Weill need one further fact:
LEMMA: In a poly tope P, if a vertex v has edge neighbors $\left.\begin{array}{c}\left(\begin{array}{c}\text { see } \\ \text { seller's } \\ \text { cell inA } 3: 6\end{array}\right)\end{array}\right)\left\{v_{1}, v_{2}, \ldots v_{s}\right\}$, then

$$
\begin{aligned}
& \left\{v_{1}, v_{2},-v_{5}\right\}, \text { then } \\
& P \subset v+\underbrace{\mathbb{R}_{30}\left(v_{1}-v\right)+\ldots+\mathbb{R}_{30}\left(v_{5}-v\right)}_{\text {called the vertex cone of } P \text { at } v}
\end{aligned}
$$

COROLCARE: if $h \in\left(\mathbb{R}^{d}\right)^{k}$

Math 8680 March 1.2021
proof: Assuming $h(v) \neq h\left(v^{\prime}\right) \forall$ vertices $v \neq v^{\prime}$ in P, want to show that $v_{\text {max }}$ is the only sink i the directed graph that directs the edges of $P h$-upward.
Suppose some vertex r was a sink.
Name its neighbors $\left\{v_{1}, v_{2}, v_{s}\right\}$ and then any $p \in P$ has, since
$r_{\text {max }} P \subset v+\mathbb{R}_{\geq 0}\left(v_{1}-v\right)+\ldots+\mathbb{R}_{\geq 0}\left(v_{s}-v\right)$,

$$
\begin{aligned}
& \text { an expression } \\
& \qquad p=v+c_{1}\left(v_{1}-v\right)+\ldots+c_{s}\left(v_{s}-v\right) \\
& \text { so } h(\rho)=h(v)+\underbrace{c_{1}}_{\geq 0}(\underbrace{h\left(v_{1}\right)-h(v)}_{<0})+\ldots+\underbrace{c_{s}}_{\geq 0}(\underbrace{h\left(v_{s}\right)-h(v)}_{<0}) \\
& h(\rho) \leqslant h(v) \text { i.e. } v=v_{\max } \text { m }_{00}
\end{aligned}
$$

REMARK: We've shown in this setforig that P also hos a unique h-minimizing vertex $v_{\text {min }}$, and that $r_{\text {min }}$ is the unique source in the directed graph.

Theorem: let $P \subset \mathbb{R}^{d}$ be a simple polytope with vertices $v_{1}, v_{2}, \rightarrow v_{s}$ and $P^{\Delta} \subset\left(\mathbb{R}^{d}\right)^{*}$ its polar dual simplicial polytope
with corresponding facets $F_{11}, F_{2,}, F_{5}$

$$
u_{1}^{\prime \prime}{ }_{v_{1}^{*}}^{\prime \prime} v_{2}^{*} \quad \ddot{v}_{s}^{*}
$$

and $h \in\left(\mathbb{R}^{d}\right)^{*}$ with $h\left(v_{1}\right)<h\left(v_{2}\right)<\ldots<h\left(v_{s}\right)$.
Then $\boldsymbol{\Delta}=\partial\left(P^{\Delta}\right)$ has $F_{1}, F_{2,-}, F_{s}$ as a shelling order, in which $\overline{F_{i}} \cap\left(\overline{F_{1}} \cup \ldots \cup \bar{F}_{i-1}\right)=\underset{\text { h-down ward }}{\bigcup} \bar{H}$

and hence the partitioning

$$
\Delta=\left.\right|_{i=1} ^{s}\left[G_{i}, F_{i}\right]
$$

where $G_{i}=\bigcap H^{\prime}$

$$
\begin{gathered}
h \text {-cu sward } \\
\text { walls } H^{\prime} \text { of } F_{i}
\end{gathered}
$$

so $\# G_{i}=h$-downdegree of v_{i}
$=$ indegree ot $_{i}$

$$
\begin{aligned}
& f_{-1} f_{1} f_{1} f_{2} \\
& _=(1,5,9,6)
\end{aligned}
$$

$\underline{h}=\frac{1^{1} 3^{4} 5^{9} 6}{\left(1,2,,^{2}, h^{1)}\right.}$

proof: We only need to show that $\forall i \geq 2$,

$$
\overline{F_{i}} \cap\left(\bar{F}_{\eta} \cup \ldots \cup \overline{F_{i-1}}\right)=\bigcup_{h-d_{\text {downward }}} \bar{H}
$$ walls H of F_{i}

So given any F_{a} face in $\overline{F_{i}} \cap\left(\overline{F_{1}} \cup \ldots \cup \overline{F_{i-1}}\right)$,
 we need to show there is some wall H of F_{i} containing F; this means $H=F_{i} \cap F_{j}$ with $h\left(v_{j}\right)<h\left(v_{i}\right)$
Since $F \in \overline{F_{i}} \cap\left(\overline{\left.F_{1}, u_{1} \cup \overline{F_{i-1}}\right), \exists \text { some } F_{k} \text { with } h\left(v_{k}\right)<h\left(v_{c}\right), ~\left(v_{k}\right)}\right.$ and $F=F_{i} \cap F_{k}$.
But then look at F^{*} the dual face in P the simple polybope,
which has v_{i}, v_{k} vertices on F^{*} since F_{i}, F_{k} are facets containing F.

