Mater 5707 Prong 2023
Matching theory P. Hall's Matching Theorem Snippet 1: ("Maniage")

REVIEN of matching theory so far...
$G=(V, E)$ simple graph

$$
\begin{aligned}
& \nu(G):=\max \{|M|: M \subset E \text { a matching }\} \\
& \leqslant \tau(G):=\min \{|W|: W \subset V \text { a vertex } \\
&\text { cover }\}
\end{aligned}
$$

C part of Gallai's Thu.
Proposition
A matching $M \subset E$ is max-sized
G contains no M-angmenting paths P

PROPOSITION: In a bipartie graph $G=(V, E)$

$$
X \in S
$$

$$
\begin{aligned}
&\left\{\begin{array}{c}
M \text {-angmenting } \\
\text { paths } P
\end{array}\right\}=\left\{\begin{array}{l}
\text { directed paths } P \\
\text { from } X \text { tounmotched } x \in X \\
Y \text { - mmatehed } y \in Y
\end{array}\right. \\
& \text { in this digmph } D: \\
& x \rightarrow y \\
& x \not y \text { non- Medges } \\
& x \not y \text { Medges }
\end{aligned}
$$

G
M
P

no directed paths
from X-unmalched X 's
to Y-ummatched y^{\prime} 's
so max-sized

This gives the so called Hungavion agorithm to find $v(G)$ and max-sized matchings M

COROLCARY For G bipartite, (Kïnig-Egerváry)

$$
\begin{gathered}
v(G)=\tau(G) \\
\underset{\substack{n \\
\text { max -size of } \\
\text { a matching } M}}{ } \quad \begin{array}{l}
\text { min-size of } \\
\text { a vertex cover } W
\end{array}
\end{gathered}
$$

In fact, at the end of the Hungarian algorithm one finds a vertex cover W with $|W|=|M|$ some size as themax-sized matching M, by leftoing

$$
W:=\left\{\begin{array}{l}
x \in X \text { not reachable in } D \\
\text { from the M-ummathed } \\
X \text {-vertices }
\end{array}\right\} \perp\left\{\begin{array}{c}
y \in Y \text { readable in } D \\
\text { from the M-ummatched } \\
X \text {-vertices }
\end{array}\right\}
$$

Another corollary...
COROLLARY (P. Hall's Matching Thy.): 1935 "Marriage"
A bipartite graph $G=(X \cdot U, E)$ has a matching M that matches all of X
$\rightleftarrows \forall$ subsets $X^{\prime} \subseteq X$ one has

$$
N\left(X^{\prime}\right):=\left\{y \in Y: \exists \text { some } x \in X^{\prime} \text { with }\{x, y\} \in E\right\}
$$

neighbors of size $\left|N\left(X^{\prime}\right)\right| \geqslant\left|X^{\prime}\right|$.
EXAMPLE

M of max size does not match all of X;
$X^{\prime}=\left\{x_{1}, x_{2}\right\}$ has

M matches all of X

$$
N\left(x^{\prime}\right)=\left\{y_{1}\right\} \text { bo small }
$$

COROLLARY (P. Hall's Matching Th m.):
A bipartite graph $G=(X \cdot V, E)$ has a matching M that matches all of X
$\Longleftrightarrow \forall$ subsets $X^{\prime} \subseteq X$ one has

$$
N\left(X^{\prime}\right):=\left\{y \in Y: \exists \text { some } x \in X^{\prime} \text { with }\left\{x, y^{\prime}\right\} \in E\right\}
$$

neighbors of size $\left|N\left(x^{\prime}\right)\right| \geqslant\left|x^{\prime}\right|$.
proof: (\Longrightarrow) is pretty easy to see, since if we had a matching M that matched all of X, then for every subset $X^{\prime} \subset X$, the matching M gives on mjective map $x^{\prime} \longleftrightarrow N\left(x^{\prime}\right)$
$x \longmapsto$ its match y
so $\left|x^{\prime}\right| \leq\left|N\left(x^{\prime}\right)\right|$.
For $(\Longleftrightarrow$), assume there is no matching M that matches all of X. So $v(G)<|\times| \quad$ Kin ain tho, $\tau(G)$

so \exists a vertex cover W
M of max size of size $|w|<|X|$. does not match all of X $X^{\prime}=\left\{x_{1}, x_{2}\right\}$ has $N\left(x^{\prime}\right)=\left\{y_{1}\right\}$ bo small

