Mollullen/theming-Kam strategy for $H L+H R n$ of $H(\Sigma)$

$$
\begin{aligned}
\Sigma & =\mathcal{N}(P) \quad P \text { simple } \\
& =F(P) \quad P^{\Delta} \text { simplicial }
\end{aligned}
$$

(1) Prove HC\&HRM for d-simplices by easy direct calculation
(2) "Dunk" the simple polytope P slowly according to a generic functional h with $h\left(v_{i}\right) \neq h\left(v_{s}\right) \quad \forall v_{i} \neq v_{j}$ in P vertices and prove HL/HRM ina inductor for all the simple $P_{t}:=P \cap\{p: h(p) \leq t\}$ with Lefocherz elements l_{t}
(3) (all $P_{t_{i}} \leadsto P_{t_{i t}}$ a flip and prove an orthogonal decomposition

$$
H\left(\Sigma_{-}\right)=H\left(\sum_{+}\right) \oplus K
$$

using various $Q_{l_{t}}(-)$ on the different spares
(4) Use a local-bo-goboclargument for showing HRM for $(d-1)$-din'l fans $\Rightarrow H C$ for d-dimil fans.
(5) Use a wntinuity argument for signature of $Q_{l}(-)$ to show HL for d-dimil fans \Rightarrow HRM for d-dimil tans

Polytope - dunking examples

Math 8680 Apr. 12,2021
Ideas from the McMullen/Fleming-Kam proof of HL, HRM $\Sigma=$ complete simplicial proytopal fan in \mathbb{R}^{d}

$$
\begin{aligned}
& =N\left(P_{\uparrow}\right) \text { simple } \\
& =F\left(P^{\Delta}\right)
\end{aligned}
$$

IDEA 1:
The simplex case
When P, P^{Δ} are simplices, it's easiest to change bases in \mathbb{R}^{d} so \sum has a cone cine $\sigma=\mathbb{R}_{20} e_{1}+\ldots+\mathbb{R}_{70}$ ed
d=2: $\quad \mathbb{R}^{2} \quad \begin{aligned} & e_{e_{2}} p_{2}^{\prime 2}\end{aligned}$

$$
P=
$$

$$
\begin{aligned}
& \rho_{d+1}=\mathbb{R}_{20}\left(-\left(-\left(a_{1},+\ldots+a_{1} a\right)\right)\right. \\
& a_{i}>0 \forall i=1,-, d
\end{aligned}
$$

h-vector $\underline{h}=\begin{gathered}(1,1, \ldots, \ldots) \\ h_{0} \\ h_{1}\end{gathered}$
Let's calculate in...

$$
\begin{aligned}
& H(\Sigma) \cong \mathbb{R}\left[\Delta_{\Sigma}\right] /\left(\theta_{\Sigma}\right) \\
& =\mathbb{R}\left[x_{1}, x_{2}, \rightarrow x_{d}, x_{d+1}\right] /\left(x_{1} x_{2}-x_{d} x_{d+1}, x_{1}, a_{1} x_{d+1} \sim \theta_{1}\right. \\
& x_{2}-a_{2} x_{d+1} \sim \theta_{d} \\
& \left.x_{d}-a_{d} x_{d+1}\right) \\
& \cong \mathbb{R}\left[x_{d+1}\right] /\left(x_{d+1}^{d+1}\right) \\
& \cong \mathbb{R} \text {-span of }\left\{1, x_{d+1}, x_{d+1}^{2}, \ldots, x_{d+1}^{d}\right\} \\
& H^{\prime}\left(\Sigma^{c}\right)=\mathbb{R}^{1} \\
& \text { up } 6 \text { on } \\
& \text { Tee } \\
& +1
\end{aligned}
$$

Lefschetz element

$$
\begin{aligned}
l=l_{\Sigma} & =x_{1}+x_{2}+\ldots+x_{d}+x_{d+1} \\
& \equiv c \cdot x_{d+1} \quad \text { with } c>0
\end{aligned}
$$

all $x \in H^{\prime}(\Sigma)$ are same up to linear maps and a sealing; those with pos. scalar are the strictly convex on \sum, inchaling all $g_{p}=$ tent funcefors of rays

and has HRM property:
on $\mathrm{PH}^{\circ}=\mathrm{H}^{\mathrm{P}}=\mathbb{R} \cdot 1$

$$
\begin{aligned}
& P H^{0}=H^{D}=\mathbb{R} \cdot 1 \\
& \left.Q_{l}(1)=\left\langle 1^{2} \cdot l^{d}\right\rangle=\left\langle x_{d+1}^{d}\right\rangle=+1\right\rangle 0
\end{aligned}
$$

