Discriminants

- defecting separability
and $A_{n}(C K / Q)<A_{n}<S_{n}$
or not.
Let $\alpha_{1}, \ldots, \alpha_{n}$ be indeteminates (variables)
so $Q\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ rational functions

$$
\frac{f\left(\alpha_{1},-, \alpha_{n}\right)}{g\left(\alpha_{1},-\alpha_{n}\right)}
$$

Consider $f(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$

$$
\begin{aligned}
& \in \in \underbrace{\in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)[x]}_{\begin{array}{c}
s_{1}:= \\
\text { st elementary } \\
\text { symmetric } \\
\text { function }
\end{array}} \\
& \in \mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{n}\right][x] \\
& =x^{n}-\underbrace{\left(\alpha_{1}+\ldots+\alpha_{n}\right)}_{s_{2}} x^{n-1}+\underbrace{\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}+\alpha_{n-1} \alpha_{n}\right)}_{1-1)^{n} \alpha_{1} \alpha_{2} \ldots-\alpha_{n}} x^{n-2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { function } \\
& -\ldots+(-1)^{n} \underbrace{\alpha_{1} \alpha_{2} \ldots \alpha_{n}}_{s_{n}} \\
& \in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{S_{n}}[x]
\end{aligned}
$$

PROP: $Q\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{S_{n}}=\mathbb{Q}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ $\alpha_{c}+\ldots+\alpha_{n}$
proof: Notice that $(f(x))$

finite
of degree $\leq n$!

$$
\begin{aligned}
f(x):= & \left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{n}\right) \\
& \in \mathbb{Q}\left(s_{11}, s_{n}\right)[x]
\end{aligned}
$$

REMARK: In fact,

$$
\begin{aligned}
& \mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{n}\right]_{n}=\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{n}\right] \\
&(\text { see } \operatorname{D\& F} \text { Ever. } 4.6 \\
&\# 37-43)
\end{aligned}
$$

DEF N:
Define $\sqrt{D}:=\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right) \in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$

$$
\text { and } D:=\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{Q}\left(\alpha_{1, \ldots,}, \alpha_{n}\right)
$$

PROP: Every permutation $\sigma \in S_{n}$ has $\sigma(\sqrt{D})=\operatorname{sgn}_{11}(\sigma) \cdot \sqrt{D}$ ± 1
and hence

$$
\begin{aligned}
& \text { d hence } \quad \Longleftrightarrow \in A_{n} \Longleftrightarrow \sigma(\sqrt{D})=+\sqrt{D} \\
& \cdot \sigma \in S_{n} \Longleftrightarrow \sigma(D)=D \\
& \text { so } D \in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \\
& \\
& =\mathbb{Q}\left(s_{1}, s_{2}, \ldots, s_{n}\right)
\end{aligned}
$$

and hence Dhas an expression in $\mathbb{Q}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ (even in $\left.\mathbb{Z}\left[\delta_{1}, s_{2}, \ldots, s_{n}\right]\right)$.

PROP: Every permutation $\sigma \in S_{n}$
has $\sigma(\sqrt{D})=\operatorname{sgn}_{11}(\sigma) \cdot \sqrt{D^{1}}$
± 1
and hence

$$
\begin{aligned}
& \text { d hence } \sigma \in A_{n} \Longleftrightarrow \sigma(\sqrt{D})=+\sqrt{D} \\
& \cdot \sigma \in S_{n} \Longleftrightarrow \sigma(D)=D
\end{aligned}
$$

proof: fireng $\sigma \in S_{n}$ permutes the factors $\alpha_{i}-\alpha_{j}$ of \sqrt{D} up to sign, and $\sigma_{i}=(i, i+1)$ negates $\sqrt{D^{1}}$:

$$
\begin{aligned}
& \text { e.g. } n=4 \\
& \sqrt{D}=\frac{\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\alpha_{4}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\alpha_{4}\right)\left(\alpha_{3}-\alpha_{4}\right)}{1} \underbrace{}_{2}=\begin{array}{ccc}
(2,3) & \text { negated! } \\
i 11 & \alpha_{3}-\alpha_{2} \\
i+1
\end{array}
\end{aligned}
$$

