Math 860 March 1,2021

proof: Assuming
$$h(v) \neq h(v')$$
 & vertices $v \neq v'$ in P
want to show that v_{max} is the only sink
m the directed graph that directs the edges
of P h-upward.
Suppose some vertex v was a sink.
Nome its neighbors $[v_{13}v_{23} - v_3]$
and then any $p \in P$ has, since
 $v_{max} P \subset v + (R_{20}(v_1 - v) + ... + (R_{20}(v_3 - v)),$
an expression
 $p = v + c_1(v_1 - v) + ... + c_5(v_5 - v),$
 $r = v_1 = c_1(h(v_1) - h(v)) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v)) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v)) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v)) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v)) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v)) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_1(h(v_1) - h(v) + ... + c_5(h(v_3) - h(v))$
 $r = v_1 = c_2(v_2 = h(v_3) + c_2(h(v_3) - h(v))$
 $r = v_1 = c_2(v_3 = v_3)$
 $r = h(v_1 = h(v_2) + c_2(h(v_3) - h(v))$
 $r = v_1 = c_2(v_1 = v_1)$
 $r = v_1 = c_2(v_2 = h(v_3) + c_2(h(v_3) - h(v))$
 $r = v_1 = c_2(v_3 = v_3)$
 $r = v_1 = c_2(v_1 = v_1)$
 $r = v_1 = c_2(v_2 = h(v_3) + c_2(h(v_3) - h(v))$
 $r = v_1 = c_2(v_2 = h(v_3) + c_2(h(v_3) - h(v))$
 $r = v_1 = c_2(v_2 = h(v_3) + c_2(h(v_3) - h(v))$
 $r = v_1 = c_2(v_2 = h(v_3) + c_2(h(v_3) - h(v))$
 $r = v_2(v_3) = c_2(v_3) + c_2(h(v_3) - h(v))$
 $r = v_1 = c_2(v_2 = h(v_3) + c_2(h(v_3) - h(v))$
 $r = v_2(v_3) = c_2(v_3) + c_2(h(v_3) - h(v))$
 $r = v_1 = c_2(v_3) + c_2(h(v_3) - h(v))$
 $r = v_1 = c_2(v_3) + c_2(h(v_3) + c_2(h(v_3) - h(v))$
 $r = v_1 = c_2(v_3) + c_2(h(v_3) - h(v))$
 $r = v_1 = c_2(v_3) + c_2(h(v_3) + h(v))$
 $r = v_1$

THEOREM: Let
$$P \in \mathbb{R}^{d}$$
 be a single polytope with
vertices $v_{3}, v_{2}, \dots, v_{3}$
and $P^{2} \subset (\mathbb{R}^{d})^{*}$ its polar dual simplicial
polytope
with corresponding facets $f_{1}, f_{2}, \dots, f_{5}$
and he $(\mathbb{R}^{d})^{*}$ with $h(v_{1}) < h(v_{2}) < \dots < h(v_{5})$.
Then $\Delta = \partial (P^{\Delta})$ has $F_{1}, F_{2}, \dots, F_{5}$ as a shelling ender,
in which $\overline{F_{1}} \cap (\overline{F_{1}} \dots \cup \overline{F_{r}}) = \bigcup \overline{H}$
 h downward
in list h of $\overline{F_{1}}$
 $f_{1} \cap (\overline{F_{1}} \dots \cup \overline{F_{r}}) = \bigcup \overline{H}$
 h downward
 h hence the partitioning
 $\Delta = \begin{bmatrix} i \\ j \end{bmatrix} [G_{i}, F_{2}]$
 $chore G_{i} = (\bigcap H'$
 $in digree of v_{i}$
 $in digree of v_{i}$
 h $f_{i} \cap f_{i} = h$ - downdegree of v_{i}
 $in digree of v_{i}$
 h $f_{i} \cap f_{i} = h$ $f_{i} \cap f_{i}$
 h $f_{i} \cap f_{i} = h$ $f_{i} \cap f_{i} = h$
 h $f_{i} \cap f_{i} = h$ $f_{i} \cap f_{i} = h$
 h $f_{i} \cap f_{i} = h$ $f_{i} \cap f_{i} = h$
 h $f_{i} \cap f_{i} = h$ $f_{i} \cap f_{i} = h$
 h h $h_{i} \cap h_{2} \cap h_{3}$
 h $f_{i} = \frac{1 - 3 - 5}{(1 - 2 - 2 - 1)}$
 h $h_{i} = h_{3}$

F_=66 proof: We only need to show that 422, $\overline{F_{i}} \cap \left(\overline{F_{i}} \cup \dots \cup \overline{F_{i-r}}\right) = \bigcup_{h \in \mathcal{A}_{i}} \overline{F_{i}}$ h-downward walls H of Fi So given any F a face in $\overline{F_i} \cap (\overline{F_i} \cup \dots \cup \overline{F_{i-1}})$, we need to show there is some wall H of Fi containing F; this means H=F: OF; with h(v;) < h(v;) Since FEFin(Fiu. UFin), I some Fie with h(vk) < h(vi) and F=FinFk. But then look at F* the dual face in P the simple polytope) which has Vi, Vk vertices on F* since Fi, Fk are facets containing t. We know Vi does not have the h-minimum value among vertices on F* since h(vk) < h(vi). Hence maide Ft, vi is not the unique source, it must have on h-downwoord.edge to some Vi, that gives Fj with H= Finf; 2F

Math 8680 March 3,2021 Where are we?