We use W bo exhibit a subset $X^{\prime} \subseteq X$ with too few neighbors, i.e. $|N(x)|<|x|$ as follows: Let $X^{\prime}=X-W$

$$
=\{x \in X: x \notin W\}
$$

Note that every $y \in N\left(X^{\prime}\right)$ must be in W because W is a verlex cover:

$$
\begin{gathered}
x^{\prime} \Rightarrow x \rightarrow y \Rightarrow y \in W \\
\text { so } x \nrightarrow W \\
W \supseteq(x \cap W) \cup N\left(x^{\prime}\right) \\
|x|>|W| \geq \underbrace{|x \cap W|}+\left|N\left(x^{\prime}\right)\right| \\
\quad=|x|-|x-w| \\
\Rightarrow|x^{\prime}>\left|x^{\prime}\right|-\underbrace{|x|}_{=|x-W|}+\left|N\left(x^{\prime}\right)\right| \\
\Rightarrow\left|x^{\prime}\right|>\left|n\left(x^{\prime}\right)\right|
\end{gathered}
$$

NEXT: Applying Hall's Thu. to find matelings of entire left sides X ?

APPLICATION 1: regular bipartite graphs
THEOREM (KÖnig 1931):
Even g d-regular bipartite multigraph $G=\left(X_{\bullet}, Y, E\right)$
(a) has $|X|=|Y|$.
(b) contains a perfect matching $M \subset E$ (or a 1-factor)
Ca matching of all the vertices,
so $v(G)=|x|=\frac{|v|}{2}$. i.e. $\operatorname{deg}_{M}(v)=1 \quad \forall v \in V$
(c) and in fact, one com express t as a disjoint union $E=M_{1} \oplus M_{2} \dot{\cup} \ldots \cdot \dot{\cup} M_{d}$ of d perfect matchings inside G.

EXAMPLE $d=3$

$\|$

$$
G=M_{1} \dot{\bullet} M_{2} \cdot \dot{M_{3}}
$$

3-regular, bipartite

THEOREM (König 1931):
Every d-regular bipartite multigraph $G=(X, \mathcal{Y}, E)$
(a) has $|X|=|Y|$.

$$
\text { with } d \geq 1
$$

(b) contains a perfect matching $M C E$
(or a 1-factor)
Ca matching of all the vertices,

$$
\therefore v(G)=|x|=\frac{|v|}{2} .
$$

i.e. $\operatorname{deg}_{m}(v)=1 \quad \forall v \in V$
(c) and in fact, one com express E as a
disjoint union $E=M_{1} \oplus M_{2} \dot{\omega} \ldots M_{d}$
of d perfect matchings inside G.
proof:
(a): We've seen this comes from counting $|t|$
$=$ in two ways:
in two ways:
$\sum_{d \in X} \operatorname{deg}_{6}(x)$
$=\underbrace{}_{=d} \sum_{y \in Y} \underbrace{\operatorname{deg}_{G}(y)}_{=d}$
$|Y| \cdot d$
$|x| \cdot d$

$$
\begin{gathered}
|x| \cdot d|=|y| \cdot d \\
|x|=|Y|
\end{gathered}
$$

(b):

For (b), we want to use Hall's The, >0 need to check $\forall x^{\prime} \subset x$

$$
\left|N\left(x^{\prime}\right)\right| \geqslant\left|x^{\prime}\right|
$$

Let's count all the X^{\prime} to $N\left(X^{\prime}\right)$ edges in G two ways:

$$
\begin{aligned}
& \#\left\{\begin{array}{l}
\operatorname{edges}\left(x^{\prime}, y\right) \\
\operatorname{coth} x^{\prime} \in X^{\prime}, \\
\sin ^{\prime}(x)
\end{array}\right\} \\
& \sum_{x^{\prime} \in X^{\prime}} \operatorname{deg}_{G}\left(x^{\prime}\right) \\
& d \cdot\left|x^{\prime \prime}\right| \\
& \sum_{y \in N\left(x^{\prime}\right)}^{N} \# \underbrace{\left\{\begin{array}{l}
\operatorname{edges}\left(x^{\prime}, y\right) \\
\operatorname{din} \\
x^{\prime} \in x^{\prime}
\end{array}\right\}}_{\leq \operatorname{deg}_{6}(y)} \\
& \leq d \cdot\left|N\left(x^{\prime}\right)\right| \\
& A\left|x^{\prime}\right| \leq \lambda^{\prime}\left|N\left(x^{\prime}\right)\right| \\
& \left|x^{\prime}\right| \leq\left|N\left(x^{\prime}\right)\right|
\end{aligned}
$$