Since every σ_{i} negates \sqrt{D},

$$
\sigma(\sqrt{D})=\operatorname{sgn}(\sigma) \sqrt{D} \quad \forall \sigma \in S_{n}
$$

EXAMPLES:
(1) Quadratics $n=2$

$$
\begin{aligned}
f(x) & =\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)=x^{2}+b x+c \\
& =x^{2}-\frac{\left(\alpha_{1}+\alpha_{2}\right)}{s_{1}} x+\underbrace{\alpha_{1} \alpha_{2}}_{s_{2}} \Rightarrow \begin{array}{l}
b=-s_{1} \\
c=s_{2}
\end{array}
\end{aligned}
$$

Then $D=\left(\alpha_{1}-\alpha_{2}\right)^{2}$

$$
\left.\begin{array}{rl}
D & =\left(\alpha_{1}-\alpha_{2}\right) \\
& =\alpha_{1}^{2}-2 \alpha_{1} \alpha_{2}+\alpha_{2}^{2} \in \mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)^{\prime} \\
11 \\
& S_{2}\left(s_{1}, s_{2}\right)
\end{array}\right] \begin{aligned}
& \left(\alpha_{1}+\alpha_{2}\right)^{2}-4 \alpha_{1} \alpha_{2} \\
& =s_{1}^{2}-4 s_{2} \\
& \\
& =b^{2}-4 c \in \mathbb{Q}\left(s_{1}, s_{2}\right)(=\mathbb{Q}(b, c))
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) Cubic } f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \\
& =x^{3}-\delta_{1} x^{2}+s_{2} x-s_{3} \\
& =x^{3}+a x^{2}+b x+c \\
& \text { has } D=\left(\alpha_{1}-\alpha_{2}\right)^{2}\left(\alpha_{1}-\alpha_{3}\right)^{2}\left(\alpha_{2}-\alpha_{3}\right)^{2} \in Q x+b x+c, \alpha_{1}, \alpha_{1}, \alpha_{3} s_{3} \\
& \begin{aligned}
& =a^{4} \alpha^{2}+\cdots \\
& =a^{2} b^{2}-4 b^{3}-4 a^{3} c-27 c^{2}+18 a b c
\end{aligned} \\
& =Q\left(s_{1}, 5_{2}, 5_{2}\right) \\
& =Q(a, b, c)
\end{aligned}
$$

THM: For any field \mathbb{F} and any $f(x) \in F[x]$ of degree n $x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \quad$ with $a_{i} \in \mathbb{F}$, one has (i) $D \neq 0 \Longleftrightarrow f$ separable (EA) ie. roots $\alpha_{1,-}, \alpha_{n}$ of $f(x)$ are distinct many spiting field \bar{k} over If to t
(ic) D is a square in \mathbb{F}

$$
\begin{aligned}
& D \text { is a square } \\
& \Leftrightarrow G=G a t(\underbrace{\text { Split }_{F}(F)}_{\mathbb{K}}) / \mathbb{F}) \leq A_{n}
\end{aligned}
$$

Examples for quadratics
(1) $f(x)=x^{2}+2 x+1$ in $\mathbb{Q}[x]$ has $D=2^{2}-4 \cdot 1=0$

$$
=(x+1)^{2}
$$

(2)

$$
\begin{aligned}
&=(x+1)^{2} \\
& f(x)=x^{2}+3 x+2 \text { in } Q(x) \text { has } D=3^{2}-4 \cdot 2=1 \\
&=(x+1)(x+2) \quad G=\{1\}=A_{2} \quad=1^{2} \text { in } \\
& \quad G=\left\{\begin{array}{l}
\text { nice }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
&+\cdot 2=1 \\
&=1^{2} \operatorname{in} Q
\end{aligned}
$$

Since $(K=Q)$
(3)

$$
\begin{aligned}
& f(x)=x^{2}+3 x+1 \text { in } Q(x) \text { has } D=3^{2}-4=5 \\
& =\left(x-\frac{-3+\sqrt{5}}{2}\right)\left(x-\frac{-\frac{3 \sqrt{5}}{2}}{2}\right) \quad G=\delta_{2} \text { notavimen } \sqrt{5}+ \pm \sqrt{5}
\end{aligned}
$$

