EXAMPLES:

$$M(G) = 1 \iff G \text{ has no} \text{ edges i.e. } G = 0 \text{ or } 1$$

$$M(G) = 2 \iff G = (X \mapsto Y, f) \text{ is bipartile}$$

$$M(G) = 2 \iff G = (X \mapsto Y, f) \text{ is bipartile}$$

$$\lim_{\substack{n \neq n \neq 2 \\ 2 & n \neq 2 \\ 3 & n \neq 2 \\ 4 & n \neq$$

• If we pick V'CV for G= (U,E) and form the vertex induced outgraph G[V']: = (V', E') ([x,y]eE: xiyeV']

In particular, X(G) > max {k:] a vertex-induced subgraph of G isomorphic) Called k-clique

One can get an easy upper bound for
$$X(G)$$

in terms of vertex degrees, from the greedy
coloring algorithm:
Order $V = \{\chi_{1,3}\chi_{2,3}, \chi_{3,5}, \dots, \chi_{n}\}$
and then for each $i=1,2,-n$
assign vertex χ_{i} the ador
 $f(\chi_{i}) = \min\{\{1,2,3,..., j-1\}, \{\chi_{i},\chi_{j}\}, \dots, j-1\}$
 $M \in \mathbb{Z}$

COROLLARY:
Let
$$\Delta(G) := \max \text{ vertex degree } m G$$

 $= \max \{ \deg_G(v) : v \in V \}$
Then $\chi(G) \leq 1 + \Delta(G)$
proof: When $k = 1 + \Delta(G)$, as you

do the greedy aloning, there is always a color available for
$$f(x_i)$$
 since x_i has $\leq \bigtriangleup(G)$ previously colored neighbors. M

Remark:
We really showed

$$X(G) \leq 1 + \max\{ \deg_{G[x_i, x_j, \cdots, x_i]}(x_i) : i = 1, 2, ..., n \}$$

 $\leq 1 + \Delta(G)$

THEOREM For a connected simple graph G,
(Brooks unless
$$G = C_n$$
 or K_n
(941) $(n \circ dd)$ complete
one has $\chi(G) \leq \Delta(G)$
 $= max$ degree in G

NOTE: Brooks does not say that

$$G \neq C_n nodd$$

 $I = A(G)$

e.g.
$$K_{m,m}$$
 for m (arge has $\chi(K_{m,m}) < \Delta(K_{m,m})$

X=2 ∆=5

