Math 5251 Huffman Coding ($\$ 3.4$)
It turns out that given the source word probabilities $\left(p_{1}, \ldots, p_{m}\right)$ for $W=\left\{w_{1}, \ldots, w_{m}\right\}$, we can easily find an n-any encoding $f: W \rightarrow \Sigma^{*}$ that achieves the minimum for $\operatorname{avglength}(f)$, via thulfman coding. Let's

- describe the binary case first,

$$
\left(\sum=\{0,1\}\right)
$$

- prove that it achieves the minimann,
- then explain how to modify it for n-ary.

Binary Huffman encoding algorithm: Assume by re-indexing that

$$
p_{1} \geqslant p_{2} \geqslant \ldots \geqslant p_{m-2} \geqslant p_{m-1} \geqslant p_{m}
$$

and recursively define $f: W \rightarrow\{0,1\}^{*}$ by induction on m :
If $m=2$, so $W=\left\{\omega_{1}, \omega_{2}\right\}$ encode $f\left(\omega_{1}\right)=0$
purschiliter p_{1}, p_{2}

$$
f\left(\omega_{2}\right)=1
$$

If $m>2$, build a Huffman encoding for a source $W^{\prime}=\left\{\omega_{1}^{\prime}, \omega_{2}^{\prime}, \ldots, \omega_{m-2}^{\prime}, \omega_{m-1}^{\prime}\right\}$ with probuchilites $\left\{p_{1}, p_{2}, \rightarrow p_{m 2}, p_{m_{1}}+p_{m}\right\}$ and then tack on an extra c 0 to $f\left(\omega_{m-1}^{\prime}\right)$ and an extra 1

$$
\text { ie. } f\left(\omega_{i}\right)=\left\{\begin{array}{lll}
f\left(\omega_{i}^{\prime}\right) & \text { if } i=1,3-m-2 \\
f\left(\omega_{m-1}^{\prime}\right) 0 & \text { if } i=m-1 \\
f\left(\omega_{m-1}^{\prime}\right) & \text { if } i=m
\end{array}\right.
$$

Usually this is visualized via binary Huffman trees, reading ode words as paths from root to leaves...

Examples
(1) $W=\{A, B, C, D\}$ probabilities $1 / 2 \geqslant \frac{1}{5} \geq \frac{1}{5} \geq 1 / 10$ $p_{1} \quad p_{2} \underbrace{p_{3} p_{4}}_{\begin{array}{c}\text { add these, } \\ \text { giving }\end{array}}$

$$
W^{\prime}=\{A, C D, B\}
$$

$$
\frac{1}{2} \geq \underbrace{3 / 10 \geq 1 / 5}_{\substack{\text { add these, } \\ \text { giving }}}
$$

$$
W^{\prime \prime}=\begin{aligned}
& \{A, B C D\} \\
& \\
& 1 / 2 \geq 1 / 2
\end{aligned} \underset{\substack{\text { base mes } \\
\text { case med }}}{ }
$$

$f(A)=0$
$f(B)=12$ paths from not toleaves

$$
f(A)=0
$$

$$
f(B C D)=1
$$

(2) If some p_{i} coincide cor their encoding may not be the thiffman
ne, egg.

$$
\begin{aligned}
& W=\{A, B, C, D, E\} \\
& 1 / 521 / 531 / 521 / 21 / 5 \\
& W^{\prime}=\{D E, A, B, C\} \\
& 2 / 5 \geq 1 / 5 \geq 1 / 5 \geq 1 / 5 \\
& W^{\prime \prime}=\{D E, B C, A\} \\
& \begin{array}{r}
W=\left\{\begin{array}{l}
D E, B C, A \\
\frac{2}{5} \geq \frac{2}{5} \geq \frac{1}{5}
\end{array}\right\} .
\end{array} \\
& W^{\prime \prime \prime}=\{A B C, D E\} \\
& 3 / 5 \geqslant 2 / 5
\end{aligned}
$$