THM: For any field \mathbb{F} and any
$f(x) \in \mathbb{F}[x]$ of degree n

$$
x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \quad \text { with } a_{i} \in \mathbb{F} \text {, }
$$

one has (i) $D \neq 0 \Longleftrightarrow f$ separable ie. roots $\alpha_{1,-}, \alpha_{n}$ of $f(x)$ are district many
If $D \neq 0$, then
 over If tort
(ic) ${ }^{2} D$ is a square in F

$$
\Leftrightarrow G=G_{a}(\underbrace{S_{p_{1}} i_{\mathbb{F}}(\mathbb{F})}_{\mathbb{K}} / \mathbb{F}) \leq A_{n}
$$

proof: Factor $f(x)=\left(x-\alpha_{1}\right)-\left(x-\alpha_{n}\right)$ where

$$
\begin{aligned}
& \text { where } \\
& \alpha_{1, \ldots}, \alpha_{n} \in \mathbb{K}
\end{aligned}
$$

$$
\text { Then } D=\prod_{i \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{F}
$$

$$
s p l i t_{1 \prime}^{\prime \prime}(f(x))
$$

(i)

$$
\begin{aligned}
& \text { 1si<j<n } \\
& =\text { expression in } \delta_{1}, s_{2}, \ldots, s_{n} \in \mathbb{F} \\
& " 1 a_{0}
\end{aligned}
$$ $\begin{array}{ll} \\ \pm a_{n-1} & \text { "I } a_{n-2} \\ \\ & \pm a_{0}\end{array}$

$$
\text { so } D \neq 0 \Leftrightarrow \begin{aligned}
& \pm a_{n-1} a_{n-2} \\
& \alpha_{i} \neq \alpha_{j} \forall i \neq j \\
& i, e_{1}, f \text { separable }
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{i} \neq \alpha_{j} \forall i \neq j \\
& \text { i.e. } f \text { separable. }
\end{aligned}
$$

(ii) If $D \neq 0$, then $\sqrt{D}=\prod_{1 \leq i<j \leqslant n}\left(\alpha_{i}-\alpha_{j}\right)$
(ii) If $D \neq 0$, then $\sqrt{D}=\prod_{1 \leq i, j \leq n}\left(\alpha_{i}-\alpha_{j}\right)$

$$
\sqrt{D} \in \mathbb{K}=\text { split } t_{\mathbb{F}}(f(x)) \quad \begin{aligned}
& \text { since } \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K} \\
& \text {.... } f(x) \text { is separable }
\end{aligned}
$$

$$
\mathbb{K}^{G}=\mathbb{F}
$$

Ant ($(K / 1 F)$
and hence $B \leq A_{n} \Longleftrightarrow$
every $\sigma \in G$ has $\sigma(\sqrt{D})=\sqrt{D}$

$$
\Longleftrightarrow \sqrt{D} \in \mathbb{K}^{G}=\mathbb{F}
$$

$\Longleftrightarrow D$ is a perfect square in \mathbb{F}.
\$14.7 Solvability by radicals
Recall a group G was solvable if \exists a subnormal series

$$
\underset{\substack{\|_{1} \\ H_{0}} H_{1} \triangleright H_{2} \triangleright \ldots \triangleright H_{s-1} \triangleright H_{s}}{\{1,}
$$

with H_{i} / H_{i+1} abelian
(and if G is finite, equivalent to say $\mathrm{H}_{i} / \mathrm{H}_{i+1}$ cyclic).

DEF IN: \mathbb{K} / \mathbb{F} is a (simple) radical extension if $\mathbb{K}=\mathbb{F}(\sqrt[n]{a})$ for sone $a \in \mathbb{F}$. Say α algebraic $/ \mathbb{F}$ can be expressed by radicals if it lies in some not extension ie. some \mathbb{K} / \mathbb{F} that lies atop a tower $\mathbb{F}=\mathbb{K}_{0} \subset \mathbb{K}_{1} \subset \ldots \subset \mathbb{K}_{5-1} \subset \mathbb{K}_{5}=\mathbb{K} \ni \alpha$ where each $\mathbb{K}_{i} / \mathbb{K}_{i-1}$ is a radical extension.
e.g. $\alpha=\sqrt[4]{1+\sqrt[5]{3-\sqrt[7]{2}+6(\sqrt[7]{2})^{3}}}+10$

