TWO MAIN TITS OF GALOIS THEORY!
$\pi+m 1: \quad \mathbb{K} / \mathbb{F}$ finite

$$
\begin{aligned}
& \text { AMI: } \mathbb{K} / \mathbb{F} \text { tinice } \\
& \Rightarrow(i) \mathbb{F} \subseteq \mathbb{K} \text { Antc(K/F} / \mathbb{F}) \text { (silly!) }
\end{aligned}
$$

(ii) $|\operatorname{Aut}(\mathbb{K} / \mathbb{F})| \leq[\mathbb{K}: \mathbb{F}]$ and TFAE:
(a) equality in (i): $F=\mathbb{K}^{\text {Ant(} \mathbb{K} / \mathbb{F})}$
(b) \exists some group $G \leq \operatorname{Ant}(\mathbb{K})$
for which $F=\mathbb{K}^{G}$
(c) equality in (ii): \mid Ant $f(K / \mathbb{F}) \mid=[\mathbb{K}: \mathbb{F}]$
(d) $\mathbb{K}=s_{p p l i t}^{\mathbb{F}}(f(x))$ where $f(x)$ is any separable polynomial in $\mathbb{F}[x]$
All of there (a) - (d) can be used to define $1 K / \mathbb{F}$ Galois

THM 2: When K / \mathbb{F} is Galois, with $G:=\operatorname{Aut}(\mathbb{K} / \mathbb{F})=\operatorname{Ga}(C(K / \mathbb{F})$ one has a bijection

$$
\left\{\begin{array}{l}
\mathbb{K}_{1}^{\prime} \\
\frac{1}{1} \\
\mathbb{F}
\end{array} \text { subtields }\right\} \longleftrightarrow\left\{\begin{array}{c}
1 \\
1 \\
\frac{1}{1} \text { sulogrups } \\
G
\end{array}\right\}
$$

$$
H:=
$$

$11 \longmapsto\left\{\begin{array}{l}\left\{\begin{array}{l}\sigma \in G:\left.\sigma\right|_{\| 1}=1 \\ =A_{u}((K / \Delta)\end{array}\right\}\end{array}\right.$

$$
\mathbb{H}:=\mathbb{K}^{H} \longleftarrow H<G
$$

with \mathbb{K}

$$
\mathbb{N}=\mathbb{K}^{H} \quad \text { always Galois) } \quad \operatorname{Pas}(\mathbb{K} / \mathbb{L})=H
$$

$1 \longleftarrow \mathbb{2}$ degree $[G: H]$, and Galas $\Leftrightarrow H \triangle G$ in which case, $\mathrm{Gal}(\mathrm{H} / \mathrm{F})=G / H$
NETT THE:

- can easily compute $m_{\alpha_{1}}(x)$ for $\alpha \in \mathbb{K}$
- $\mathbb{H}_{1} \mathbb{L}_{2}, \mathbb{L}_{1} \cap \mathbb{H}_{2}$ cor. $H_{1} \cap H_{2},\left\langle H_{1}, H_{2}\right\rangle$

REMARK for a question asked after class:
Since for any $H<A u t(K)$
we know from Them 1 that $\mathbb{K} / \mathbb{K}^{H}$ is Galois
so we have equality in

$$
\begin{aligned}
& \mathbb{K}^{H} \subset \mathbb{K}^{\text {Ant }\left(\mathbb{K} / K^{+}\right)} \\
& \text {ide. } \mathbb{K}^{H}=\mathbb{K}^{A n t\left(\mathbb{K} / \mathbb{K}^{H}\right)}
\end{aligned}
$$

Galois
\cdots and $H \leq \operatorname{Aut}(H / \underbrace{K^{H}}_{11})$
also has equality:

$$
\operatorname{THM} 2_{\substack{\mathbb{L}=\mathbb{K}^{H} \\ \mathbb{L} \leftrightarrow H}}^{H}=H(\underbrace{H}_{\mathbb{L}})
$$

What we didn't say at end of last time...
Given $\alpha \in \mathbb{K}$ with \mathbb{K} / \mathbb{F} Galois,

$$
\frac{1}{\mathbb{F}} \text { and } G:=\operatorname{Aut}(\mathbb{K} \in \mathbb{A})
$$

then $m_{\alpha, \mathbb{F}}(x)=\prod(x-g(\alpha))$
dissent
Galois images
Note that $\{g(\alpha): g \in G\}$
this is a separate polynomial

$$
\left[\begin{array}{l}
\text { where } \\
H:=\{g \in G: g(\alpha)=\alpha\} \\
\\
\\
g H \in G H
\end{array}\right.
$$

EXAMPLE: Let's compute

$$
\begin{array}{ll}
m_{\beta, Q}(x) \text { for } \beta_{" \prime}^{\prime \prime} \in \mathbb{K}=S_{p} l i t_{Q} & \left(x^{3}-2\right) \\
\omega+\mathbb{Q} & =\mathbb{Q}(\omega, \alpha) \\
e^{2 \pi / 3} & \sqrt[3]{2}
\end{array}
$$