We know V_{i} does not have the h-minimum value among vertices on F^{*} since $h\left(v_{k}\right)<h\left(v_{i}\right)$.
Hence inside F^{*}, v_{1} is not the unique source, it must have am h-downward edge of some V_{j}, that gives F_{j} with $H=F_{i} \cap F_{j} \supseteq F$

Math 8680 March 3, 2021
where are we?

Immediate worse quences of the shelling
(1) THEOREM (Dehn-Sommenille) For a simplicial 19051927
d-polyoope P, then $h_{k}(P)=h_{d-k}(P) \forall k$
pood: Insteading of choosing generic height function h to order vertices of P^{Δ}, choose $-h$ instead, and compare:
 with h-downderree $=1$
same as (-h)-updegree or $(-h)$-downdegree $=d-k$

EXAMPLE: $d=3$
Simplicial 3 -polytopes with $f_{0}=n$ vertices all have the same f-vector or \underline{h}-vedor: e.g. $n=12$

or

$1^{=}$
f_{-1}
fo
$f_{-1} f_{2} f_{1} f_{2}$

$$
\begin{aligned}
& \begin{array}{c}
n_{n-1}^{\left(\frac{n}{3 n-6}\right]^{\prime}} f_{1}
\end{array} \Rightarrow \underline{f}=\binom{f_{-1} f_{0} f_{1} f_{2}}{1, n, 3 n-6,2 n-4} \\
& 1 n-2 \quad 2 n-5 \text { 2n-1yf } f_{2} \\
& \{n=12 \\
& =(1,12,30,20) \\
& (1, n-3, n-3,1)
\end{aligned}
$$

Euler's formula

$$
\left.\begin{array}{l}
=f-e+v-1 \\
=h_{0}=1
\end{array}\right\} \Rightarrow \begin{array}{r}
\text { Euler's for } \\
v-e+f=2
\end{array}
$$

Simplicicl

$$
\left.\left.\begin{array}{rl}
\text { mplicial } \\
(=\text { all facestriangular })
\end{array}\right] \Rightarrow 3 f_{2}=2 f_{1} \quad \nabla \Delta\right\rangle
$$

(2) CONJ (Motzkin's UB.C.)
theorem
All d-polytopes P with $f_{0}(P)=n$ vertices
CMcMullen 1970

$$
\text { have } f_{k}(P) \leq f_{k}(\underbrace{C(n, d))}_{\text {cyclicpolytype }} \forall k \text {. }
$$

proof: We saw using "vertex-pulling" that 子 a simplicial d-polytupe Q in $f_{0}(Q)=n=f_{0}(P)$ and $f_{k}(Q) \geqslant f_{k}(P) \forall k$.

But then we showed

$$
\begin{aligned}
& \text { But then we showed } \\
& \qquad h_{k}(2) \leq\binom{(n-d)+k-1}{k} \quad \forall k \\
& \ \lll(n, d)-2(2)-m
\end{aligned}
$$

$\operatorname{dim}_{k}\left(R_{k}\right)$
where

$$
h_{k}(C(c, d))^{\left.\begin{array}{c}
l / 2 J-m i g \\
f_{k}(c n, d) \\
=(l) \\
k
\end{array}\right)}
$$

$$
\begin{aligned}
& \text { where } \\
& R=K[\Delta] /\left(\theta_{1}, \ldots, \theta_{d}\right)
\end{aligned}
$$

$$
\text { for } \left.k=0,1,2,-\left\lvert\, \frac{d}{2}\right.\right\rfloor
$$

where $\theta_{i} \in R_{1}$ linear and $K[\Delta]$ is a finitely $K\left[y_{1,-} y_{n-d}\right]$ Gen'd $K\left[\theta_{1}, \ldots, \theta_{2}\right]$-module

$$
\theta=\left(\theta_{1}, \ldots, \theta_{d}\right) \text { is on l. sion. } \quad \text { line s. system } \begin{aligned}
& \text { of porromeders for } k[\Delta]
\end{aligned}
$$

