Math 5251 Noisy coding (chap. 4)

* Good time to watch the 3 Blue 1 Brown video on our syllabus!

Now we worry less about minimizing length of codewords based on the input/ ice alphabet $\sum_{i n}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ (with probabilities $p_{1}, p_{2} \rightarrow p_{m}$)
and focus more on dealing with random noise that comps the x_{i} 's into output alphabet $\sum_{\text {out }}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ with certain conditional probabilities

$$
p_{i j}:=P\left(y_{j} \text { is received } \mid x_{i} \text { is sent }\right)
$$

Called a discrete momonyless channel C

QUICK CONDTIONAL PROBABILITY REVIEW $\Omega=\left\{\omega_{1}, \omega_{2},-, \omega_{m}\right\}=$ (finite) sample space (so probs $p_{i}=P\left(\omega_{i}\right), p_{i} \in[0,1], \sum_{i} p_{i}=1$)

Any subset $A \subset \Omega$ is called an event has a probability $P(A):=\sum_{\omega_{i} \in A} P\left(\omega_{i}\right)$
For events $A, B \subset \Omega$,

- they're called independent if $P(A \cap B)=P(A) \cdot P(B)$
- the conditional probabilitity

$$
\begin{aligned}
& P(A \mid B):=\frac{P(A \cap B)}{P(B)} \\
& \text { "Agiven } B \text { DEF } \\
& \text { so } P(A \cap B)=P(A \mid B) \cdot P(B)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (easy) } \\
& E X E R C(S E: ~ I f P(B) \neq 0,
\end{aligned}
$$

A, B independent

$$
\begin{aligned}
& \text { ependent } \\
& \Leftrightarrow P(A \mid B)=P(A)
\end{aligned}
$$

 all $P\left(\omega_{i j}\right)=\frac{1}{6^{2}}=\frac{1}{36}$

(uniform distribution/samplespace)

$$
\begin{aligned}
& \text { (} 0,1 \text { i) }(1,2)^{2}(1,5)(1,5)(1,5)(1,0) \\
& \text { (20) (2,2) } 5,3 \text { (34) (00) }(2,6) \\
& (0,3)(3,2) 5,3)(3,4)(0,5)(10,5) \\
& (0,1)(0,2)(5,3)(4,4)(4,5)(4,5) \\
& (5,1)(5,2)(5,5)(5,4)(5,5)(5,6) \\
& (6,0)(5,1)(6,5)(6,9)(6,5)(6,5)
\end{aligned}
$$

$A=\{$ rolling a total of 7$\} \quad P(A)=\frac{6}{36}=\frac{1}{6}$
$B=\{$ rolling an odd total $\} P(B)=\frac{2+4+6+4+2}{36}=\frac{1}{2}$

$$
P(A \cap B)=P(A)=\frac{1}{6}
$$

A) Ω

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{6}}{\frac{1}{2}}=\frac{1}{3} \\
& P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{\frac{1}{6}}{\frac{1}{6}}=1
\end{aligned}
$$

EXAMPLES of discrete memoryless channels C
(1) The binary symmetric channel (BSC) with error probability p
(most important for us; imagine mage bit 0,1 sent

Define the
Define the
Markov matrix $M:=\left(p_{i j}\right)$ where transition where $p_{i j}:=P\left(y_{j}\right.$, received $\mid x_{i}$ sent $)$ from Mars)
e.g. for BSC,

$$
M=\Sigma_{i n}=\left[\begin{array}{ll}
0 & p_{00}^{0} \\
1 & p_{01} \\
1 & p_{10}
\end{array} p_{11}\right]=\left[\begin{array}{cc}
1-p & p \\
p & 1-p
\end{array}\right]
$$

(2) The binary erasure channel with erasure probability \in
(imagine bits on a storage device scratched out)

$$
M=\sum_{\text {in }}\left\{\begin{array}{l}
0 \\
1
\end{array}\left[\begin{array}{ccc}
0 & \epsilon & 1 \\
1-\epsilon & \epsilon & 0 \\
0 & \epsilon & 1-\epsilon
\end{array}\right]\right.
$$

Necessarily the rows of M all sum to 1, ie.

$$
\forall i=1, \ldots, m \quad \sum_{j=1}^{n} P_{i j}=\sum_{j=1}^{n} P\left(y_{j} \text { received } \mid x_{i} \text { sent }\right)=1
$$

Such M are called stochastic matrices.

$$
\left(p_{i j} \in[0,1], \sum p_{i j}=1 \quad \forall \text { rows } i\right)
$$

Parity checks (\$4.2)
Assuming errors occur independently for each transmitted lefter of \sum in (memoryless assumption) one has a calculable chance of transmission error in a longer string, and can try to mitigate it by adding a parity check bit: means"evenfodd-nesss
send

$$
\begin{aligned}
& \text { send } \\
& b_{1} b_{2} \cdots b_{l} \text { as } \begin{cases}b_{1} b_{2}-b_{l} 0 \text { if } \sum_{i} b_{i} \equiv 0 \bmod 2 \\
b_{1} b_{2} \cdots b_{l} 1 \text { if } \sum_{i} b_{i}=1 \bmod \bmod 2 \\
(\text { odd })\end{cases}
\end{aligned}
$$

$$
\text { e.g. } 0100 \stackrel{\text { sentas }}{\longmapsto} 01001
$$

$$
0101 \longmapsto 01010
$$

Allows some detection of errors, but no correction, similar to ISBN \# error-detection from ss $^{s t}$ day