Who are the distinct Gal wis images

$$
\begin{aligned}
& \text { Galois images } \\
& \{g(\beta): g \in G\} ? \\
& =\{1(\beta), \tau(\beta)\} \\
& =\{\beta, \tau(\beta)\} \\
& =\left\{\omega+2, \omega^{2}+2\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma(\omega+\alpha)=\omega+2 \\
& \Rightarrow \sigma(\beta)=\beta \\
&= \sigma^{2}(\beta)=\beta \\
& H=\left\{g \in \sigma^{\prime}: g(\beta)=\beta\right) \\
&=\langle\sigma\rangle \\
&==\left\{, 9, \sigma^{2}\right\} \\
& \text { and }\{1, \tau\}
\end{aligned}
$$

$$
\Rightarrow m_{\beta, Q}^{(x)}=
$$

$$
\begin{gathered}
\Rightarrow m\left(\beta, Q^{(x)}=\right. \\
\left(x-\left(\omega^{2}+2\right)\right)\left(x-\left(w^{2}+2\right)\right) \\
-2
\end{gathered}
$$

$$
\begin{aligned}
& (x-(\omega+2))(x-(\omega+2) \\
= & x^{2}-\left(\omega+\omega^{2}+4\right) x+(\omega+2)\left(\omega^{2}+2\right) \\
= & 2(-1+4) x+\omega^{2}+2\left(v+\omega^{2}\right)+4
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}-\left(\omega+\omega^{2}+4\right) x+(\omega+2(\omega+2) \\
& =x^{2}-(-1+4) x+\omega^{3}+2\left(\omega+\omega^{2}\right)+4
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}-(-1+4) x+w(-1)+4 \\
& =x^{2}-3 x+1+2+1 \\
& =x^{2}-3 x+3
\end{aligned}
$$

G(1) has weetrap $\{1, \tau\}$

$$
=x^{2}-3 x+3
$$

$\in \mathbb{Q}[x]$

NUN-GACOLS EXAMPLES
(1) $\mathbb{Q}(\sqrt[3]{2})=\mathbb{K}\} \begin{aligned} & \text { nit Galois, } \\ & \text { not spliting }\end{aligned}$

Q
and $|\operatorname{Aut}(\mathbb{U} \mid \mathbb{Q})|=(\{\imath\} \mid<[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]$ $=3$
σ sends
$\sqrt[3]{2}$ ba cout of $x^{3}-2$
mside $\sqrt[3]{2}$
i.e $\sigma=1_{K}$
(2)
$\mathbb{K}^{K}=S_{p} l i t_{\mathbb{F}}\left(x^{p}-t\right)=\mathbb{F}_{p}\left(t^{1 / p}\right)=\mathbb{F}_{p}(t)\left(t^{1 / p}\right)$
 splitting but not
$\mathbb{F}=\mathbb{F}_{p}(t) \quad$ since $x^{P}-t$

$$
\begin{aligned}
& x-\tau \\
& =\left(x-t^{1 / p}\right)^{p}
\end{aligned}
$$

and $|\operatorname{Ant}(K \in \mathbb{F})|=[\{1\}]<[K / \mathbb{F}]$
$\sigma \operatorname{sen} d t^{1 / p}$ to

$$
=P
$$

another woot of $x^{p}-t$, i.e.
6 thelf
(3) Let \mathbb{E} be any infinite field of char p, egg $\mathbb{F}_{p}(t)$, $\overline{\mathbb{F}}_{p}$

$$
\left.\begin{array}{l}
\text { en consider } \mathbb{F}\left(u^{1 / p}, v^{1 / p}\right)=\mathbb{K} \\
p \quad p / p \\
\mathbb{F}\left(u^{1 / p}, v\right) \quad \mathbb{F}\left(u, v^{1 / p}\right) \ldots \mathbb{F}\left(u, v, u^{1 / p}+c v^{1 / p}\right) \ldots \\
1 p
\end{array}\right) .
$$

Then consider $\mathbb{F}\left(u^{1 / p,} v^{1 / p}\right)=1 K$
where $c \in \mathbb{F}$
p
$1 p$
$\mathbb{F}(u, v)^{p /} \quad$ splits $x^{p}-\left(u+c^{p} v\right)$
$\in \mathbb{F}(x, v)[x]$
$\mathbb{K} / \mathbb{F}(m, v)$ is not Galois, and has ∞ many mtenmediate subfield, since...

$$
\text { \& } \mathbb{F}\left(u, v, u^{1 / p}+c v^{1 / p}\right)=\mathbb{F}\left(u, v, u^{1 / p}+c^{\prime} v^{1 / p}\right)
$$

then it contains $u^{1 / p}+c v^{v^{\prime} p}$
subtract $\frac{u^{1 / p+c^{\prime} v^{1 / p}}}{\left(c-c^{\prime}\right) v^{1 / p} \Rightarrow v^{1 / p}} \begin{gathered}c c^{\prime} \in \mathbb{F} \\ \\ \text { sin in it }\end{gathered}$

$$
\begin{aligned}
& \Rightarrow v^{1 / p} \in \mathbb{F}\left(u, v, u^{1 / p}+c v^{1 / p}\right) \\
& \Rightarrow u^{1 / p} \in \mathbb{F}\left(u, v, u^{1 / p}+c v^{1 / p}\right) \\
& \Rightarrow \mathbb{F}\left(u, v, u^{1 / p}+c v^{1 / p}\right)=\mathbb{K}=\mathbb{F}\left(u^{1 / p}, v^{1 / p}\right) \\
& \text { contradiction. }
\end{aligned}
$$

