Mach 5707 Joning 2023
Matching Theory P. Hall's Matching Theorem
Snippet1: "Maniage")
REVIEN of matching theory so far ...
G = (V,E) simple graph
U(G):= max [IM] : MCE a matching]

$$\leq T(G):= \min \{|W|: WCV a vertex over \}$$

(part of Gallai's Thm.

PROPOSITION: In a bipartite graph G= (V, E)
XLSY
Mongunerating J = [directed paths P
paths P] = [directed paths P
from X-unmatched xeX
to Y-unmatched yeY
in this digraph D:

$$x \rightarrow y$$
 non-Medges
 $x \rightarrow y$ Medges
XI $\rightarrow y$ Me

This gives the so-called Ungarian algorithm to find V(G) and max-sized matchings M

COROLLARY For G bipartite,
(Kinig-Egervány)
$$V(G) = T(G)$$

wax-size of win-size of
a watching M avertex cover W
In fact, at the end of the Hungarian algorithm
one finds a vertex cover W with $|W| = |M|$
some size a themax-sized matching M, by letting
 $W := \{X \in X \text{ not reachable in D} \\ from the M-unmatched \\ X-vertices \} :: \} y \in Y \text{ reachable in D} \\ from the M-unmatched \\ X-vertices \}$
 $X_1 \longrightarrow g_1 M$
 $N_2 = \int g_1 M$
 $N_2 = \int g_1 M$
 $N_2 = \int g_1 M$
 $N_3 = \int g_1 M$
 $N_4 \longrightarrow g_3$
 $N = \int g_1 M$

Another worldany ... COROLLARY (P. Hall's Matching Thm.): 1935 "Maninge" A bipertite graph G= (X::Y, E) has a matching M that matches all of X Y subsets X' < me has</p> N(X'):={yeY: I some xeX' with {xy} E {

neighbors of size $|N(X')| \ge |X'|$

EXAMPLE

proof: (=>) is pretty easy is see, stolet.
we had a matching M that montched all of X,
then for every subset X'CX, the matching M
gives an injective map
$$X' \longrightarrow N(X')$$

 $x \longmapsto its match y$
 $S \mid X' \mid \leq \mid N(X') \mid$.

For
$$(\Leftarrow)$$
, assume there
is no matching M that
matches all of X. So
 $v(G) < |X|$
 $\tau(G)$
so $\exists a vertex cover W$
of stree $[W| < |X|]$.

M of max size does not match all of X X'= {x,,x,} has N(X')= {y,} bo small

We use W to exhibit a subset
$$X' \subseteq X$$

with two few neighbors, i.e. $|N(X)| = |X|$
as follows: Let $X' = X - W$
 $= \{x \in X : x \notin W\}$
Note that every $y \in N(X')$ must be in W
because W is a vertex cover:
 $X' \ni x - y \Longrightarrow y \notin W$
 $S = x \notin W$
 $W \supseteq (X \cap W) \longmapsto N(X')$
 $|W| \ge [X \cap W] + |N(X')]$
 $|W| \ge [X \cap W] + |N(X')]$
 $|X| = |X| - |X - W|$
 $W = |X| - |X - W|$
 $W = |X| - |X - W| + |N(X')]$
 $|X| = |X| - |X - W| + |N(X')]$
 $|X| = |X| - |X - W| + |N(X')]$
 $|X| = |X| - |X - W| + |N(X')]$
 $|X| = |X'| > |N(X')$
 $|X| = |X'| = |N(X')|$

APPLICATION 1: regular bipartite graphs
THEDREM (Kinig 1931):
Eveny d-regular bipartite multigraph G=(XL)Y, E)
(a) has
$$|X| = |Y|$$
.
(b) contains a perfect matching MCE
(or a 1-factor)
La matching of all the vartices,
so $V(G|=|X|=\frac{|Y|}{2}$.
(c) and in fact, one can express E as a
disjoint union $E=M_1 \sqcup M_2 \sqcup \dots \sqcup M_d$
of d perfect matchings inside G.

EXAMPLE d=3

THEOREM (King 1931): Eveny d-regular bipartite multigraph G=(XWY, E) (a) has IXI=IYI. (b) contains a perfect matching MCE (or a 1-factor) *Ca matching of all the vortices*, so $V(GI=|X|=\frac{|Y|}{2}$. (c) and in fact, one can express E as a disjoint mion $E=M_1 \sqcup M_2 \sqcup ..., \sqcup M_d$ of d perfect matchings inside G.

Let's count all the X' to N(x') edges in G
two ways:
#{ edges (x'y)
yeN(x')

$$\sum deg_{G}(x')$$

 $x' \in X' = d$
 $d \cdot |X'|$
 $d \cdot |X'|$
Hence $\exists a$ perfect metching $M \subset E$.
(c):
 $G_{1}' = M_{1} \sqcup M_{2} \amalg M_{3}$
 $for (c), we use induction on d.
BASE CASE $d = 1$: Then the metching $M = E$.$

INDUCTIVE STEP d=2: Use the perfect matching M from part (6), and create $\hat{G}_1 := G$ with the edges of M removed.