BETTER EXAMPLE of non-uniqueness.
$W=\{A, B, C, D\}$ has two possible binary
, Huffman tree structures, poss $\frac{1}{3} \frac{1}{3} \frac{1}{6} \frac{1}{6}$ having different codeword lengths (but necessarily same avg length):

$$
\begin{aligned}
& \left(l_{1}, l_{2}, l_{3}, l_{4}\right)=(1,2,3,3) \\
& \text { arglength }\left(h_{1}\right)= \\
& \frac{1}{3} \cdot 1+\frac{1}{3} \cdot 2+\frac{1}{6} \cdot 3+\frac{1}{6} \cdot 3 \\
& =\frac{2+4+3+3}{6}=2
\end{aligned}
$$

$$
\begin{gathered}
\left(l_{1}, l_{2}, l_{3}, l_{4}\right)=(2,2,2,2) \\
\text { arglength }\left(h_{2}\right)= \\
\frac{1}{3} \cdot 2+\frac{1}{3} \cdot 2+\frac{1}{6} \cdot 2+\frac{1}{6} \cdot 2 \\
=2
\end{gathered}
$$

THEOREM Let $W=\left\{\omega_{1},-\omega_{m}\right\}$ have probadi.i.ises $\left\{P_{1}, \ldots, P_{m}\right\}$ and $h: W \rightarrow\{a,\}^{*}$ any Huffman encoding.
Then (a) h is prefix, so u.d., and
(6) for any u.d. encoding $f: W \rightarrow\{0,1\}^{*}$

$$
\text { arg length }(h) \leq \text { auglength }(f)
$$

(so h achieves the minimum bounded in Shannon's Thy.)
EXAMPLE This Huffman encoding has $A \stackrel{h}{\longleftrightarrow}$ or

$$
\begin{aligned}
W= & \{A, B, C, D, t\} \\
& 1 / 51 / 3^{1 / 2} / 5^{2} / 5^{2} 1 / 5
\end{aligned}
$$

$B \longmapsto \infty 0$
c $\longmapsto \infty 01$
$D \mapsto 10$
$\epsilon \mapsto 11$
with lengths $\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)=(2,2,2,3,3)$.
Why cam't we find something shorter, like $(2,2,2,2,3)$?
proof of THEOREM:
For (a), note that each Huffman codeword $f(\omega)$ is the labels on a path from root to a leaf in the tree. So $f(\omega)$ canst be a prefix of another $f\left(\omega^{\prime}\right)$, else the path from the root continues lower, so it wasn't stopping at a leaf to read $f(\omega)$.

For (b), assume that $f: W \rightarrow\{0,1\}^{*}$ is a u.d. encoding achieving the minimum of arglength (f) among all u.d.encodngs. Well show arglenghth $(h) \leq \operatorname{arglengh}(f)$ in several steps.
STEP 1: We can assume f is prefix, not just u.d., because of the Kraft-McMillan Theorems: the lengths $\left(l,,, l_{m}\right)$ for $f\left(\omega_{1}\right), \supset f\left(\omega_{m}\right)$ satisfy $\sum_{i=1}^{m} \frac{1}{n^{l_{i}}} \leq 1$ and hence \exists a prefix code with the same lengths.
STEP 2: We can assume offer re indexing that
if $p_{1} \geq p_{2} \geq \ldots \geq p_{m-2} \geq p_{m-1} \geq p_{m}$ then
f has $l_{1} \leq l_{2} \leq \ldots \leq l_{m-2} \leq l_{m-1} \leq l_{m}$.
Otherwise, if $l_{i}>l_{i+1}$, swap images $f\left(\omega_{i}\right), f\left(\omega_{i+1}\right)$ of ω_{i}, ω_{i+1} creasing a new vd. f with smaller auglength $(f)=\sum_{i=i}^{n} p_{i} l_{i}$.

STEP 3: We can assume $l_{m-1}=l_{m}$, otherwise if $\ell_{m-1}<\ell_{m}$ then we can drop the last letter of $f\left(\omega_{m}\right)$ without ruining the prefix property (Why?), and making arg length(f) smaller.