Why should \mid Ant $[(K / \mathbb{F}) \mid \leq[\mathbb{K}: \mathbb{F}]$?
Dedekind's lemma:
For G a group and K a field, a linear character is a group homomorphism $G \xrightarrow{\tau} \mathbb{K}^{\times}$

$$
\text { ie. } \quad \tau(g h)=\tau(g) \tau(h)
$$

Then $\tau_{1}, \tau_{2}, \ldots, \tau_{n}: G \rightarrow K^{x}$ distinct characters are K-lin.indep. inside $\{$ functions $G \rightarrow \mathbb{K}$ \}. with pointuise addition \& scaling, i.e. $q_{1} \tau_{1}(g)+\ldots+c_{n} \tau_{n}(g)=0$ for some $a_{1} c_{2}, \ldots c_{n} \in \mathbb{K}$ and $\forall g \in G$ then $c_{1}=\ldots=c_{n}=0$.
proof: Assume ce had such a dependence $(x) a \tau_{1}(g)+\ldots+c_{k} \tau_{k}(g)=0 \quad \forall g \in G$ with $c_{1,-}, c_{k} \neq 0$ and minimal
Weill create a smaller dependence.
Then $\tau_{1} \neq \tau_{2}$ so pick $h \in G$ with
Malt. (*) by $\tau(h)$, giving

$$
\rightarrow \begin{aligned}
& \rightarrow c_{1} \tau_{2}(h) \tau_{1}(g)+c_{2} \tau_{2}(h) \tau_{2}(g)+\ldots+c_{k} \tau_{1}(h) \tau_{k}(g)=0 \\
& \text { As }
\end{aligned} \forall g \in G
$$

$$
\tau_{1}(h) \neq \tau_{2}(h) .
$$

$$
\begin{aligned}
& c_{1} \tau_{1}(h g)+c_{2} \tau_{k}\left(h_{g}\right)+\ldots+c_{k} \tau_{k}\left(h_{g}\right)=0 \\
& \left(\frac{\sum_{\text {sib }} c_{1} \tau_{1}(h) \tau_{1}(g)}{}+c_{2} \tau_{2}(h) \tau_{2}\left(c_{g}\right)+\ldots+c_{k} \tau_{k}(h) \tau_{k}(g)=0\right. \\
& c_{2}\left(\frac{\left(\tau_{1}(h)-\tau_{2}(h)\right.}{H}\right) \tau_{2}(g)+\ldots c_{2}\left(\tau_{1}(h)-\tau_{h}(h)\right)_{k}(g) \\
& =0 \\
& \forall g \in G
\end{aligned}
$$

a smaller dependence.

COR (to Dedekind's lemma)
If $[\mathbb{K}: \mathbb{F}]<\infty$, then

$$
|A u t(\mathbb{K} \in \mathbb{F})| \leq[K: \mathbb{F}]
$$

proof: Why does $[\mathbb{K}: \mathbb{F}]<\infty$ imply Ant $(\mathbb{K} / \mathbb{F})$ finite?
$\mathbb{K}=\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \quad \alpha_{i}$ algebraic so $\sigma \in \operatorname{Auf}(\mathbb{K}(\mathbb{F})$ is determined by choices of $\sigma\left(\alpha_{i}\right) \in \underbrace{\left\{\begin{array}{c}\text { mots of } \\ m_{H, \alpha_{i}}(x)\end{array}\right\}}_{\begin{array}{c}\text { finitely many } \\ \text { ehorces. }\end{array}}$
So let $[\mathbb{K}: \mathbb{F}]=m$ and $|A u f(K / \mathbb{F})|=n$ and show a contradiction if $m<n$.

Let Ant $\left(C K(\mathbb{F})=\left\{\tau_{1}, \tau_{2}, \ldots \tau_{n}\right\}\right.$
and think of them as chavadinders

$$
\underset{\substack{1 \\ \mathbb{K}^{x}}}{\tau_{2}} \mathbb{K}^{x}
$$

If $[K: \mathbb{F}]=m<n$, let
\mathbb{K} have -basis $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$.
Consider the $m \times n$ matrix

$$
m\left\{\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{m}
\end{array}\left[\begin{array}{ccc}
\tau_{1}\left(\alpha_{1}\right) & \cdots & \tau_{n}\left(\alpha_{1}\right) \\
& & \\
\tau_{1}\left(\alpha_{m}\right) & \cdots & \tau_{n}\left(\alpha_{m}\right)
\end{array}\right] \begin{array}{r}
m<n
\end{array}\right.
$$