Hence \exists a perfect matching $M \subset E$.
(c):

For (c), we use induction on d.
BASE CASE $d=1$: Then the marteching M found in part (b) must have $M=t$.

INDUCTIVE SET $d \geqslant 2$:
Use the perfect matching M from part (b), and create $\hat{G}:=G$ with the edger of M removed.

G, M
d-regular $(d-1)$-regular

$$
\Rightarrow G=M_{1} \cdot M_{2} \cdot \ldots \dot{\omega} M_{d-1} \cdot M_{M}^{\prime \prime}
$$

APPLICATION 2: doubly-stochastic matrices
DEFANTCON: In probability theory, a stochastic matrix is a $n \times n$ square matrix $A=\left(a_{i j}\right)$ with entries $a_{i j} \in \mathbb{R}_{\geq 0}$ whose rows all sum to 1 , that is, $\sum_{j=1}^{n} a_{i j}=1 \quad \forall i=1,2, \ldots, n$.
It's called doubly stochastic if the columns also all sum to 1, that is $\begin{cases}\sum_{j=1}^{n} a_{i j}=1 & \forall i=1,2,-, n \\ \sum_{i=1}^{n} a_{i j}=1 & \forall j=1,2, \ldots, n\end{cases}$
Stochastic matrices arise in theory of Markov chains, where there are n possible states, and $a_{i j}=\operatorname{Prob}($ starting in state i one transitions bo state $j)$ Example
states, transition probabilities:
(1) (2) (3)

$$
A=\begin{aligned}
& \text { (1) } \\
& \text { (2) } \\
& \text { (3) }
\end{aligned}\left[\begin{array}{ccc}
1 / 4 & 1 / 4 & 1 / 2 \\
3 / 4 & 0 & 1 / 4 \\
0 & 3 / 4 & 1 / 4
\end{array}\right] \quad \text { <m }
$$

DEFINITION: A special case of doubly-stochastic matrices are permutation matrices P that have exactly one 1 in each vow and column, and all other entries 0 .

Examples:

$$
I_{n}=\left[\begin{array}{ccc}
1 & 0 & - \\
0 & 1 & 0 \\
\vdots & \ddots & \ddots \\
0 & 0 & \ddots
\end{array}\right], ~ 1, ~\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

identity matrix
TFIEOREM (Birkhoff_con Merman): Bandy M why
Every doubly stochastic matrix A can be written as a weighted average of permutation matrices

$$
\text { i.e. } A=c_{1} P_{1}+c_{2} P_{2}+\ldots+c_{r} P_{r} \text { with } \begin{aligned}
& c_{1}, \ldots, c_{r} \in \mathbb{R}_{\geq 0} \\
& c_{1}+c_{2}+\ldots+c_{r}=1
\end{aligned}
$$

Example:

$$
\begin{aligned}
A=\left[\begin{array}{ccc}
1 / 4 & 1 / 4 & 1 / 2 \\
3 / 4 & 0 & 1 / 4 \\
0 & 3 / 4 & 1 / 4
\end{array}\right] & =\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+\frac{1}{4}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]+\frac{1}{4}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =c_{1} P_{1}+c_{2} P_{2}+c_{3} P_{3}
\end{aligned}
$$

THEOREM (Birthoff-von Neumann).
Every doubly stochastic matrix A cam be witten as a weighted average of permutation matrices
i.e. $A=c_{1} P_{1}+c_{2} P_{2}+\ldots+c_{r} P_{r}$ with $c_{1}, \ldots, c_{r} \in \mathbb{R}_{\geq 0}$ $c_{1}+c_{2}+\ldots+c_{r}=1$