$$
\begin{aligned}
& Q \stackrel{\text { aral }}{11} \mathbb{Q}(\sqrt[7]{2})^{\text {radial }} Q\left(\sqrt[7]{3} \sqrt[5]{3-\sqrt[7]{2}+6(\sqrt[7]{2})^{3}}\right)^{2} \\
& { }^{\prime} K_{0} \\
& 11 \\
& \begin{array}{l}
11 \\
K_{1}
\end{array} \\
& \text { readied } K_{2}(\alpha) \\
& =1 K(\alpha-10) \\
& =1 K \\
& { }_{\alpha}^{\psi}
\end{aligned}
$$

Say $f(x) \in \mathbb{F}[x]$ is solvable by radicals if all its sots (in \bar{F}) can be expressed by radicals/EF.

Wont to head toward ...
THM (Galois) if char (F) $=0$, then $f(x) \in \mathbb{F}(x)$ is solvable by radicals $\Leftrightarrow \operatorname{Gal}(I I / \mathbb{F})$ is solvable (as a finite where $\|:=\operatorname{split}_{f}(f(x))$

ExAMPLE: $\quad f(x)=x^{2}+b x+c \in \mathbb{Q}(b, c)[x]$
is irreducible
but $f(x)=0$ implies

$$
x=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

we can factor it ${ }^{2}$

$$
f(x)=(x-\underbrace{\frac{-b+\sqrt{b^{2}-4 c}}{2}}_{\alpha_{1}:=})(x-\underbrace{\frac{-b-\sqrt{b^{2}-4 c}}{2}}_{\alpha_{2}:=})
$$

where $\alpha_{1}, \alpha_{2} \in \mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)=\mathbb{Q}(\sqrt{D})$

ie. the "general" quadratic is solvable by radicals and $\operatorname{Gal}\left(L /(F)=S_{2}\right.$ is solvable, and same for several arbic $\}$ see $\delta 14.7$ for several quartic $\}$ see $\$ 14.7$ but not the general quantic.

Example: Assuming Galois's The, then there are definitely explicit quintics e.g. $f(x)=x^{5}-4 x+2$ which are notsoluable by radicals, because $\mathrm{Gal}_{1}\left(\mathbb{K} /(\mathbb{1})=S_{S}\right.$ split $_{Q}(f(x)$
and we asserted or proved in 8201 that S_{5}, A_{5} were not solvable groups not soluble, 1 simple since oovinitity tspresened by
subgroup 2 is all of S_{5} since...
potent
we can graph $y=f(x)$ using call techniques and deduce ithas only 3 real roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$
 and two complex roots α_{4}, α_{5} $\left(\alpha_{5}=\alpha_{4}\right)$ in \mathbb{C}
Since \mathbb{K} / Q has degree durilide by 5 (check $f(x) \in \mathbb{Q}(x]$ is irreducible) ria θ senntem $p=2$ and hence G has order drisible by 5 , and hence contains $\sigma \in S_{5}$ of orders.

The group $G=G_{a l}(C k+Q)$ is all of S_{5} since... we can graph $y=f(x)$ using call techniques and deduce thas only 3 real root $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and two complex roots α_{4}, α_{5} $\left(\alpha_{5}=\alpha_{4}\right)$ in C
Since $(K / Q$ has degree duriilde by 5 (check $f(x) \in \mathbb{Q}(x)$ is ineducable) ma senntern $p=2$ and hence G has order derisible by 5 , and hence contains $\sigma \in S \in$ of adders.
Hence G contains some 5 -cycle ($i j \mathrm{klm}$), and it also contains the transposition $\left(\alpha_{4} \alpha_{5}\right)^{\prime}$ because $\mathbb{C} \longrightarrow \mathbb{C}$ restricts to $\mathbb{K} g^{\text {inning }}$ such an element of $G=\operatorname{Aut}(\mathbb{K}(\mathbb{Q})$. Conjugating $\left(\alpha_{4}, \alpha\right)$ by the 5 -cycle (ijklm) gives enough transporitors to generate all of 5 .