$$
\underbrace{\tau_{1}}_{n} \quad \tau_{n}
$$

which has a \mathbb{K}-lin. dependence on its columns say $\sum_{i=1}^{n} c_{i} \tau_{i}\left(\alpha_{j}\right)=0 \quad \forall j=1, \ldots, m$. Weill show ${ }_{m} \sum_{i} c_{i} \tau_{i}$ vanishes on every $\alpha \in \mathbb{K} \mathbb{K}^{x}$ since $\alpha=\sum_{j=1}^{m} b_{j} \alpha_{j}$ with $b_{j} \in \mathbb{F}$

$$
\sum_{i=1}^{n} c_{i} \tau_{i}\left(\alpha_{j}\right)=0
$$

$$
\forall_{j}=1, \ldots, m
$$

$\alpha \in \mathbb{K}^{x}$ has $\alpha=\sum_{j=1}^{m} b_{j} \alpha_{j}, b_{j} \in \mathbb{F}$
Since $\tau_{i} \in \operatorname{Aut}(\mathbb{K} / \mathbb{F})$, they're
F-linear: $\quad \tau_{i}(\alpha \beta)=\tau_{i}(\alpha) \tau_{i}(\beta)$

$$
\begin{aligned}
& \tau_{i}(\alpha+\beta)=\tau_{i}(\alpha)+\tau_{i}(\beta) \\
& \text { if } c, d \in \mathbb{d}=c \tau_{i}(\alpha)+d \tau_{i}(\beta)
\end{aligned}
$$

$$
\left.\tau_{i}\right|_{\mathbb{F}}=\tau_{\mathbb{F}}
$$

So $\sum_{i=1}^{n} c_{i} \tau_{i}(\alpha)=\sum_{i=1}^{n} c_{i} \tau_{i}\left(\sum_{j=1}^{m} b_{j} \alpha_{j}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n} c_{i} \sum_{j=1}^{m} b_{j} \tau_{i}\left(\alpha_{j}\right) \\
& =\sum_{j=1}^{m=1} b_{j}\left(\sum_{i=1}^{\left(\sum_{i=1}^{n} c_{i} \tau_{i}\left(\alpha_{j}\right)\right)}=0\right. \\
& =0_{j=1,-, m}
\end{aligned}
$$

When do are get equality?
PROP: (a) if $G<\operatorname{Ant}(\mathbb{K})$ is finite,
then (i) $|G|=[\mid K=\mathbb{K} G]$
and (ii)

$$
\begin{aligned}
& G=\operatorname{Aut}\left(\mathbb{K} / \mathbb{K}^{G}\right) \\
& \left(G \leq \operatorname{Aut}\left(\mathbb{K} / \mathbb{K}^{G}\right)\right. \\
& \text { is clear })
\end{aligned}
$$

(b) Conversely, suppose [K :IF] is finite, then

$$
\begin{aligned}
|\operatorname{Ant}(\mathbb{K} / \mathbb{F})| & =[K: \mathbb{F}] \\
\Leftrightarrow F & =\mathbb{K}^{\text {Ant }(\mathbb{K} / \mathbb{F})}
\end{aligned}
$$

If we believe the PROP,
then it gives $(G) \Leftrightarrow(b) \Leftrightarrow(c)$

$$
\text { in } T H M 1
$$

from Galois Thy.

When do ore get equality. 7
PROP: (a) if $G<$ Ant (K) is finite,
then (i) $|G|=\left[K: \mid \mathbb{K}^{G}\right]$
and (ii)

$$
\begin{aligned}
& G=\text { Ant }\left(\mathbb{K} / \mathbb{K}^{G}\right) \\
& \left(G \leq \text { Ant }\left(\mathbb{K} / \mathbb{K}^{G}\right)\right. \\
& \text { is dear })
\end{aligned}
$$

(b) Conversely, suppose

$$
\begin{aligned}
& \text { CK: } \mathbb{F}] \text { is tinge, then } \\
& \left|A_{n t}(\mathbb{K} / \mathbb{F})\right|=(\mathbb{K}: \mathbb{F}] \\
& \left.\quad \Leftrightarrow \mathbb{F}=\mathbb{K}^{\text {Ant }} \text { (} \mathbb{K} / \mathbb{F}\right)
\end{aligned}
$$

Also, everything will follow if we can show $|G| \geq|K:| K G]$.
[19]: Then $\left.G K: K^{G}\right] \leq|G| \leq\left|\operatorname{Ant}\left(\mathbb{K} / \mathbb{K}^{G}\right)\right|$

$$
G \leq \operatorname{Ant}\left(W K^{G}\right)
$$

+ our COR to Dedekind

$$
\Rightarrow\left[K: I K^{G}\right]=\left(G=\left|A n t\left(\mathbb{K} / K^{G}\right)\right|\right.
$$

and $G=\operatorname{Ant}\left(\mathbb{K} / K^{G}\right)$ showing (i), (ii) in PROP

$$
|G| \geqslant G K: \mathbb{K} G]
$$

When do de get equality.
PROP: (a) If $G<$ Ant (K) is finite,
then (i) $|G|=\left[K: \mathbb{K}^{G}\right]$
and (ii) $G=\operatorname{Ant}\left(\mathbb{K} / \mathbb{K}^{G}\right)$

is clear)
(b) Conversely, suppose

$$
\begin{aligned}
& {[\mathbb{K}: \mathbb{F}] \text { is finite, then }} \\
& \mid \text { Ant }(\mathbb{K} / \mathbb{F}) \mid=(\mathbb{K}: \mathbb{F}] \\
& \quad \Leftrightarrow \mathbb{F}=\mathbb{K}^{\text {Ant }}(\mathbb{K} / / \mathbb{F})
\end{aligned}
$$

i.e. \Rightarrow in (b) holds.
$\Leftarrow \operatorname{in}(b)$ is (a) applied to Ant (K/F) $=G$.