STEP 4: We can assume \exists some $i \leq m-1$ such that $f\left(\omega_{i}\right)$ and $f\left(\omega_{m}\right)$ have same length $l_{i}=l_{m}$ and differ only in their last digit:

$$
\begin{aligned}
& f\left(\omega_{i}\right)=a_{1} a_{2} \ldots a_{l-1} 0 \\
& f\left(\omega_{m}\right)=a_{1} a_{2} \ldots a_{l-1}
\end{aligned}
$$

(In which case, re-mdex so that $i=m-1$).
This is because otherwise, we could again drop the last letter of $f\left(\omega_{m}\right)$ without mining the prefix property (Why?), but reducing arglength(f).
LAST (INDUCTIVE) STEP:
Create the smaller Huffman code $h^{\prime}: W^{\prime} \rightarrow\{0,1\}^{*}$ for the source with probabilities $p_{1}, p_{2},-P_{m 2}, P_{m-1}+p_{m}$ by removing the final 0 from $h\left(\omega_{m-1}\right)$ 1 from $h\left(\omega_{m}\right)$

Similarly create the smaller prefix code $f^{\prime}: W^{\prime} \rightarrow\{0,1\}^{*}$ for that same source W^{\prime}
by removing the final 0 from $f\left(\omega_{m-1}\right)$ 1 from $f\left(\omega_{m}\right)$.

Note how aug length for h and h^{\prime} relate: if the Huffman codewords have lengths $\hat{l}_{1} \geq \ldots \geq \hat{l}_{m_{2}} \geq \hat{l}_{m_{1}-1}=\hat{l}_{m}$,

$$
\begin{aligned}
& \text { auglength }(h)=p_{1} \hat{l}_{1}+\ldots+p_{m-2} \hat{l}_{m-2}+\underbrace{p_{m 1} \hat{l}_{m-1}+p_{m} \hat{l}_{m}}_{=\left(p_{m-1}+p_{m}\right) \hat{l}_{m}} \\
& \text { arglengh } \left.h\left(h^{\prime}\right)=p_{1} \hat{l}_{1}+\ldots+p_{m-2} \hat{l}_{m-2}+\left(p_{m-1}+p_{m}\right) \hat{l}_{m-1}-1\right) \\
& \Rightarrow \operatorname{arglength}(h)=\operatorname{arglength}\left(h^{\prime}\right)+p_{m-1}+p_{m}
\end{aligned}
$$

Similarly,

$$
\text { auglarly, } \quad \text { arch }(\hat{t})=\operatorname{arglength}\left(f^{\prime}\right)+p_{m-1}+p_{m}
$$

This lets us prove auglength $(h) \leq$ arglength (f) by induction on $m=|W|$, since it's easy to check in the base case where $m=2($ so $h(A)=0$) $h(B)=1$)
and then in the inductive step, use avglength $\left(h^{\prime}\right) \leq \operatorname{arglength}\left(f^{\prime}\right)$ together with the two bored facts above.

It's easy to modify thuffman coding for an n-any alphabet $\sum=\{0,1,2, \ldots, n-1\}$:
the Huffman tres are n-any and built by grouping

$$
\begin{aligned}
& p_{1} \geqslant p_{2} \geq \ldots \geqslant p_{m-m} \geqslant \underbrace{p_{n-m+1} \geq \ldots \geqslant p_{m-1} \geq p_{m}} \\
& p_{1} \geq p_{2} \geq \ldots \geqslant p_{n-m} \geq \sum_{i=n-m+1}^{m} p_{i} \text { in } W^{\prime} .
\end{aligned}
$$

The only issue is that n-any trees have their number of leaves $\equiv 1 \bmod n-1$
i.e. remainder of 1 on division by $n-1$.

So one pads $p_{1} \geq-2 p_{m} m>p_{1} \geq \ldots \geq p_{m} \geq 0 \geq \ldots \geq 0$ with zeroes to make $M \equiv 1 \bmod n-1$.

EXAMPLE
$n=3$ Ternany trees have number of leaves $\equiv 1 \bmod 2$ i.e. odd
 $9 \equiv 1 \bmod 2$ ed d

EXAMPLE
$n=4 \quad 4$-an trees have number of leaves $\equiv 1 \bmod 3$

$13 \equiv 1 \bmod 3$

EXAMPLE Morse code is a ternary and prefix code $f: W=\underbrace{\left\{A, B, C_{j}, Z^{2}\right\}}_{m=26} \longrightarrow\{0,-, \text { space }\}^{*}=\sum^{*}$

How well does a ternary Huffman code $h: W \rightarrow\{0,1,2\}$ beat its avg length?
Since $n=26 \not \equiv 1 \bmod 2$, need to add an extra fake $27^{\text {th }}$ lefter with probability $p_{27}=0$, then use a computer to build a ternary Huffinantree...