Hence $G=S_{5}$.

GOAL
$\frac{\text { TAM }}{f(x)}$ (Galois) If char $(F F)=0$, then $f(x) \in \mathbb{F}(x)$ is solvable by radicals
$\Leftrightarrow \operatorname{Gal}(I I / \mathbb{F})$ is solvable (as a five where $\| 1:=s p l z_{\mathbb{F}}(f(x))$

3 issues

- wot extensions aren't Gabs always! Q $(\sqrt[3]{2})$
- is ${ }^{\text {its }}$ Galois closure still a $1 \cos _{\text {Got } 6 s \text { ! }}$
not extension
Q
- need to have roots of unity around to make radical extension $\leftrightarrow \frac{\text { cyclic }}{\frac{\text { exeter }}{}}$ 1 nexticensions group

SOME EASY LEMMAS: char(\mathbb{F})=

TH M on natural irrationalities"

(c)

proof: We only have left to prove this part of (b):

Given $\sigma \in G_{\text {al }}(\mathbb{K}(\mathbb{L} / \mathbb{I}) \leqslant \operatorname{Gal}(I K L L / \mathbb{F})$, $\sigma(\mathbb{K})=\mathbb{K}$ because \mathbb{K} is a normal exteariond of, so we get a homomo phish

$$
\begin{gathered}
\text { get a homomo prism } \\
\text { Gal (IKIL/L) } \xrightarrow{\varphi} \text { Gal (}(\mathbb{K} / \mathbb{F}) \\
\left.\sigma\right|_{\mathbb{K}}
\end{gathered}
$$

and it remains to show $\operatorname{ker}(\varphi)=\{1\}$.

Given $\sigma \in G_{\text {al }}(\mathbb{K}(\mathbb{L} / \mathbb{I}) \leqslant \operatorname{Gal}(1 K \mathbb{L} / \mathbb{F})$,
$\sigma(\mathbb{K})=\mathbb{K}$ because \mathbb{K} is a normal exteraitiond \mathfrak{F},
so we get a homomorphism
Gal (KKL /LL) $\xrightarrow{\varphi}$ Gal (\mathbb{K} / \mathbb{F})
$\sigma \longmapsto \sigma l_{\mathbb{K}}$
and it remains to show $\operatorname{ker}(\varphi)=\{1\}$.
Given $\varphi(\sigma)=1$, that says $\left.\varphi\right|_{\mathbb{K}}=1_{K}$ but $\left.\sigma\right|_{\mathbb{1}}=1_{\underline{11}}$ since $\sigma \in G a((K \mathbb{L} / \mathbb{L})$, so $\left.\sigma\right|_{\text {IKII }}=1_{\text {IKIL }}$, ie. $\operatorname{ker} \varphi=\{1\}$.

THEKUMMER LEMMA:
Assume char (K) $=0$ and $\mu_{n}:=\left\{\begin{array}{c}\text { all } n \text { n mots } \\ \text { of } 1\end{array}\right\} \subset \mathbb{K}$. Then
(i) A radical extension iN $(\sqrt[n]{a})$ is always Galois, with Galois group $\mathbb{Z} / d \mathbb{Z}$ for some d dinging n.
(ii) Conversely, if $1 / K$ Galois, with
$G a l(\mathbb{H}) \cong \mathbb{Z} / d \mathbb{Z}$ for $d \mid n$, then $\mathbb{I}=\mathbb{K}(\sqrt[d]{a})$ for some $a \in \mathbb{K}$.