Why does

$$
\left.|G| \geq \mathbb{K}: \mathbb{K}^{G}\right] \text { hold? }
$$

Name $G=\left\{g_{n}, \ldots, g_{n}\right\}$ io $|G|=n$.
Assume we have $\left\{\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}\right\}$ \mathbb{K}^{G} lin. index. elements in \mathbb{K}, to get a contradiction.
Consider the matrix

$$
\begin{aligned}
& \text { Consider the matrix } \\
& n\{\underbrace{\left[\begin{array}{ccc}
g_{1}\left(\alpha_{1}\right) & \cdots & g_{1}\left(\alpha_{n+1}\right) \\
\vdots & & \\
g_{n}\left(\alpha_{1}\right) & \cdots & g_{n}\left(\alpha_{n+1}\right)
\end{array}\right]}_{n+1} \text { so it has a column dependence ore }
\end{aligned}
$$

so it has a column dependence over \mathbb{K} say of minimal size le
(*) $\sum_{i=1}^{k} c_{i} g_{j}\left(\alpha_{i}\right)=0 \quad \begin{aligned} & \forall_{j}=1, \ldots, n \\ & \text { with } c_{i} \in \mathbb{K}^{x}\end{aligned}$
WLOG, $c_{1}=1$ in \mathbb{K}

$$
\begin{aligned}
& \text { (*) } \sum_{i=1}^{k} c_{i} g_{j}\left(\alpha_{i}\right)=0 \quad \forall_{j=1, \ldots, n} \\
& \text { wLOG, } c_{1}=1 \text { in } \mathbb{K}
\end{aligned}
$$

Weir show $\left\{\begin{array}{l}\text { every } c_{i} \in \mathbb{K} K^{G} \text { for } i=1, \ldots, k\end{array}\right.$ and they lead to a \mathbb{K}^{G}-dependence on the α_{i} 's.
Given any $g \in G$, apply it to (x), giving

$$
\begin{aligned}
& \sum_{i=1}^{k} g\left(c_{i} g_{j}\left(\alpha_{i}\right)\right)=0 \quad \forall j=1, \rightarrow, n \\
& \sum_{i=1}^{k} g\left(c_{i}\right) g g_{j}\left(\alpha_{i}\right)
\end{aligned}
$$

Since g permutes $\left\{g, \ldots, g_{n}\right\}=G$, Unis says $\sum_{i=1}^{k} g\left(c_{i}\right) g_{j}\left(\alpha_{i}\right)=0 \quad(* *)$
Subtracting (x) and $\left(x x_{k}\right)$ gives

$$
\sum_{i=1}^{k}(\underbrace{\left.g\left(c_{i}\right)-c_{i}\right)}_{=1-1=0} g_{j}^{\prime}\left(\alpha_{i}\right)=0 \quad \forall_{j}=1, \ldots, n
$$

$=1-1=0$
$i=1$
hence this is a smaller dependence, so $g\left(c_{i}\right)-c_{i}=0 \quad \forall g \in G$ i.e. $c_{i} \in \mathbb{K}^{G}$

$$
\text { (*) } \sum_{i=1}^{k} c_{i} g_{j}\left(\alpha_{i}\right)=0 \quad \begin{aligned}
& \forall j=1, \ldots, n \\
& \text { with } \\
& c_{i} \in \mathbb{K}^{x}
\end{aligned}
$$

Now that we know $c_{1, \ldots}, c_{e} \in\left(K^{G}\right.$, we can deduce from (*) that

$$
g_{j}\left(\sum_{i=1}^{k} c_{i} \alpha_{i}\right)=0
$$

and $g_{j} \in A_{a} t(\mathbb{K})$ so invertible,

$$
\text { so } \sum_{i=1}^{k} c_{i} \alpha_{i}=0
$$

a dependence with K^{G}-clefs among α_{i} 's. Contradiction.

