Math 5707 sPring 2023 Verlex-coloring
Vertex-coloning (Bondy_Murty ch.8)
DEFIN: Given $G=(V, E)$ a (simple) graph, an assignment

$$
f: V \rightarrow\{1,2, \ldots, k\}
$$

is called a proper cortex-coloning of G if $f(x) \neq f(y) \quad \forall$ edges $\{x, y\} \in E$.

$$
1 \text { or } 3
$$ would both give proper colorings

$k=3$
G has no proper 2-colorings
DEVIN: $X(G):=$ chromatic number of G
$:=\min i k: \exists$ at least one paper vertex-cloving of G with k colors $\}$

EXAMPLES:

- $X(G)=1 \Leftrightarrow G$ has no
edges i.e. $G=\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}$
- $X(G)=2 \Longleftrightarrow G=(X \mapsto Y, E)$ is bipartite
 since can mate

$$
\begin{aligned}
& X:=f^{-1}(1) \\
& Y:=f^{-1}(2)
\end{aligned}
$$

- $X(G)=3$ is hard to characterize-
there are no simple necersamy and sufficient condifous for it, and deciding whether $X(G) \leq 3$ is an NP-complete decision problem.
- $x\left(K_{n}\right)=n$ complete gruphs

$$
x\left(k_{3}\right)=3
$$

$$
\text { - } X\left(C_{n}\right)= \begin{cases}2 & \text { if neven } \\ 3 & \text { if nodd } \\ 3\end{cases}
$$ n-ayde

$$
x\left(c_{3}\right)=3 \quad x\left(c_{4}\right)=2 \quad x\left(c_{5}\right)=3 \quad x\left(c_{6}\right)=2
$$

- If re pick $V^{\prime} \subset V$ for $G=(U, E)$
and form the vertex-induced oubgriph

$$
G\left[V^{\prime}\right]:=\left(V^{\prime}, E_{\left.\overrightarrow{\mid(x, y)}{ }^{\prime}\right)} \in: x, x y^{\prime} V^{\prime}\right]
$$

then $X\left(G\left[v^{\prime}\right]\right) \leqslant X(G)$
e.g.

$$
\begin{aligned}
& v^{\prime}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& \leadsto\left[v^{\prime}\right]=v_{v_{1}}^{v_{2}} v_{2}^{v_{2}}
\end{aligned}
$$

In particular,
$X(G) \geqslant \max \{k: \underset{\text { snbgraph of } G \text { isomophic }}{\exists}$ a vertex-induced subgraph of
$\geqslant \mathrm{t}_{\mathrm{k}} K_{k}$
called
a k-clique

Ore can get an easy upper bound for $X(G)$ in terms of vertex degrees, from the greedy coloring algorithm:
Order $V=\left\{x_{1}, x_{2}, x_{3}, \ldots . ., x_{n}\right\}$
and then for each $i=1,2, \ldots n$ assign vertex x_{i} the color

$$
f\left(x_{i}\right)=\min \left\{\{1,2,3, \ldots\}-\left\{f\left(x_{j}\right): j \in\{1,2, \ldots, i-1\}\right.\right.
$$ and $\left.\left\{x_{i}, x_{j}\right\} \in t\right\}$

egg.

COROLLARY:
Let $\Delta(G):=\max$ vertex degree in G

$$
=\max \left\{\operatorname{deg}_{c}(v): v \in V\right\}
$$

Then $\chi(G) \leq 1+\Delta(G)$
proof: When $k=1+\Delta(G)$, as you
do the greedy culoving, there is always a color avaible for $f\left(x_{i}\right)$ since x_{i} has $\leq \Delta(G)$ previously colored neighbors.

REMARK:
We really showed

$$
\begin{aligned}
& \text { Ne really showed } \\
& \begin{aligned}
X(G) & \leq 1+\max \left\{\operatorname{deg}_{G}\left[x_{1}, x_{2}, \cdots, x_{i}\right]\right. \\
& \left.\leq 1+\Delta\left(x_{i}\right): i=1,2, \ldots, n\right\}
\end{aligned}
\end{aligned}
$$

Examples:
Cydes C_{n} with n odd have

$$
3_{3}^{\prime \prime} X\left(C_{n}\right)=1+\underbrace{\Delta\left(C_{n}\right)}_{=2}=3
$$

K_{n} has $X\left(K_{n}\right)=1+\underbrace{\Delta\left(K_{n}\right)}_{=n-1}=n$

THEOREM For a connected simple graph G, (Brooks
1941) unless
unless $G=C_{n}$ or K_{n} (hod) complete
one has $\chi(G) \leq \Delta(G)$
$=$ max degree in G

NOTE: Brooks does not say that

$$
G \neq\left\{\begin{array}{l}
C_{n} \text { nod } \\
K_{n}
\end{array}\right.
$$

then $X(G)=\Delta(G)$
e.g. $K_{m, m}$ for m large has

$$
\underset{2^{\prime \prime}}{\chi\left(K_{m, m}\right)}<\Delta \underset{m}{\prime \prime}
$$

$$
m=5
$$

$$
\begin{aligned}
& X=2 \\
& \Delta=5
\end{aligned}
$$

