + r$
 $\Rightarrow o = r$
 $\Rightarrow f(x) = (x - \alpha_1) g(x)$
with $deg(g) = deg(f) - 1$

INDUCTIVE STEP: Assume
$$l \ge 2$$
.
Since $\alpha_1, ..., \alpha_{l-1}$ are distinct roots of $f(x)$, we know by induction $f(x) = (x - \alpha_1) \cdots (x - \alpha_{l-1}) \hat{g}(x)$
where $deg(\hat{g}) = deg(f) - (l-1)$.
But since α_l is also a voot of $f(x)$,
 $o = f(\alpha_l) = (\alpha_l - \alpha_1) \cdots (\alpha_l - \alpha_{l-1}) \hat{g}(\alpha_l)$
 $\neq 0$
 $\neq 0$
 $\neq 0$
 q mult. by $(\alpha_l - \alpha_1) \cdots (\alpha_l - \alpha_{l-1}) \hat{g}(\alpha_l)$
 $\sigma = \hat{g}(\alpha_l)$, i.e. α_l is a voot of $\hat{g}(x)$.
Hence $\hat{g}(x) = (x - \alpha_l) - (x - \alpha_{l-1}) \hat{g}(x)$
 $= (x - \alpha_1) - (x - \alpha_{l-1}) \hat{g}(x)$
 $= (x - \alpha_1) - (x - \alpha_{l-1}) (x - \alpha_l) g(x)$
where $deg(g) = deg(\hat{g}) - 1 = deg(f) - (l-1) - 1$
 $= deg(f) - \lambda$

What about unique factorization in
$$\mathbb{F}[x]$$
?
First, what should it mean...
DEFIN: Say $f(x) \in [\mathbb{F}[x]]$ is irreducible
if the only factorizations $f(x) = g(x)h(x)$
have either $g(x)$ or $h(x)$ of degree 0,
meaning a scalar in \mathbb{F}^{\times} .
EXAMPLE
 $\chi^{3} - 1 = (\chi - 1)(\chi^{2} + \chi + 1)$ in $\mathbb{R}[x]$
is not irreducible,
but $\chi - 1$ } are both irreducible
 $\chi^{2} + \chi + 1 = 3 \cdot (\frac{1}{3}\chi^{2} + \frac{1}{3}\chi + \frac{1}{3})$

Unique factorization into irreducibles in IF[x] means one can write $f(x) = f_1(x) f_2(x) \dots f_r(x)$ with fi irreducible, uniquely up to re-indexing or factoring ont scalars in IF

(2) $[n \mathbb{Z}/6[x], x-\overline{2}]$ is irreducible and $x \left[x^2 - \overline{5} \times -(\overline{x} - \overline{2})(x-\overline{3}) \right]$, but $x f x - \overline{2}, x f x - \overline{3}$

Proposition: If F is a field and
$$f(x) \in F(x)$$

is inveducible, then $f(x) | g(x)h(x)$
 $\implies f(x)|g(x) \text{ or } f(x)|h(x)$.
proof:
Suppose $f | g \cdot h$, but $f \nmid g$. We'll show $f | h$.
Let $d(x) = GcD(f(x), g(x))$.
Then since $d | f$ and f is inveducible,
either $d(x) = 1$ or $d(x) = f(x)$.
(an theorem
 $else f(x) = d(x) | g(x)$
(but $f \restriction g$)
So $1 = d(x) = GcD(f(x), g(x))$
 $\implies 1 = a(x)f(x) + b(x)g(x)$ for some
 $ab \in F[x]$
 $h(x) = a(x)f(x)h(x) + b(x)g(x)h(x)$
 $dive f f$ div. by f , so $f \mid h$.

COROLLARY For
$$\#$$
 a field, every $f(x) \in \#[x]$
can be written $f(x) = f_i(x) - -f_r(x)$
with each f_i irreducide, uniquely up to
reindexing and multiplying f_i by scalars in $\#$.

proof: Existence of some irreducible
factorization is pretty easy by induction
on deg(f): either f is irreducible,
or factor it $f = g \cdot h$ with deg(g), deg(h) > 0
 $deg(g), deg(h) < deg(f)$
 $g = g_i - g_e$, $h = h_i - h_m$
each g_i, h_j irreducible

For uniqueness, also induct on deg(f).
Assume
$$f = f_1 f_2 - f_r = g_1 g_2 - -g_s$$

with all f_i, g_j irreducible.
Since $f_1 | f = g_1 g_2 - g_s$, either
 $f_1 | g_1$ or $f_1 | g_2 - g_s$
 $f_1 = cg_1$ keep going!
for some ceff
Eventually you conclude $f_1 = cg_j$ to some ceff
and index j,
so re-index to make j=1, and rescale the g_1, g_2 to
make $f_1 = g_1$. Then $f = f_1 f_2 - f_r$
 $= f_1 g_2 - g_s$
so $0 = f_1 f_2 - f_r - f_1 g_2 - g_s = f_1 (f_2 - f_r - g_2 - g_s)$
 $f_2 - f_r = g_2 - g_s$ and by induction on degree,
can re-index and rescale to make r=s, $f_i = g_i$ I