THEKUMMER LEMMA:
Assume char $(\mathbb{K})=0$ and
$\mu_{n}:=\left\{\begin{array}{c}\text { ant } n \text { mots } \\ \text { of } 1\end{array}\right\} \subset \mathbb{K}$. Then
(1) A radical extension $1 K(\sqrt[n]{a})$ is always Galois, with Galois group
$\mathbb{Z} / d \mathbb{Z}$ for some d dinging n.
(ii) Conversely, if H / \mathbb{K} Galois, with
$\operatorname{Gal}(\Perp \mathbb{K}) \cong Z \mathcal{Z} d \mathbb{Z}$ for $d \mid n$, then som en $\mathbb{I}=\mathbb{K}(\sqrt[d]{a})$
for some $a \in \mathbb{K}$.
proof: $(i):$ Since $\mu_{n} \subseteq \mathbb{K}, \quad \mathbb{K}(\sqrt[n]{a})=\operatorname{split}_{\mathbb{K}}\left(x^{n}-a\right)$ and hence Galois over \mathbb{K} since $\operatorname{char}(\mathbb{K})=0$.
The map $G a\left((\mathbb{K}(\sqrt[n]{a}) / \mathbb{K}) \xrightarrow{\varphi} \mu_{n} \leq \mathbb{C}^{x}\right.$
that takes $\sigma \quad \longmapsto \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}}=$ for some j $_{j}^{j}$

$$
\text { and } \varphi_{n}=e^{2 x i / n}
$$

This φ is a homomorphism since
if $\varphi(\sigma)=\xi^{j} \quad\left(\xi=\varphi_{n}\right)$ i.e. $\sigma(\sqrt[n]{a})=\zeta^{j} \sqrt[n]{a}$

$$
\varphi(\tau)=\zeta^{k}
$$

$$
\tau(\sqrt[n]{a})=\xi^{k} \sqrt[n]{a}
$$

then $(\sigma \cdot \tau)(\sqrt[\sim]{a})=\sigma(\tau(\sqrt[n]{a}))$

$$
\begin{aligned}
& =\sigma\left(\xi^{k} \sqrt[n]{a}\right) \\
& =\sigma\left(\xi^{k}\right) \sigma(\sqrt[n]{a}) \\
\sigma=\mathbb{1}_{\mathbb{K}} & =\xi^{k} \cdot \xi^{j} \cdot \sqrt[n]{a} \\
\mu_{n} \subset \mathbb{K} & \text { i.e. } \varphi(\sigma \cdot \tau)=\xi^{k} \cdot \xi^{j}
\end{aligned}
$$

Once we know φ is ahomanouphism, it's injective since any $\sigma \in \operatorname{Gal}\left(\mathbb{K}\left(\sqrt{V}_{a}\right) / \mathbb{K}\right)$ is completely determined by $\varphi(\sigma)=G^{j}$ since t Cells us of $(\sqrt[n]{a})=\xi^{j} \cdot \sqrt[n]{a}$.
For (ii), if U/K is Gabs with $\operatorname{Gal}(L / H / K) \cong \mathbb{Z} d \mathbb{Z}$ and d / n, then let $\operatorname{Gal}(14 / K)=\left\{1, \sigma, \sigma^{2}, \ldots, \sigma^{d-1}\right\}=\langle\sigma\rangle$ and pick a prim. $d^{\left.\text {en not of unity } \xi_{d}=:\right\}}$ and pick some $\alpha \in \mathbb{I}$ for which

$$
\begin{aligned}
& \beta=\alpha+\} \sigma(\alpha)+\xi^{2} \sigma^{2}(\alpha)+\ldots+\xi^{\alpha-1} \sigma^{\alpha-1}(\alpha) \\
& \alpha \text { exists othemise }
\end{aligned}
$$

[Such an α exists, otherwise

$$
1+\xi \cdot \sigma+\xi^{2} \cdot \sigma^{2}+\ldots+\xi^{d-1} \sigma^{d-1}=1^{x} \rightarrow \|
$$

is the zero map, giving an IL-1m.deperdedce among district characters $1, \sigma, \sigma^{2}, \ldots, \sigma^{d-1}$ on $\left.\Psi^{x}\right]$ contradicting Dede find 'Caimima
Then $\sigma(\beta)=\sigma(\alpha)+\xi \sigma^{2}(\alpha)+\ldots+\xi^{\alpha-2 \alpha-1}(\alpha)+\oint^{\alpha-1} \alpha$

$$
=\xi^{-1} \cdot \beta
$$

$$
\begin{aligned}
&=\xi^{-1} \cdot \beta \\
& \text { so } \sigma\left(\beta^{d}\right)=\sigma(\beta)^{d}=\left(\xi^{-1} \cdot \beta\right)^{d}=\zeta^{d} \cdot \beta^{d}=\beta^{d} \\
& \text { ie } \beta^{d} \in \mathbb{1}^{\text {Sail (L/K) }}=\mathbb{K}
\end{aligned}
$$ i.e $\beta^{d} \in \mathbb{1}^{\text {sal (L/K) }}=\mathbb{K}^{K}$

