Mater 5707 Prong 2023 Brooks's Theorem (Bondy-Murty §8.2)
We saw how the greedy coloring algorithm shows

$$
\begin{gathered}
\chi(G) \leq 1+\Delta(G) \\
\text { " } \\
\text { " } \begin{array}{c}
\text { " } \\
\text { chromatic } \\
\# \text { of } G
\end{array} \\
\text { marertex degree } \\
\text { in } G
\end{gathered}
$$

THOOREM For a connected simple graph G, (Brooks 1941) unless $G=\left\{\begin{array}{l}C_{n} n \text {-cycle with nodd } \\ \text { or } \\ K_{n} \text { complete graph }\end{array}\right.$
one has $X(G) \leq \Delta(G)$.
proof: Assuming $G \neq K_{n}$ or C_{n} for nodd, weill show $X(G) \leqslant \Delta(G)$ by induction on $n=|V|$.

The bose case where $n=1$ is easy: $G=K / \downarrow$
In the inductive step, we can also quickly deal with the cases where

$$
\begin{aligned}
& \Delta(G)=1 \Rightarrow G=B / 2 N \\
& \Delta(G)=2 \Rightarrow G=\left\{\begin{array}{l}
\text { path } P_{n} \text { or -o } \\
\text { or } \\
\text { cycle } C_{n}
\end{array}\right.
\end{aligned}
$$

So without loss of generality, $\Delta(G) \geqslant 3$ in the inductive step.

Well consider 3 cases:
CASE 1: G has a cut-vertex x.
CASE 2: G has no cut-verlex, but does have a pair $x, y \in V$ with no edge $\{x, y\}$ such that $G-\{x\}-\{y\}$ is dis connected
CASE 3: $G-\{x\}-\{y\}$ is connected for all $x, y \in V$ with no edge $\{x, y\}$
and deal with them in this order: CAEE 3, CASE 1, CASE 2.

CASE 3: $G-\{x\}-\{y\}$ is connected for all $x, y \in V$ with no edge $\{x, y\}$
Pick $z \in V$ achieving $\operatorname{deg}_{G}(z)=\Delta(G)$.
Then pick any 2 neighbors x, y of z in G such that $\{x, y\} \notin \in(G)$.

(We know such a pair exists) else z U\{its neighbors\} gives a $K_{\Delta}(G)+1$ as a subgraph of G, but then it must be all of G since $\operatorname{deg}_{G}(z)=\Delta(G)$,)

Now color G greedily using the order
vertices always have
$G\left[x_{i+1}, \ldots, x_{n-1}, x_{n}\right]$

$$
\begin{array}{r}
x^{x} \\
\text { Then } \begin{array}{r}
f\left(x_{1}^{\prime \prime}\right)=1 \\
f\left(x_{2}\right)=1 \\
x_{y}^{\prime}
\end{array},=1
\end{array}
$$

We also have $f\left(x_{j}\right) \in\{1,2, \ldots, \Delta(G)\}$

$$
\text { for } j=3,4, \ldots, x_{n-1}
$$

because x_{j} has at least one neighbor among $x_{j+1}, x_{j+2}, \ldots, x_{n}$
(Since $G\left[x_{j}, x_{j+1}, \ldots, x_{n}\right]$ is connected)
hence the neighbors of x_{j} among $x_{1,}, x_{j-1}$ use at most $\Delta(\beta)-1$ colors.

Finally z only needs $\Delta(G)$ colors, since two of its neighbors $(x \& y)$ use the same odor. CASE 3 proved. (\%)

CASE 1: G has a ent-vertex x.

ξ

Each of the blocks G_{i} has a $\Delta(G)$-coloring by induction on $\#$ vertices.
(check that the blocks G_{i} can't be odd cycles, and even if a block G_{i} happens to be a complete graph K_{s}, one ran check that $s<\Delta(G)+1$ ie. $s \leq \Delta(G)$,
so needs at most s colors

$$
s \leq \Delta(G) .
$$

Given the proper $\Delta(G)$-vertex colorings f_{i} for each block G_{i},

one can always re-name the colors within a connected component G_{i} to make $f_{1}\left(x_{i}\right)=1$ for $i=1,2, \ldots, r$.
Then we can glue the colorings to get a $\Delta(G)$-coloring of G

End of Case 1

CASE 2: G has no cut-verlex, but does have a pair $x, y \in V$ with no edge $\{x, y\}$ such that $G-\{x\}-\{y\}$ is dis connected

G_{1}^{+}, G_{2}^{+}have $\Delta(G)$-colorings by induction, and also $f_{1}\left(x_{1}\right) \neq f_{1}\left(y_{1}\right)$ and $f_{2}\left(x_{2}\right) \neq f_{2}\left(y_{2}\right)$
allowing them to be glued,
UNLESS one of G_{1}^{+}or G_{2}^{+}or b_{0} th is a complete graph $K_{\Delta(G)+1}$
(they cant be odd cycles, else we were in the $\Delta(G)=2$ case for $G, \operatorname{not} \Delta(G) \geq 3)$.
If that happens, say $G_{1}^{+} \cong K_{\Sigma(G)+1}$
then $\operatorname{deg}_{G_{2}}\left(x_{2}\right)=1=\operatorname{leg}_{G_{2}}\left(y_{2}\right)$.
In this case, we form

$$
=x_{2}^{2} y_{2} G_{2}^{+} /\left\{x_{2}, y_{2}\right\}
$$

glue f_{1}, f_{2}