REMARK
Atthough a Huffman encoding achieves the minimum for aug length (f) am org u.d. codes, it may not get as low as Shannon's $\frac{H(W)}{\log _{2}(n)}$ lower bound. But one way to improve it is is by grouping sone words $W=\left\{\omega_{1},-, \omega_{n}\right\}$ into sequences $W^{(l)}=\left\{\left(\omega_{i_{1}}, \omega_{i_{2},-,}, \omega_{i_{l}}\right): \omega_{i} \in W\right\}$ sent l at a time, called the $l^{\text {th }}$ extension of W, with $P\left(\omega_{i}, \omega_{i_{2}, \ldots}, \omega_{i_{l}}\right)=p_{i_{1}}, p_{i_{2}}, \cdots p_{i_{l}}$

ExAmple $W=\left\{\begin{array}{cc}3 / 4 & 1 / 4 \\ A\end{array}\right\}$
has $H(W)=\frac{3}{4} \log _{2}\left(\frac{4}{3}\right)+\frac{1}{4} \log _{2}(4) \approx 0.811278$
and binary Huffman encoding $f(A)=0$

$$
\text { with arglength(f) } \begin{array}{r}
3 / 4 \cdot 1+1 / 4 \cdot 1=1 \quad\binom{>0.811278}{=H(w)}
\end{array}
$$

But its $2^{\text {nd }}$ extension

$$
\begin{aligned}
& W^{(2)}=\{A A, A B, B A, B B \\
& \frac{3}{4} \cdot \frac{3}{4}, \frac{3}{4} \cdot \frac{1}{4}=\frac{1}{4} \cdot \frac{3}{4} \\
&=\frac{1}{4} \cdot \frac{1}{4} \\
&=\frac{3}{16}=\frac{3}{16}=\frac{1}{16}
\end{aligned}
$$

has binary Huffman encoding as shown:

$$
\begin{aligned}
& \text { so } \operatorname{arglengh}(f)=\frac{9}{16} \cdot 9+\frac{3}{16} \cdot 2+\frac{3}{16} \cdot \underbrace{3}_{l(110)}+\frac{1}{16} \cdot \frac{3}{l(111)} \\
& l(10) \\
&=\frac{27}{16}=1.6875
\end{aligned}
$$

But it makes sense to divide this by 2 , since we're sending 2 words at a time:
$\begin{array}{r}\text { arglength }(f) \\ 2\end{array}=\frac{27}{32}=0.84375, \begin{aligned} & \text { much closer to } \\ & H(W) \approx 0\end{aligned}$ $H(W) \approx 0.811278$

Infect, its $3^{\text {rd }}$ extension

$$
W^{(3)}=\{A A A, A A B, A B A, B A A, A B B, B A B, B B A, B B B\}
$$

probs $\frac{27}{64} \frac{9}{64} \frac{9}{64} \frac{9}{64} \quad \frac{3}{64} \frac{3}{64} \frac{3}{64} \quad \frac{1}{64}$
gets amazingly close: $\frac{\operatorname{argleng} t h(f)}{3}=0.811278$ maturing to 6 digits!

It's not hard to show this version of
Shannon's Noiseless Coding Thu:
(Roman The 2.3.4)
THeorem: The $l^{\text {th }}$ extension $W^{(l)}$ of a source W
has entropy $\frac{H\left(W^{(l)}\right)}{l}=H(W)$,
and among all nary add. encodings $f: W^{(l)} \rightarrow \Sigma^{*}$, the onesachieving minimum arglength (f) have

$$
\left.\frac{H(w)}{\log _{2}(n)} \leq \frac{\text { arglength(f)}}{\ell} \leq \frac{1}{l}+\frac{H(w)}{\log _{2}(n)}\right)
$$