Note also that $\beta \notin \mathbb{1 1}^{H}$ for any $H \neq\langle\sigma\rangle$ since $\sigma(\beta)=\xi^{-1} \cdot \beta$

$$
\begin{aligned}
& \text { e } \sigma(\beta)=\zeta \cdot p \\
& =\sigma^{j}(\beta)=\zeta^{-j \cdot} . \rho \neq \beta \text { if } j<d .
\end{aligned}
$$

Hence β generates \mathbb{L} over \mathbb{K}, i.e.

$$
\begin{aligned}
& \text { ce } \beta \text { generates } \mathbb{L} \text { over } \mathbb{K} \text {, i.e. } \\
& \mathbb{L}=\mathbb{K}(\beta)=\mathbb{K}(\sqrt[d]{a}) \text { where } a=\beta^{d} \text {. }
\end{aligned}
$$

LEMMA: when $\operatorname{char}(\mathbb{F})=0$, any α in a vootextension (K of F, also lies in a root extension $F=\mathbb{K} K_{0} \subset \mathbb{K}, \subset \ldots \subset \mathbb{K}_{S}=\mathbb{K}$ where . IK/FF is Galls

- \mathbb{K}_{1} / K_{0} is cyclotomic $\mathbb{K}_{1}=K_{0}\left(\zeta_{n}\right)$ for some.
- every K_{i+1} / \mathbb{K}_{i} is Ca lois with Gal($\left(K_{i+1} / K_{i}\right)$ cyclic iso. to $\mathbb{Z} d_{i} \mathbb{Z}$ with $d_{i} l n$.
(so Kummer applies!)

LEMMA: when $\operatorname{char}(\mathbb{F})=0$, any α in a vootextension $(K$ of \mathbb{F}, also lies in a roost extension $F=\mathbb{K}_{0} \subset \mathbb{K}_{1} \subset \ldots . . \subset \mathbb{K}_{S}=\mathbb{K}$
where. IK CF is Galois

- $\mathbb{K}_{1} / \mathbb{K}_{0}$ is cyclotomic

$$
\begin{aligned}
& \text { dotomic } \\
& { }_{K}= \\
& =K_{0}\left(\zeta_{n}\right) \\
& \text { for somenen. }
\end{aligned}
$$

for some.

- every K_{i+1} / \mathbb{K}_{i} is Galois
with Gal($\left.K_{i+1} / K_{i}\right)$ asdic
iso. to $\mathbb{Z} d_{i} \mathbb{Z}$ with $d_{i} l n$.
(so Kummer applies!)
proof: Start with $\mathbb{F}=\mathbb{K}_{0} \subset\left(K_{1} \subset \ldots \subset\left(K_{s}=\mathbb{K}(*)\right.\right.$ and $\mathbb{K}_{i+1}=\mathbb{K}_{i}\left(\sqrt[n i]{a_{i}}\right) \quad a_{i} \in \mathbb{K}_{i}$
1st make K/F Galois:
Let $I I$: = normal closure of \mathbb{K} / \mathbb{F}

$$
\begin{aligned}
: & =\text { normal closure of } \mathbb{K} \\
& =\mathbb{F}\left(\left\{\text { roots of } m_{\alpha, \mathbb{F}}(x): \alpha \in \mathbb{K}\right\}\right) \\
& =\mathbb{F}\left(\left\{\sigma(\alpha) \text { for } \alpha \in \mathbb{K} \text { and } \sigma \in G_{a l}(\mathbb{H} / \mathbb{F})\right\}\right) \\
& \left.=\mathbb{F}\left(\left\{\sigma[\mathbb{K}): \sigma \in \operatorname{Gal}^{(L I} / \mathbb{F}\right)\right\}\right) \\
& =\text { compositum of }\{\sigma(\mathbb{K}): \sigma \in \operatorname{Gal(L/\mathbb {H})})
\end{aligned}
$$