TiM: \mathbb{K} / \mathbb{F} finite
$\Rightarrow(i) \mathbb{F} \subseteq \mathbb{K}^{\operatorname{Ant}(\mathbb{K} / \mathbb{F})}$ (silly!)
(ii) $|\operatorname{Aut}(\mathbb{K} / \mathbb{F})| \leq[\mathbb{K}: \mathbb{F}]$
and TFAE:
(a) equality in $(i): \mathbb{F}=\mathbb{K} \quad \operatorname{Ant}(\mathbb{K} / \mathbb{F})$
shown (b)
(b) \exists some group $G \leq \operatorname{Ant}(\mathbb{K})$
for which $F=\mathbb{K}^{G}$
(c) equality in (ii): $|\operatorname{Art} f(\mathbb{K} / \mathbb{F})|=[(K: \mathbb{F}]$
(d) $\mathbb{K}=$ split $_{\mathbb{F}}(f(x))$ where
$\uparrow f(x)$ is $\begin{gathered}\text { some) } \\ \text { any } \\ \text { a } \\ \text { separable polynomial }\end{gathered}$ in $\mathbb{F}[x]$
(e) \mathbb{K} / \mathbb{F} is normal \& separable, i.e. every $\alpha \in \mathbb{K}$ has
 $m_{\alpha_{1} \mathbb{F}^{\prime}}(x)$ splitting completely in $K K[x]$, with distinct roots
(a) equality in (i): $\mathbb{F}=\mathbb{K}^{\text {Ant }(\mathbb{K} \mathbb{N}(\mathbb{F})}$
\rightarrow (e) \mathbb{K} / \mathbb{F} is normal \& separable,
i.e. every $\alpha \in \mathbb{K}$ has
$m_{\alpha_{1} \mathbb{F}}(x)$ splitting completely in $\mid K[x]$, with distinct roots

Given $\alpha \in \mathbb{K}$, let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the distinct images $\{\sigma(\alpha): \sigma \in$ Ant $(\mathbb{K} /(\mathbb{F})\}$

$$
(\text { so } n \leqslant \operatorname{Aut}(\mathbb{K} / \mathbb{F}))
$$

$$
\begin{align*}
& \text { Then consider } \\
& f(x)==\prod_{i=1}^{n}\left(x-\alpha_{i}\right) \\
& \text { in } \tan f_{1}, f_{6}==^{2} x_{1}(x) \\
& \begin{array}{l}
\text { since, erary wot } \\
\sigma(x) \text { is also a }
\end{array} \\
& =x^{n}-\underbrace{\left(\alpha_{1}+\ldots+\alpha_{n}\right) x^{n-1}}_{e_{1}\left(\alpha_{1}, \ldots, \alpha_{n}\right)}+\underbrace{\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\ldots+\alpha_{n} \alpha_{n}\right)}_{e_{2}\left(\alpha_{1}, \ldots, \alpha_{n}\right)} x^{n-2} \\
& -\ldots+(-1)^{n} \underbrace{\alpha_{1} \cdots \alpha_{n}}_{e_{n}\left(\alpha_{1}-1 \alpha_{n}\right)} x^{0} \\
& \in \mathbb{K}^{\operatorname{Aut}(\mathbb{K} \pi \mathbb{F})}[x]=\mathbb{e _ { n } (\alpha _ { 1 , - } , \alpha _ { n })}[x] \tag{a}
\end{align*}
$$

which is a polynomial in $\mathbb{F}(x)$ having α as a root.
Hence $m_{\alpha_{1}} F_{(}(x)$ divides $f(x)$, and has distinct coots, since $f(x)$ does by construction.
(d) $\mathbb{K}=$ split $_{\mathbb{F}}(f(x))$ where $\uparrow f(x)$ is sony separable polynomial in $\mathbb{F}[x]$
(e) \mathbb{K} / \mathbb{F} is normal \& separable, i.e. every $\alpha \in \mathbb{K}$ has $m_{\alpha_{1} F}(x)$ splitting completely in $\mathbb{K}[x]$, with distinct roots

$$
\begin{aligned}
& \mathbb{K}=\operatorname{Sp}_{p} \underline{t}_{\mathbb{E}}\left(\left\{m_{\alpha_{k}}(x): \alpha \in \mathbb{K}\right\}\right) \\
& =\operatorname{Split}_{\mathbb{F}}\left(m_{\alpha_{1}, \sqrt{\mathbb{F}}}, \ldots, m_{\alpha_{n, F}(x)}(x)\right) \\
& \text { for some } \alpha_{1}, \ldots, \alpha_{n} \\
& \text { ecg., if } \mathbb{K}=\left(\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right. \\
& =S_{p l i} t_{F}(f(x)) \text { where } \\
& f(x)=\operatorname{l.cm} \cdot\left(m_{\alpha_{1}, f(x)}(x), m_{\alpha_{1}}(x)\right) \\
& \text { Assuming (e), }
\end{aligned}
$$

(c) equality in $(i i):|\operatorname{Ant}(C K / \mathbb{F})|=[\mathbb{K}: \mathbb{F}]$
(d) $\mathbb{K}=\operatorname{split}_{\mathbb{F}}(f(x))$ where
$f(x)$ is $\begin{gathered}\text { (same) } \\ \text { any }\end{gathered}$ separable polynomial in $\mathbb{F}[x]$
Assuming (d), weal show by induction on $[K: \mathbb{F}]$ that $|\operatorname{Aut}(\mathbb{K} / \mathbb{F})| \geq[K: \mathbb{F}]$.
if $[\mathbb{K}: \mathbb{F}]=1$, then $\mathbb{K}=\mathbb{F}$, done.
If $[K: \mathbb{F}] \geq 2$, so let $\alpha \in(K$ be any root of some irreducible factor $m_{\alpha_{1}} F^{(x)}$ that is at (east quadratic, $80[\mathbb{F}(\alpha)=\mathbb{F}] \geq 2$.