EXAMPLE
Assume we are sending strings from $\{0,1\}^{*}$ of length 5 through a BSC with error probability $p=1 / 8$. What's the probability of an undetected error if
(a) we use no parity check bit ?
(b) we do use a parity check bit, so sending them as strings of length 6? 01102

$$
\longmapsto 011011
$$

(a) Each bit $b_{1} b_{2} b_{3} b_{4} b_{5}$ has an equal probability of error, all undetected, so

$$
\begin{aligned}
& P\binom{\text { undefeated error }}{\text { widen no parity check }}=1-P(\text { noerrors }) \\
& =1-P\left(\begin{array}{c}
\text { no error } \\
\text { m } \\
b_{1}
\end{array}\right) P\left(\begin{array}{c}
\text { noenor } \\
\text { in }
\end{array} b_{2}\right) \cdots P\binom{\text { noerror }}{\text { in }} \\
& =1-\left(1-\frac{1}{8}\right)^{5} \\
& \approx 0.4871 \longleftarrow \text { pretty }_{\text {high }} \text { ! }
\end{aligned}
$$

(b) With $6^{\text {th }}$ parity check bit added, an evror is detected if exactly 1 bit, or 3 bits, or 5 bits are competed, and undetected if it's $2,4,0,6$ bits.
So $P\binom{$ undete ted error }{ with parity ached bit }
$=P($ exactly or exactly or exactly
2 emory

$$
\begin{aligned}
& =P(2 \text { errors })+P(4 \text { enos })+P(6 \text { evnors }) \\
& =\binom{6}{2}\left(\frac{1}{8}\right)^{2}\left(\frac{7}{8}\right)^{4}+\binom{6}{4}\left(\frac{1}{8}\right)^{4}\left(\frac{7}{8}\right)^{2}+\binom{6}{6}\left(\frac{1}{8}\right)^{6}\left(\frac{7}{8}\right)^{0} \\
& \begin{array}{l}
01 / 011 \\
010001
\end{array} \\
& 211021 \\
& 100100 \\
& \begin{array}{l}
\text { pier the } \\
2 \text { positions }
\end{array}
\end{aligned}
$$

from 6 choices for the error
≈ 0.1402
1 much
RECALL binomial coefficients

$$
\begin{aligned}
& \binom{n}{k}=\frac{n!}{k!(n-k)!}=\begin{array}{l}
\text { \#of choices } \\
\text { of } k \text { elements } \\
\text { from }\{1,2, \ldots, n\}
\end{array} \\
& 1 \\
& \begin{array}{cc}
11 \\
1221 \\
13381 \\
144641
\end{array} \quad(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
\end{aligned}
$$

Note that by adding painty che ck bits or other redundancy, we are reducing the efficiency of our transmission.
$D E F^{\prime} N$: Given a set $C \subset\{0,1\}^{*}$ of codewords to send, if the maximum length of the codewords in C is l, then the the (binary) rate of C is

$$
\operatorname{rate}(e):=\frac{\log _{2}(|C|)}{\ell}
$$

Examples
(1) Adding a $6^{\text {th }}$ parity check bit to binary words of length 5 gives a code

$$
C=\left\{\left(b_{1}, b_{2},, b_{5}, b_{4}\right): \sum_{i=1}^{b} b_{i} \equiv 0 \bmod 2\right\}
$$

of size $|C|=2^{5}$ and max length 6
so rate $(C)=\frac{\log _{2}\left(2^{5}\right)}{6}=\frac{5}{6}$
(2) Repeating each string twice before sending

$$
01101
$$

\qquad
(called a repetition code)
gives a code C with $|C|=2^{5}$
max length $l=10$

$$
\text { so rate }(C)=\frac{\log _{2}\left(2^{5}\right)}{10}=\frac{5}{10}=\frac{1}{2}
$$

(3) Ehrenborg's parlor trick from $1^{\text {st }}$ day conveyed a codeword from $C=\{0,1,2, \ldots, 15\}$ using 7 YES/NO questions $=7$ bit $b_{1} b_{2} \cdots b_{7}$.

$$
\text { So } \operatorname{rate}(e)=\frac{\log _{2}(|e|)}{7}=\frac{\log _{2}(16)}{7}=\frac{4}{7}
$$

(4) A Huffman code like this with no parity checks) has $C=\{0,10,11\}$

with $|E|=3$
max length $l=2$

$$
\begin{aligned}
& \text { ax length } l=2 \\
& \text { so rate }(C)=\frac{\log _{2}(3)}{2} \approx 0.8
\end{aligned}
$$

REMARK:
Why did we divide by l in rate $(C)=\frac{\log _{2}(|e|)}{l}$?
Note that for any u.d. encoding $W \xrightarrow{f}\{0,1\}^{*}$ where the codewords C - image (f) have max length l one will have rate (e) ≤ 1 by this calculation (similar to EXERCISE 3.02):

$$
\begin{aligned}
& 1 \geq \sum_{i=1}^{|e|} \frac{1}{2^{l i}} \geq \sum_{i=1}^{|e|} \frac{1}{2^{l}}=\frac{|e|}{2^{l}} \\
& \quad \Rightarrow|e| \leq 2^{l} \\
& \quad \Rightarrow \operatorname{ratan}(e)=\frac{\log _{2}(|e|)}{l} \leq \frac{l}{l}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text {-since } \\
& \text { max length is } \ell
\end{aligned}
$$