So $h_{k}(Q) \leq h_{k}(C(n, d))$ for $0 \leq k \leq\left\lfloor\frac{d}{2}\right\rfloor$
D-SII JJ

$$
h_{d-k}(Q) \stackrel{d I}{\infty} \quad h_{d-k}(C(n, d))
$$

i.e. $\left.\quad h_{k} \subset Q\right) \leqslant h_{k}(C(n, \alpha)) \forall k$
 polpopes

$$
\Rightarrow \quad f_{i-1}(Q) \leqslant f_{i-1}(C(n, d)) \forall i
$$

(3) DEF'N/COROLCARY: For $\Delta=\partial P, P$ a simplicial d-polybope
and $R:=K[\Delta] /(\underbrace{\theta_{1}, \ldots \theta_{d}}_{T})$ any l.s.o.p. for $K[\Delta]$

$$
=\underbrace{R_{0}}_{\cong K} \oplus R_{1} \oplus R_{2} \oplus \ldots \oplus \underbrace{\cong}_{\cong K}
$$

with $R_{d} \cong K$ having $\left\{\underline{X}^{F}\right\}$ as K-basis where F is any choice of a facet of Δ
Any choice of an isomorphism

$$
R_{d} \xrightarrow[\text { eve }]{\sim} \underset{\substack{\text { iscomsuphism } \\ \text { is called on evaluation } \\ \text { or degree nape }}}{\sim}
$$ or degree map for R

proof: We (enow $\operatorname{dim}_{k}\left(R_{k}\right)=h_{k}(P)$

$$
\text { so } \operatorname{dim}_{k}\left(R_{d}\right)=h_{d}(P)=h_{0}(P)=1
$$

Interrupted proof for an ...
EXAMPLE:

$$
\begin{gathered}
K[\Delta]=K[a, b, c, d, e] /(d e, a b c) \\
\theta_{1}=d-e \\
\theta_{2}=a-c \\
\theta_{3}=b-c\left[\begin{array}{ccccc}
a & b & c & d & e \\
0 & 0 & 0 & 1 & -1 \\
1 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0
\end{array}\right]
\end{gathered}
$$

$\stackrel{\text { shelling }}{\Rightarrow} R=K[\Delta] /\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ has K-arsis

$$
\left\{\begin{array}{lll}
G_{1} & G_{2}, G_{3}, G_{4} G_{5} G_{6} \\
1, & c, a c, e, c e, a c e
\end{array}\right\}
$$

Wealso we know $\left\{\underline{x}^{G_{i}}\right\}_{i=1,2, \ldots, s}$

$$
\begin{aligned}
& \text { We also we know } n \geq]_{i=1,2, \ldots, s}^{s} \text { in the shelling's portioning } \Delta=\left.\right|_{i=1} ^{s}\left[G_{i}, F_{i}\right]
\end{aligned}
$$

give a K-basis for R.
And in the polybope shelling, it is only the last verlex v_{s} in P^{B} that has indegree $=d$, so only $F_{s}=G_{s}$.
Hence $R_{d}=K$-span of $\left\{\underline{x}^{T_{s}}\right\}$
Bat any vertex oof P^{Δ} can be made h-maximal by a choice of generic
so any facet F of P can be made the last face e $F_{s}=F$ in the shelling. 园

Moth 8680 March 5, 2021
Consequence (4):
THEOREM (Poincare duality):
In the above setting where $\Delta=\partial P$
Pa simplicial d-polybope and

$$
R:=K[\Delta] /(\underbrace{\theta_{1,-1} Q_{d}}_{e}) \text { any l. s.o.p. in } K[\Delta]_{1}
$$

then the bilinear form $R_{k} \times R_{d-k} \longrightarrow K$

$$
(x, y) \longmapsto \operatorname{ev}(\underbrace{x \cdot y}_{\in R_{d}})
$$

is a perfect/non degenerate bilinear form.

For fin. devil K-vector spaces V, W
a map $V \times W \xrightarrow{\langle r \cdot} K$

$$
(v, w) \longmapsto\langle v, \omega\rangle
$$

is a bilinear form if $\{\langle a v, \omega\rangle=\langle v, a w\rangle=a\langle v, u\rangle$

$$
\left\{\begin{array}{l}
\langle a v, k \\
\left\langle v+v^{\prime}, w\right\rangle=\langle v, w\rangle+\left\langle v^{\prime}, w\right\rangle \\
\left\langle v, w \in \omega^{\prime}\right\rangle=\langle v, w\rangle+\langle v, w\rangle
\end{array}\right.
$$

$$
\text { Call }\left\langle; j \text { a nondegenerate/perfect } \frac { \text { paining } } { \text { po th } } \operatorname { b o t h } \left\{\begin{array}{l}
\langle v, \omega\rangle=0 \quad \forall \omega \in W \Rightarrow v=0 \\
\text { and } \\
\langle v, \omega\rangle=0 \quad \forall v \in V \Rightarrow \omega=0
\end{array}\right.\right.
$$