someparab'e
$\operatorname{sep}_{f(x)}$;
the sone deg

$$
f(x)!
$$

We claim that if $H:=\operatorname{Ant}(\mathbb{K} / \mathbb{F}(\alpha))$
then by induction $|H| \geq C \mathbb{K}: \mathbb{F}(\alpha)]$.
Also, we dam that inside $G=$ Ant (CK ($\mathbb{F})$,
she corsets $\tau_{i} H$ are all distinct:
if $\tau_{i} H=\tau_{j} H$, then $\tau_{j}^{-1} \tau_{i} H=H$

$$
\begin{aligned}
& \bar{\tau}_{j}^{\prime} \tau_{i} \in H \\
& \tau_{j}^{-1} \tau_{i}(\alpha)=\alpha \\
& \Rightarrow \tau_{i}(\alpha)=\tau_{j}(\alpha)=\alpha_{j}
\end{aligned}
$$

Hence $\mid A_{a} f(\mathbb{R} /(F)|=|G|=[G: H] \cdot| H \mid$

$$
\begin{aligned}
& \geqslant n=[\mathbb{K}: \mathbb{F}(\alpha)] \\
\operatorname{deg}\left(M_{\alpha}(x)\right) & =[\mathbb{F}(\alpha): \mathbb{F}]=[\mathbb{K}: \mathbb{F}]
\end{aligned}
$$

TAM 2 (augmented):
IK/F a finite $G a b i s$ extension, $G=A n t(L K / \notin)$. Then we have inchsion-reversing bijection

$$
\left\{\begin{array}{cc}
1 K \text { intemnednate } \\
1 \\
\frac{1}{1} \text { subfield } \mathbb{I}
\end{array}\right\} \underset{I F}{\longrightarrow}\left\{\begin{array}{cc}
\text { subgroups } & 1 \\
H & H \\
& G
\end{array}\right\}
$$

$$
\mathbb{I I} \longmapsto A n t(\mathbb{K} / \mathbb{I})
$$

$$
\mathbb{K}^{H} \leftarrow H
$$

with these properties:

> come from prenous $i)$$[H \mid=[G: H]=[\mathbb{K}: \mid \mathbb{F}]\}$ follows fum

work (ii) $\mathbb{K}!\mathbb{L}$ is always Gabis, with $H=$ Ant $(\mathbb{K}(11)$

$$
\text { if } 11=b k^{+1}
$$

(iii) Il. \mathbb{F} is Gabis $\Leftrightarrow \| L=k^{H}$ with $H \Delta G$ and in this case Ant (W/F) $=G / H$
(iv) Even if $\frac{11}{} / \mathbb{F}$ is not Galois so $H \not \angle G$, there is a bijection $\{$ coset σH in $G M\} \longleftrightarrow\left\{\begin{array}{c}\text { isomonphisms } \\ \longrightarrow \\ \mathbb{F}\end{array}\right\}$ fixing \mathbb{F} $=\operatorname{Emb}(11 / \mathbb{F})$
$5(v)$

$$
\begin{aligned}
& \mathbb{H}_{1} \mathbb{H}_{2} \leftrightarrow H_{1} \cap H_{2} \\
& \mathbb{H}_{1} \cap \mathbb{H}_{2} \leftrightarrow\left\langle H_{1}, H_{2}\right\rangle
\end{aligned}
$$

comes for nature of bile cations

EXAMPLE:

$$
\begin{aligned}
& \operatorname{Emb}(Q(\alpha), \bar{Q}) \\
& \text { has z elements: } \\
& \left.\left[S_{3}^{\prime}:<(12)\right\rangle\right] \\
& \alpha \longmapsto \alpha \\
& \alpha \longmapsto \operatorname{\omega \alpha \alpha } \\
& \alpha \longmapsto \omega^{2} \alpha
\end{aligned}
$$

$$
\text { Enc }(Q(G), \bar{Q})
$$

has 2 elements:

$$
\begin{gathered}
{\left[S_{3}:\langle(012)\rangle\right]} \\
w \mapsto w \\
w \mapsto w^{2}
\end{gathered}
$$

proof of (iv):
We reed to understand
$\operatorname{Emb}(\underline{L} / \mathbb{F})$ when $\mathbb{H}=1 K^{H}$.

$$
\left\{\mathbb{N}^{\prime \prime} \underset{\longrightarrow}{\longrightarrow} \overline{\mathbb{F}}\right\}
$$

Pick \bar{F} witaining \mathbb{K} :
Then we claim any $11 \xrightarrow{\tau} \bar{F}$ has $\tau(I I) \subset \mathbb{K}$, because any $\alpha \in \mathbb{L}$ has $\alpha \in(K$, so $\tau(\alpha)$ is mother root in $\overline{\mathbb{F}}$ of $m_{\alpha_{1} \mathbb{F}}(x)_{\text {in }} \mathbb{F}[x], 80 \quad \tau(\alpha) \in \mathbb{K}=$ split iF $\left(\left\{f_{i}-3\right)\right.$