EXAMPLE: d=3 Simplicial 3-polytopes with fo= n vertices all have the same f-vector or h-vector:

1 n

1 n-1 3n-6

1 n-2 2n-5 2n-4

$$f_{-1} f_{-1} f_{-1} f_{-2}$$

 $f_{-1} f_{-1} f_{-2} f_{-2}$
 $f_{-1} f_{-1} f_{-2} f_{-2} f_{-2}$
 $f_{-1} f_{-2} f_{-2$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, N-3, 1) = (1, 12, 30, 20)$$

$$(1, N-3, 12, 30, 20)$$

$$(1, N-3, 12, 30, 20)$$

$$(1, N-$$

 f_2

(2) CONJ (Matchins UBC.)
THEOREM (Methodien 1992)
(Methodien 1992)
(Methodien 1992)
have fie (P)
$$\leq$$
 fie ($C(n,d)$) $\forall k$.
proof: We saw using "reatex-pulling" that \exists a simplicial
d-polytope Q with $f_0(Q) = n = f_0(P)$
and $f_{le}(Q) \geq f_{le}(P) \forall k$.
But then we showed
 $h_{le}(Q) \leq ((n-d) + le - 1)) \forall k$
But then we showed
 $h_{le}(Q) \leq ((n-d) + le - 1)) \forall k$
 $dm_{k}(Re)$
 $h_{le}(C(n,d)) = f_{le}(P)$
 $f_{le}(C(n,d)) = f_{le}(P)$
 $f_{le}(C(n,d)) = f_{le}(P)$
 $f_{le}(Q) = h_{le}(Q) = h_{le}(Q)$
 $f_{le}(Q) = h_{le}(Q) = h_{le}(Q)$
 $f_{le}(Q) = h_{le}(Q)$
 $h_{le}(Q) = h_{le}(Q)$

i.e.
$$h_{k}(\Omega) \leq h_{k}(C(n, d)) \forall k$$

$$\Rightarrow f_{i-1} = \sum_{k=0}^{i} \frac{d^{-k}}{d^{-k}} h_{k} \quad \text{for surplicial} \\ \underset{k=0}{\neq} p_{i} p_{i}$$

Moth 8680 March 5, 2021

Consequence (7):
THEOREM (Poincaré duality):
In the above setting where
$$\Delta = \partial P$$

P a simplicial d-polytope and
R:=KD]/(0,,-,0) any l.s.op. in K[D]n
then the bilinear form $R_k \times R_{d-k} \longrightarrow K$
(x, y) \mapsto ev(r.y)
is a perfect/non degenerate
bilinear form.
RECALL:
For fin. duml K-vector spaces V, W
a map V x W \leq_{2} K
(v, w) $\mapsto \leq_{1}$ K
 \leq_{1} K
 \leq_{2} K

$$R = K[a_{1}b_{1}c_{1}d_{2}]/(abc, de, d-e, a-c, b-c) \int_{a-c}^{a-c} \int_{$$

V₅ -h simplicial Fn v, K-losses for R=K[0]/(Or, O2) Fy from shellings F₅ de Fn Fa ab be Fz ej from h: ł 1, ^c, Ŧ, d from - h: d Ŷ ab CЬ, a mutoplication precursor Ridh 2.;7 painig $\mathbb{R}_{1} \times$ sram or matrix justin Х رم a c 6 റ് K, nsing (bc) cd ac С basis -6 d cd d O H al has t ct) MSING diagov 11 fallt de eò. 6 monomials Fi, below diagonal, these all with er (xFi) =0. vanish already in K[5].

proof: To prove assertion (*),
whete that if
$$(x^{Gi})(x^{F_{3}},G_{3}) \neq 0$$
 in $K(G_{3})$,
we need some facet $F_{k} \supseteq G_{i}$
and $F_{k} \supseteq F_{3} \cap G_{j}$
But the h-shelling then implies $h(v_{k}) \ge h(v_{i})$
while the (-h)-shelling implies $-h(v_{k}) \ge -h(v_{j})$
 $h(v_{k}) \le h(v_{j})$