Exercise
\Longleftrightarrow the two K-linearmops

$$
\begin{array}{ll}
V \rightarrow W^{*} \\
V \mapsto\langle v,-\rangle & \text { and } \\
W \mapsto V^{*} \\
\omega \mapsto-, \omega\rangle
\end{array}
$$

are both isomorphisms of K-vector spaces
ExERCISE

$$
\begin{aligned}
& \Longleftrightarrow \operatorname{dim}_{K} V=\operatorname{dim}_{K} W=: n \\
& \text { and if }\left\{v_{i}\right\}_{i=1,-1, n},\left\{\omega_{i}\right\}_{i=1, \ldots, n} \text { are } K \text { forbases } \\
& \text { then }\left(\left\langle v_{i}, w_{j}\right\rangle\right)_{i, j=1, \ldots, n} \overbrace{\text { called the }}^{\text {Gram }} \begin{array}{c}
\text { Gratis }
\end{array} \\
& \text { Grace of } \\
& \text { is a nonsingular/inversble }
\end{aligned}
$$

EXAMPLE:

$K[\Delta]=K[a, b, c, d e] /(d, a, a c c)$
$\left.\begin{array}{l}\theta_{1}=d-c \\ \theta_{2}=a-c \\ \theta_{3}=b-c\end{array} \begin{array}{lll}a & b & c \\ 0 & 0 & d e \\ 0 & \therefore & 1 \\ 0 & -1 & -1 \\ 0 & -1 & 0 \\ 0 & -1 & 0\end{array}\right]$
$\xrightarrow{\text { tiding }} R=K[\Delta]\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ has K taxis

$$
\left\{\begin{array}{llll}
G_{1} & G_{2} & G_{3} & G_{4} \\
1 & G_{5} & G_{G} \\
1 & c, a c, & , a, a, a c e
\end{array}\right\}
$$

$$
\left.\begin{array}{rl}
R & =K[a, b, c, d, e] /(a b c, d e, d-e, a-c, b-c) \\
& \cong K[c, e] /\left(c^{3}, e^{2}\right) \\
& =K \text {-span of }\left\{1, c, e, c^{b=c}, c e\left\{c^{2}, c\right.\right. \\
d=e \\
d=e
\end{array}\right\}
$$

$$
\begin{aligned}
& R_{1} \times R_{2} \rightarrow K \underset{c^{2}}{R_{c}} R_{1} \mid R_{2}: R_{3} \operatorname{ev}\left(c_{c}^{2}\right):=1 \\
& \text { Gram matrix }
\end{aligned}
$$

has Gram matrix
proof of Poincare duality:
Consider the two K-boses $\left\{\underline{x}^{G_{i}}\right\}_{i=1,2, \rightarrow^{s}}$ for R

$$
\left\{\underline{x}^{G_{i}^{\prime}}\right\}_{i=1,2,,, s} \text { for } R
$$

that come from a generic $h \in\left(\mathbb{R}^{d}\right)^{*}$ and $-h$.
Note that we can reive them as $\left\{\underline{x}^{a_{i}}\right\}_{i=1,2, \ldots s}$

$$
\text { and } \left.\left\{\underline{x}^{F_{i} \backslash G_{i}}\right\}_{i=1,2,1,, s} \quad \text { (ie. } F_{i} \backslash G_{i}=G_{i}^{\prime}\right)
$$

We CCA(M that their Gram matrix $\left(\left\langle\underline{x}^{G_{i}}, \underline{x}^{F_{j}} \backslash G_{j}\right\rangle\right)$ will be invertible upper. triangular.

Example:

K Gacses for $R=K[\theta] /\left(\theta_{t}, \theta_{2}\right)$ from shellings...
(muttoplicefor)
prcusoor
Gram.
vamish already
(*)
proof: To prove assertion (*) note that if $\left(\underline{x}^{\left(G_{i}\right)}\right)\left(\underline{x}^{\left.F_{j}, G\right)}\right) \neq 0$ in $K[\Delta]$, we need some facet $\int F_{k} \supseteq G_{i}$

$$
\text { and }\left\{F_{k} \supseteq F_{j} \backslash G_{j}\right.
$$

But the h-shelling then implies $h\left(v_{k}\right) \geq h\left(v_{i}\right)$
while the $(-h)$-shelling implies $-h\left(v_{k}\right) \geqslant-h\left(v_{j}\right)$

$$
h\left(v_{i}\right) \leqslant h\left(v_{j}\right) h\left(v_{k}\right) \leqslant h\left(v_{j}\right)
$$