We clam further that $\tau=\left.\sigma\right|_{11}$ of some $\sigma \in A_{n t}(\mathbb{K} / \mathbb{F})=G$:

$$
\begin{aligned}
& K=\operatorname{split}_{\text {ti }}(f(x)) \text { so } \mathbb{K}=\operatorname{split}_{\mathbb{L}}(f(x)) \\
& \text { and } \mathbb{K}=\operatorname{split}_{\tau(y)}(\tau f(x))
\end{aligned}
$$

Finally $\sigma \in G=$ Ant σ (IN $/ F)$
have $\sigma l_{\mathbb{L}}=\left.\sigma^{\prime}\right|_{\underline{L}}$ when $\underline{L}=k^{H}$ $\Leftrightarrow \sigma H=\sigma^{\prime} H$ since...

$$
\begin{aligned}
& \left.\sigma\right|_{\text {II }}=\left.\sigma^{\prime}\right|_{\underline{11}} \Leftrightarrow \\
& \left.\vec{\sigma} \sigma^{\prime}\right|_{\text {III }}=1_{I \perp} \Leftrightarrow \\
& \sigma^{-1} \sigma^{\prime} \in \operatorname{Autc}(K / L)=H \Leftrightarrow \\
& \sigma H=\sigma^{\prime} H .
\end{aligned}
$$

Top rove (iii), note that

$$
|\operatorname{Emb}(\mathbb{H} / \mathbb{F})|=[G: H]=[\mathbb{L}: \mathbb{F}]
$$

and $\operatorname{Aut}_{n}(\mathbb{L} / \mathbb{F}) \leq \operatorname{Emb}(\mathbb{L} / \mathbb{F})$

$$
\left\{\begin{array}{c}
\{\in \operatorname{mb}(\mathbb{1} / \mathbb{F}): \\
\tau(\mathbb{L})=\mathbb{1}
\end{array}\right\}
$$

Hence U/F is Galois (using \mid Ant $(\mathbb{L} / \mathbb{F})$)
\Leftrightarrow every $\left.\tau \in \operatorname{Emb}(\mathbb{L} / \mathbb{F}) \quad \operatorname{def}_{-n}[\mathbb{L}: \mathbb{F}]\right)$ has $\tau(\mathbb{L})=\mathbb{L}$

Hence W/F is Galois
\Leftrightarrow every $\tau \in \operatorname{Emb}(\mathbb{H} / \mathbb{F})$
has $\tau(\mathbb{H})=\Perp$
This is equivalent to $H(=$ Ant $(\mathbb{I K} / 1 \mathrm{IL})$ $\mathbb{I I}=$ K $^{\mathrm{H}}$
being normal in G :
Recall $\tau=\sigma l_{\text {II }}$ for some $\sigma \in G$, and $\sigma(\mathbb{L})$ is the fixed subfield for oft ${ }^{-1}$:

$$
\begin{aligned}
& \sigma(\mathbb{L})=\mathbb{K}^{\sigma H \sigma^{-1}} \text { if } \mathbb{L}=\mathbb{K}^{H} \\
& \text { so } \sigma(\mathbb{L})=\text { II } \quad \forall_{g G E}\left(\begin{array}{c}
h(\alpha)=\alpha \\
\Leftrightarrow \\
\Leftrightarrow h(\alpha)=\sigma(\alpha) \\
\Leftrightarrow \\
\sigma h \sigma^{\prime} \cdot \sigma(\alpha)=\sigma(\alpha)
\end{array}\right) \\
& \sigma_{0} \sigma^{-1}=H \quad \forall g \in G \\
& \sqrt{s} \\
& H \unlhd G
\end{aligned}
$$

§ 14.3 Finite fields
Let's play with an...
ExAMPLE

$$
\beta^{3}+\beta+1=0
$$

$$
\mathbb{F}_{2^{3}}=\mathbb{F}_{8}=\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right) \text { with } \beta:=\bar{x}
$$

(or $x^{3}+x^{2}+1$ would work)
$=$ an \mathbb{F}_{2}-vector space on basis $\left\{, \beta, \beta^{2}\right\}$

$$
\begin{aligned}
& \text { luside }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\beta^{7} & \beta^{1 \prime}+1 \beta^{2}+\beta \\
\beta^{3}+\beta^{2} & \beta^{2}+\beta+\beta^{3} \\
\beta^{\prime} 1+\beta^{2} & \beta^{2}+1
\end{array}
\end{aligned}
$$

Let's look at the orbits of Frobemins $\mathbb{F}_{8}{ }_{\square}^{F} \mathbb{F}_{8}$
开2
 $\alpha \mapsto \alpha^{2}$

$$
\begin{aligned}
& \text { roof } \\
& \underbrace{x(x+1)}_{\text {linear }} \underbrace{\left(x^{3}+x+1\right) \underbrace{\left(x^{3}+x^{2}+1\right)}_{\text {dec }:=\left(x-\beta^{3}\right)\left(x-\beta^{6}\right)\left(x-\beta^{3}\right)}=x^{x^{3}} \operatorname{Fin}_{2}(x)}_{\text {cubic }}
\end{aligned}
$$