 $G = M_1 \cdots M_2 \cdots \cdots M_{d-1} \cdots M_d$

 \square

DEFINITION: In probability theory, a
stochastic matrix is a nxn square matrix
$$A = (a_{ij})$$

with entries $a_{ij} \in \mathbb{R}_{\geq 0}$ whose rows all sum to 1,
that is, $\sum_{j=1}^{n} a_{ij} = 1$ $\forall i = 1, 2, ..., n$.
It is called doubly stochastic if the columns also
all sum to 1, that is $\sum_{j=1}^{n} a_{ij} = 1$ $\forall i = 1, 2, ..., n$
 $\sum_{i=1}^{n} a_{ij} = 1$ $\forall i = 1, 2, ..., n$.
Stochastic matrices arise in theory of Markov chains,
where there are n possible states, and
 $a_{ij} = \operatorname{Prob}(\operatorname{starting in state i one transitions b state j)$
Example
 $A = \bigotimes_{i=1}^{n} \binom{N_{i}}{N_{i}} \binom{N_{i}}{N_{i}} \underset{i=1}{\overset{N_{i}}{\longrightarrow}} \underset$

DEFINITION: A special case of doubly-stochastic matrices are permutation matrices P that have exactly one 1 in Each vow and column, and all other entries O.

THEOREM (Birkhoff-von Neumann): Bondy Hundy
Every doubly stochastic mortrix A (an be witten
as a weighted average of permitation mortrices
i.e.
$$A = c_1P_1 + c_2P_2 + ... + c_rP_r$$
 with $c_1,...,c_r \in \mathbb{R}_{\geq 0}$
 $c_1c_2+...+c_r=1$

EXAMPLE:

$$A = \begin{bmatrix} 4 & 4 & 4 \\ 34 & 0 & 44 \\ 0 & 34 & 44 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix}$$

EXAMPLE:

$$A = \begin{bmatrix} x & y & y \\ y & y & y \\ 0 & y & z \\ 0 & y & z \\ 1 & 2 & -1^{n} \end{bmatrix} = \pm \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & y & z \\ 1 & 2 & -1^{n} \end{bmatrix} + \pm \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & y & z \\ 1 & 2 & -1^{n} \end{bmatrix}$$

INCLUCTIVE STEP:
Build from A a bipartile graph

$$G = (V, E) \\ Y & y \\ (i,j) : A; j = 0 \\ 1 & y \\ 1 & z \\ 1 &$$

$$\sum_{i \in X'} \sum_{j=1}^{n} a_{ij}$$

$$\sum_{i \in X'} \sum_{j=1}^{n} a_{ij}$$

$$\sum_{j=1}^{n} \sum_{i \in X'} a_{ij}$$

$$\sum_{j=1}^{n} \sum_{i \in X'} a_{ij}$$

$$\sum_{j \in N(X')} \sum_{i \in X'} a_{ij}$$

$$\sum_{j \in N(X')} \sum_{i \in X'} a_{ij}$$

$$\sum_{i \in X'} \sum_{j \in N(X')} a_{ij}$$

$$\sum_{i \in X'} \sum_{i \in X'} a_{ij}$$

$$\sum_{i \in X'} \sum_{j \in N(X')} a_{ij}$$

$$\sum_{i \in X'} \sum_{i \in X'} a_{ij}$$

$$\sum_{i \in X'} a_{ij}$$

$$\sum_{i \in X'} \sum_{i \in X'} a$$

Let
$$c_i = m$$
 of the entries $a_{ij}: (i,j) \in M_j^i$
Then $\hat{A} := A - c_i P_1$ has entries in $R_{\geq 0}$,
fewer nonzero entries,
and its rows and columns sum to $d - c_1$.

$$\begin{array}{c} 0 & 0 & 0 \\ 0 & 1/4 & 1/2 \\ A = & & & & \\ 0 & 3/4 & 0 \\ 0 & 3/4 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 3/4 & 0 & 0 \\ 0 & 1/2 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 3/4 & 0 & 0 \\ 0 & 1/2 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 7 & 2 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 7 & 2 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 7 & 2 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 7 & 2 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 7 & 2 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 7 & 2 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 7 & 2 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 7 & 2 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 7 & 2 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 7 & 2 & 1/4 \end{array}$$

$$\begin{array}{c} 0 & 1/4 & 1/2 \\ 7 & 2 & 1/4 \end{array}$$

so by induction,

$$\hat{\lambda} = c_2 P_2 + \dots + c_r P_r \quad \text{with} \quad C_{23} - \dots - c_r \ge 0$$

$$c_2 + \dots + c_r P_r \quad C_2 + \dots + c_r = d - c_1$$

$$A = c_1 P_1 + c_2 P_2 + \dots + c_r P_r$$

$$\boxed{\mathbb{Z}}$$