Mach 5707 Joning 2023 Brooks's Theorem
(Bondy-Murty § 8.2)
We saw how the greedy edering algorithm shows

$$\chi(G) \leq 1 + \Delta(G)$$

"
chromatic "ever degree
of G "
(Brooks 1941)
Unless $G = \int C_{n}$ n-cycle with nodd
"
(Kn complete graph G)

one has $\chi(G) \leq \Delta(G)$.

poof: Assuming
$$G \neq K_n$$
 or C_n for $n \text{ odd}$,
we'll show $X(G) \leq \Delta(G)$ by
induction on $n = |V|$.

The base case where n=1 is easy: G=K/
In the inductive step, we can also quickly
deal with the cases where

$$\Delta(G)=1 \implies G=K_2$$

 $\Delta(G)=2 \implies G=\int_{G}$ for the second
 \int_{G} for $f = \int_{G}$ for the second
 \int_{G} for $f = \int_{G}$
So without loss of generality,
 $\Delta(G) \ge 3$ in the inductive step.
We'll consider 3 cases:
CASE 1: G has a ord-vertex x.
CASE 1: G has no intivertex, but does
have a pair x, ye'l with no edge try 3
such that G-1x3-1y3 is connected
for all x, ye'l with no edge [xy3]
and deal with them in this order: CASE 3, CASE 1, CASE 2.

CASE 3:
$$G - 1x_3 - 1y_3$$
 is connected
for all x, yeV with no edge $1xy_3$
Pick zeV achieving $deg_G(z) = \Delta(G)$.
Then pick any a neighbors $x_{i,y}$ of z in G
such that $1x_{i,y_3} \notin E(G)$.
We know such a pair exists,
else z ulits neighbors] gives
a $K_{\Delta(G)+1}$ as a subgraph of G ,
but then it must be all of G
since $deg_G(z) = \Delta(G)$.
Now color G greedily using the
order
 $x_{1,x_{2,y}} - x_{j} - \frac{x_{i,i}}{x_{y_j}} = \frac{x_{i,j}}{x_{y_j}}$
Then $f(x_i) = 1$
 $f(x_i) = 1$
 $y_{i,y_{j}}$

We also have
$$f(x_j) \in \{1, 2, ..., \Delta(G)\}$$

for $j=3, 4, ..., x_{n-1}$
because x_j has at least one neighbor
among $p_{ij+1}, x_{j+2}, ..., x_n$
(since $G[x_j, x_{j+1}, ..., x_n]$ is connected)
hence the neighbors of x_j among $x_1, ..., x_{j-1}$
use at most $\Delta(G)-1$ colors.
Finally z only needs $\Delta(G)$ colors, since
two of its neighbors $(x \neq g)$ use the same
ador. CASE 3
proved. z

CASE 1: G has a ord-varies x.

$$= G$$

Given the proper
$$\Delta(G)$$
-vertex alonings
 f_i for each block G_i ,
 $f_i \iint_{G_1} f_2 \iint_{G_2} f_r \iint_{G_r} f_r \iint_{G_r} f_r \iint_{G_2} f_r \iint_{G_r} f_r \iint_$

$$G_{1}^{+}, G_{2}^{+} \text{ have } \Delta(G) - \text{estovings by induction,}$$

and also $f_{1}(x_{1}) \neq f_{2}(y_{1})$
allowing them to be glined,
UNLESS one of G_{1}^{+} or G_{2}^{+} or both
is a complete graph $K_{\Delta(G)+1}$
(they can't be odd cycles, else we were
in the $\Delta(G)=2$ case for G , not $\Delta(G)\geq 3$).
(f-that happens, say $G_{1}^{+}\cong K_{\Delta(G)+1}$
then $\deg_{G_{2}}(x_{2})=1=\deg_{G_{2}}(y_{2})$.
In this case, we form x_{1}
 $G_{2}^{+}/[x_{1},y_{2}]$
 $= xy_{2}^{+}$ G_{2}^{-} G_{2}^{+} G_{2}^{-}