IDEA 2: Local-to-global $\underset{\text { HR }}{\substack{\text { HL }}}$
We've seen for subfans $\sum^{\prime} \subset \sum$ chat $R_{\Sigma} \xrightarrow{\text { res }} R_{\Sigma}$, swijects and an important case is $\sum^{\prime}=\operatorname{star}_{\Sigma}(\tau)=\{$ subfan genid by $\sigma \geqslant \tau\}$

On the other hand, one can use the linear map

$$
\mathbb{R}^{d} \xrightarrow{\pi} \mathbb{R}^{d} / \underbrace{\operatorname{Lin}(\tau)}_{\mathbb{R}-1 \ln \cdot \operatorname{span} \text { of } \tau}
$$

to define a fan

One gets a map

$$
\begin{aligned}
& R_{\operatorname{link}_{\Sigma}(\tau)} \xrightarrow{\pi^{*}} \\
& f^{\prime \prime} \longmapsto R_{\text {stor }}(\tau) \\
&\left(f_{\sigma}\right) \longmapsto f_{0} \pi \\
&\left(f_{\sigma}^{\prime \prime} \pi\right)
\end{aligned}
$$

We claim this π^{*} indices an iso. on $H(-)$:

$$
H\left(\operatorname{link}_{\Sigma}(\tau)\right) \xrightarrow[\sim]{\pi^{*}} H\left(\operatorname{star}_{\Sigma^{2}}(\tau)\right)
$$

because one can pick a shelling of λ_{Σ} (or Σ)

$$
=\partial\left(p^{\infty}\right)
$$

that starts boy shelling star (c)
(pick a functional on vertices of simple P that minimize on vertices of dual fare τ^{*} in P)
which guises also a shelling of link $\Sigma_{\Sigma}(\tau)$ and the iso. π^{*} sends shelling basis bo schelling basis!
(Fleming He an Assume $l=l_{\Sigma} \in\left(R_{\Sigma}\right)_{1}$, and $H^{\prime}(\Sigma)$ has comma

Then l satisfies $H L$ on $H(\Sigma)$.
proof:

$$
\text { Want } H^{k}(\Sigma) \xrightarrow{l^{d-2 k}} H^{d-k}(\Sigma)
$$

on iso.,
but by Poincare Duality, only need injectivity. (or-jot Dehn-Sommenille)
So assume $f \in H^{b}(\Sigma)$ has $l^{d-2 k} \cdot f=0$, in $H^{d-k}(\Sigma)$,
and well show $g_{\rho}-f=0 \quad \forall$ rays p.
This suffices since $\left\{g_{\rho}\right\}_{\text {rays }} \rho$ generde $H(\Sigma)$, so then f is 1 to all of $H^{d-k}(\Sigma)$, and t is zen by P.D.
Asounning $l^{d-2 k} \cdot f=0$ in $+l^{d-k}(\Sigma)$

$$
\begin{array}{cc}
\operatorname{res}_{p}\left(l^{d-2 k} \cdot f\right)=0 & \text { in } H^{d-k}\left(\operatorname{stan} s_{\rho}(\rho)\right) \\
l_{\rho}^{d-2 k} \cdot f_{p}=0 & \text { in } \quad h^{d-k}\left(\pi^{*}\left(\operatorname{lin} k_{2}(\rho)\right)\right.
\end{array}
$$