Example:

$$
A=\left[\begin{array}{ccc}
1 / 4 & 1 / 4 & 1 / 2 \\
3 / 4 & 0 & 1 / 4 \\
0 & 3 / 4 & 1 / 4
\end{array}\right]=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+\frac{1}{4}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]+\frac{1}{4}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

proof: Let's prove che more general- sounding statement that if A an $u \times n$ matrix
(ais)
aith $a_{i j} \in \mathbb{R}_{20}$ and all con sums $=d>0$ all col sums $=d$
then $A=c_{1} P_{1}+c_{2} P_{2}+\ldots+c_{r} P_{r}$ where $P_{i}=$ Demrutation matrices
and $c_{1}, c_{2}, \rightarrow, c_{2} \in \mathbb{R}_{\geq 0}$

$$
\text { ith } c_{1}+c_{2}+\ldots+c_{r}=d \text {. }
$$

We'll prove it by induction su \#\{nonzeno entries aij\}
BASE CASF: no nonzers entries, so $A=\left[\begin{array}{lll}0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots . & 0\end{array}\right]$

ExAmple:

$$
A=\left[\begin{array}{ccc}
1 / 4 & 1 / 4 & 1 / 2 \\
3 / 4 & 0 & 1 / 4 \\
0 & 3 / 4 / 4
\end{array}\right]=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+\frac{1}{4}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]+\frac{1}{4}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

INDUCTIVE STEP:
Build frow A a bipartite graph

$$
\begin{aligned}
& \left.G=\left(V_{\| \in Y_{*}^{\prime \prime}}, E\right\}_{i(i, j): a_{i j}>0}\right\} \\
& \begin{array}{cc}
\text { row } & \text { no } \\
\text { indices } & \text { indices } \\
\left\{1,2,-, n^{n}\right\} & \left\{1,2,-n^{r}\right\}
\end{array}
\end{aligned}
$$

e.g. for A above
(1) (2) (3)

$$
A=\begin{array}{ccc}
\text { (2) } \\
\text { (2) }
\end{array}\left[\begin{array}{lll}
1 / 4 & 1 / 4 & 1 / 2 \\
3 / 4 & 0 & 1 / 4 \\
0 & 3 / 4 & 1 / 4
\end{array}\right]
$$

G

Hall's condition: $\forall X^{\prime} \subset X, \quad\left|N\left(X^{\prime}\right)\right| \geqslant\left|X^{\prime}\right|$
by counting in 2 ways the sum of all entries of A lying m now s indexed by X^{\prime} :

$$
\begin{aligned}
& \sum_{i \in X^{\prime}} a_{i j} \\
& \sum_{i \in X^{\prime}} \sum_{j=1}^{n} a_{i j} \sum_{j=1,2, \ldots, n}^{n} \sum_{j=1} a_{i j} \\
& \begin{array}{l}
\text { unless } \\
j \in N\left(x^{\prime}\right)
\end{array} \\
& \sum_{j \in N\left(x^{\prime}\right)} \underbrace{\sum_{i j}}_{\substack{i \in x^{\prime}}} \\
& \operatorname{since}_{i \in X^{\prime}} \\
& d \cdot\left|x^{\prime}\right| \\
& \text { =d } \\
& \leq d \cdot\left|N\left(x^{\prime}\right)\right| \\
& \Rightarrow p^{\prime} \cdot\left|x^{\prime}\right| \leqslant d \cdot|N(x)| \\
& \Rightarrow\left|x^{\prime}\right|=\left|N\left(x^{\prime}\right)\right|
\end{aligned}
$$

Hence by Hall's Thm, \exists a perfectmatching $M \subset E$

Let $c_{1}=\min$ of the entries $\left\{p_{i j}:(i, j) \in M\right\}$
Then $\hat{A}:=A-c_{1} P_{1}$ has entries in $\mathbb{R} \geqslant 0$, fewer nonzero entries, and its rows and columns sum to $d-c_{1}$.

$$
\begin{aligned}
& \text { row/ds } \\
& \text { all sum to } 3 / 4 \\
& =1-1 / 4 \\
& =d-c_{1}
\end{aligned}
$$

so by induction,

$$
\begin{array}{ll}
\hat{A}=c_{2} P_{2}+\ldots+c_{r} P_{r} \text { with } & c_{2}, c_{r} \geqslant 0 \\
c_{2}+\ldots+c_{r}=d-c_{1}
\end{array}
$$