So $l_{\rho}^{(d-1)-2 k+1} f_{p}=0 \Rightarrow f_{p} \in P H^{k}\left(\ln k_{2}(\rho \rho)\right.$

$$
\operatorname{HRM}^{\text {for } l_{\rho} \text { on } H\left(\operatorname{lnk} k_{2}(\rho)\right.}(-1)^{k} Q_{l_{\rho}}\left(f_{\rho}\right) \geqslant 0
$$

with equality
$l \Sigma$
Now wite $l=\sum_{\text {vans }} c_{\rho} \cdot g_{\rho}$ with $c_{\rho}>0$ rays $\rho \in \Sigma$ because $l(v)>0$ on $\left\{\mathbb{R}^{d}-\{0\}\right.$
Then

$$
\begin{aligned}
& 0 \leq(-1)^{k} Q_{l_{\rho}}\left(f_{p}\right)=(-1)^{k}\left\langle l_{\rho}^{(d-1)-2 k} f_{\rho}^{2}\right\rangle_{\text {link } \Sigma(\rho)} \forall \rho \\
& \text { with equality } \Leftrightarrow f_{p}=0 \\
& \Downarrow \\
& \left.0 \leq(-1)^{k} \sum_{\text {rays } \rho} c_{\rho}\left\langle l_{p}^{(d-1)-2 k} f_{p}^{2}\right\rangle_{\text {link }^{2}(\rho)}\right) \\
& \begin{array}{l}
\text { A subtle cal culational point: } \\
\text { for any one } \tau \text { o } \tau \text {, ven }
\end{array} \\
& =(-1)^{k} \sum_{\rho} c_{\rho}\left\langle g_{\rho} l^{(d-1)-2 k} f^{2}\right\rangle \Sigma \\
& =(-1)^{k}\left\langle\sum_{\rho} c_{\rho} g_{\rho} \cdot l^{(d-1)-2 k} f^{2}\right\rangle \Sigma
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{k}\left\langle l^{d-2 k} f^{2}\right\rangle_{\sum} \quad \text { since } l=\sum_{\rho} c_{\rho} g_{\rho} \\
& =0 \text { since } l^{d-2 k} \cdot f=0 .
\end{aligned}
$$

Hence one must have equality in all of the inequalities $0 \leq(-1)^{k} Q_{l_{p}}\left(f_{\rho}\right)$, so \forall rays ρ one has

$$
\begin{aligned}
& f_{\rho}=0 \text { in } H^{k^{k}}\left(\operatorname{link}_{\Sigma}(\rho)\right) \\
\Rightarrow & \operatorname{res}(f)=0 \mathrm{mH}_{\rho}^{k}\left(\operatorname{star}_{\Sigma}(\rho)\right) \\
\Rightarrow & g_{\rho} \cdot f=0 \text { in } H^{k}(\Sigma) \text { as desired. 陉 }
\end{aligned}
$$

Math 8680 Apr 14, 2021
IDEA 3: Strictly between the flips, HRM for $Q_{l}(-)$ is maintained by contrunity it we know HL holds.

This is because l_{t} and $Q_{l_{t}}(-)$ vary continuously in t, so the signature $\left(n_{+}, n_{-}, n_{0}\right)$ cant change if $n_{0}=0$ throughout.

$a+2 h-c \quad b+h-d$

$$
\begin{aligned}
& H\left(\sum_{t}\right) \cong \mathbb{R}[a, b, c, d, h] /\left(a b, c h, b d, a c, d h, \theta_{1}, \theta_{2}^{\prime \prime}\right) \\
& =\mathbb{R} \text {-span of }\left\{\begin{array} { l }
{ 1 , } \\
{ H ^ { \circ } }
\end{array} \left|b, c, d,\left|\begin{array}{c}
c d \\
H^{2}
\end{array}\right| \begin{array}{c}
H^{2} \underset{+1}{\text { av }}=\langle\gg
\end{array}\right.\right.
\end{aligned}
$$

$$
\ell_{t}=a+b+c+d+t \cdot h \text { for } t 1<t<+3<\overbrace{\text { the only }} \text { thing }
$$

$$
Q_{l_{t}}(x)=\left\langle x^{2} \cdot l_{t}^{d-2 k}\right\rangle \text { for } x \in H^{k}
$$ corresponds to a symmetric matrix

$$
\left.\begin{array}{rlcc}
\text { bic motix } & \\
M_{t} & =\begin{array}{ccc}
x_{1} \\
\text { row } x_{i} & x_{2} \\
& \vdots \\
& x_{h_{k}}
\end{array}\left[\begin{array}{cc}
x_{1} & x_{2}
\end{array}\right] & x_{h_{k}} \\
& & \vdots & \\
& & & \\
& & &
\end{array}\right]
$$

whose entries are continuous functions in t
\Rightarrow its eigenvalues, roots of $\operatorname{det}\left(x I-M_{t}\right)$, vary contimoonsly int. Then since $H L \Rightarrow$ no roots are zero $\forall t$, $\left.\begin{array}{l}n_{+}=\# \text { positive roots } \\ n_{-}=\# \text { negative roots }\end{array}\right\}$ cannot change

DEA 4: When $\sum_{t} \xrightarrow{f l i p} \sum_{t^{\prime}}$ passes through a vertex $v \in P$, lying on facets with normal rays $\rho_{11}, \ldots, \rho_{d}$, the only

$$
\mathbb{R}_{30} n_{1} \quad \mathbb{R}_{30} \cdot n_{d}
$$

change to \sum_{t} is a generic bistellar flip in the triangulation of the cone sparsined by $\left\{h, n_{1}, \ldots, n_{d}\right\}$:
writing $h=\sum_{i=1}^{d} c_{n} n_{i}$ uniquely, with $c_{i} \neq 0 \forall i$ and $c_{1,-}, c_{m}>0$ $c_{\text {ant } 1,--,} c_{d}<0$
the flip changes it from
m d-cones: $\left\{n_{1}, \ldots, n_{d}, h\right\}-\left\{n_{i}\right\}$ for $i=1,2,, m$

(Schematic)
EXAMPleS with $d=3$

$\sum_{t} \underset{m=2}{\text { flip }} \Sigma_{t^{\prime}}$

One can rename $\sum_{t,} \sum_{t}$ as $\sum_{-,}, \sum_{t}$ so that $1 \leq m \leq \frac{d+1}{2}$, and one has that this cone spanned by $\left\{h, n_{1}, n_{d}\right\}$ has \sum triangulating it as star $\sum_{\Sigma}\left(\tau_{-}\right)=: \Delta$ - with dt1-m d-cones and link $\Sigma_{-}\left(\tau_{-}\right) \cong N((d-m)$-simplextan $)$
\sum_{+}triangulating it as star $\Sigma_{t}\left(\tau_{t}\right)=: \Delta_{+}$with m d-cones

$$
\text { and link } \Sigma_{+}\left(\tau_{+}\right) \cong N((m-1)-\text { simplexfan })
$$

One can check that one has this relation between H($\sum_{ \pm}$), h-vectors:

One can then produce an explicit decomposition, orthogonal with respect to the $Q_{e_{t}}(-)$

$$
=\bigoplus_{k \text { middle }}^{H^{k}(\underbrace{\Delta_{-}}_{\|}, \partial \Delta_{-})}
$$

$$
\underbrace{g_{\tau_{-}}}_{g_{1} g_{\rho_{2}}-g_{\rho_{m}}} \cdot H^{\prime \prime-m}\left(\Delta_{-}\right)
$$

$\lim k\left(\tau_{\mathrm{L}}\right)$
and for each of the rays $\rho_{1}, \rho_{2}, \ldots, \rho_{m} \subset I_{-}$, its tent function $g_{\rho_{i}}$ has
which is roughly why $Q_{l_{t}}(-)$ ends up $(-1)^{m}$-definite on $P H^{m}\left(\Sigma_{-}\right) \cap K$.

$$
\begin{aligned}
& (d-m) \text {-simplex fan } \\
& H^{\prime}\left(\Delta_{-}\right)=H^{\prime}\left(\operatorname{star} \Sigma_{-}\left(\tau_{-}\right)\right) \stackrel{\pi^{*}}{\sim} H^{\prime}(\overbrace{\ln k_{\Sigma_{-}}\left(\tau_{-}\right)}^{\longleftarrow}) \\
& g_{\rho_{i}} \longleftarrow\left(\pi^{*}\right)^{-1}\left(g_{\rho_{i}}\right)=-l \underset{\text { bor }}{\text { beach }} \\
& \text { concave down } \\
& \begin{array}{l}
\text { Lefschetz } z \\
\text { element } l
\end{array} \\
& \text { (not convex) }
\end{aligned}
$$

