
4. Finite zroups. 

4.1. Some @eneral results. 

4.1.1. In this chapter we discuss results about the invariant theory of 

finite groups. We assume that k = ~. Let V be a finite dimensional com- 

plex vector space, of dimension n. Put S : S(V) and let K be the quotien 

field of S. 

We denote by G c GL(V) a finite group of linear transformations of V. 

Its order is denoted by IGI. 

According to 2.3.2 and 2.4.9 or, more simply, to 2.4.4, the algebra S G 

of G-invariants is of finite type over {. The group G acts as a group 

of ~-linear automorphisms on K. Let K G be the field of invariants. 

4.1.2. Lemma. (i) S is integral over sG~ 

(ii) K G is the quotient field of sG; 

(iii) K is a finite extension of K G of degree IGI 

(i) follows from ~ (f-g.f) : 0, if f e S. (ii) is already contained 
geG 

in 2.5.12 (a), and (iii) follows from well-known results in Galois 

theory (see e.g. [14,p.194] ). 

Write PG(T) for the Poincar6 series PsG(T), i.e. 

G)Td" PG(T) : Z (dim~ S d 
d=0 

In the case of finite groups, there is an explicit formula for the 

rational function represented by PG(T). 

4.1.3. Proposition. We have 

PG(T) = IG1-1 Z det(1 - gT) -1. 
geG 

This follows from 3.3.1 and the following lemma (applied to the image 

of G in the spaces Sd). 
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4.1.4. Lemma. dim V G = "IG1-1 ~ tr(g,V). 
geG 

Here, as usual, V G is the subspace of V whose elements are fixed by all 

g • G. The proof of 4.1.4 follows by observing that the linear trans- 

formation 

P : IGt -1 z g 

geG 

is a projection of V onto V G (see 2.3.2), so that dim V G = tr(P,V). 

Now let fl,...,fn be algebraically independent homogeneous elements of 

S G such that S G is integral over {[fl,...,fn] (see 2.5.1). Notice that 

the number of these elements equals n = dim V, because the transcendence 

degree of the quotient field of S G equals that of S (according to 4.1.2). 

Let d i be the degree of fi' and let d be the degree of K G over 

{(fl,...,fn ). We then have 

n Tdi)-I 
PG(T) = F(T) ~ (1 - 

i=1 

where F(T) • ~ [T] and F(1) = d (see 2.5.6). 

n 
4.1.5. _Corollary. d -1 [ d. : IGI. In other words, the order of the 

i=1 l 
~raded ~-al~ebra S G (see 2.5.7)equals the order of G. 

Since d -1 n np G d. equals the value of (1 - T) (T) at T = 1 this 
i:1 ± 

follows from 4.1.3. 

We say that g • G is a reflection if n-1 of its eigenvalues are equal 

to 1 and if moreover V has a basis consisting of eigenvectors of g. 

n 
4.1.6. Ciorollary. The number of reflections in G equals ~ (di-1) - 

i=1 
- 2 F ( 1 ) - 1 F ~ ( 1 ) .  

n 
I t  f o l l o w s  f r o m  2 . 5 . 9  ( i )  t h a t  2 ( d i - 1 )  - 2 F ( 1 ) - 1 F ' ( 1 )  e q u a l s  t h e  

i = 1  
value at 1 of 

21CI(1-T)n-lpc(T) - 2(1-T) -1. 

By 4.1.3 this is the same as the value at 1 of 

2 ~ ( l - T )  n - 1  d e t ( 1  - Tg)  - 1 .  
geG 

g reflection 
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Let g be a reflection of G, whose eigenvalue different from 1 is ~. 

Then 

( 1 - T ) n - l ( d e t ( 1 - T g )  -1 + d e t ( 1 - T g - 1 )  - 1 )  = ( I - ~ T )  -1 + (1_~-1T)  -1 

which has the value 1 at T = 1. This implies the assertion. 

4.1.7. Exercises. 

(1) Let n = 1. Then G is a cyclic group. Determine S G and pG. 

(2) Let G be the group of order 2, generated by scalar multiplication 

by -1. Determine S G and pG If d is as above, show that d ~ 2 n-1. 

4.2. Invariant Theory of finite reflection groups. 

4.2~1. Definition. G is a reflection ~roup if it is generated by the 

reflections which it contains. 

The next exercises give a few examples of reflection groups. In the 

course of this chapter more examples will appear~ 

4.2.2. Exercises. 

(1) If n = 1 then G is a reflection group. 

(2) Let V = ~n, let G be the subgroup whose elements permute the elements 

of the canonical basis of ~n. Then G is isomorphic to the symmetric 

group ~n" Show that G is a reflection group. 

Let W c ~n be the subspace of the vectors with coordinate sum 0. Then G 

stabilizes W, and induces a reflection group in W. 

4.2~3. We first give a few simple properties of reflections, to be used 

hereafter. The proofs are left to the reader. 

Let s e G be a reflection. The elements of V which are fixed by s form 

a hyperplane (= (n-1)-dimensional subspace) H s. Fix ~s e $1, a linear 

function on V such that H s is the set of zeros of ~s" Such an ~s is 

unique up to a scalar factor. Let e s be the eigenvalue of s different 

from 1. Then there is an eigenvector a s for this eigenvalue, such that 
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sv : v + ~s(V)as 

and that ~s(as) = s s - 1. We then have 

-1 ~l~s as" s v = v - s ( v )  

It follows that for any f • S we have that s.f - f is divisible by £s' 

Write 

(1) sf = f + ~s(Asf). 

Then A s maps S d into Sd_ 1 , and 

~s(fg) = f(Asg) + (Asf)g + ~s(Asf)(Asg), 

for f,g • S. 

4,2.4. Lemma. Let L be a nonzero linear function on V such that 

-1 and £ is a multiple of s~ = c£ (c e C~). Then either c = 1 o_Er c = es 

. 
s 

As£ is a constant. If c ~ 1, (1) shows that L is a multiple of £s" 

-1 L The assertion then follows by observing that s~ s = E s s" 

The main results about the invariant theory of finite reflection groups 

are contained in the following theorem. 

4.2.5. Theorem. The followin$ p~operties of the finite $roup G are 

e__quivalent: 

(1) G is a finite reflection $rou~; 

S G (2) S is a fr~e graded module over with a finite basis; 

(3) S G is xenerated by n algebraically independent homogeneous 

(1) elements 

We shall prove the implications (1) ~ (2) ~ (3) ~ (1). To do this, a 

number of lemmas is needed. In the first one k may be any field. 

4.2.6. Lemma. Let S be a ~rade d k-algebra wit h S0=k , let R be a graded 

s_ubal~ebra. D,enote by I the homogeneous ideal of S ~enerated by the 

homogeneous elements of R of stric, tly positive, degree. Let (e) e A b_~e 
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a set 9[ homog eneous elements of s such that (e +l)e• A is a basis of 

the vector space S/I. Then the e span the R-module S. 

Let M be the graded R-submodule of S spanned by the e . We prove by 

induction on d that M d : S d. This is so for d = 0. Let d > 0 and 

assume it for degrees smaller than d. Then if f • S d we can write f as 

a finite linear combination 

f = ~ c e + ~ fBr 

with e e • k, r 6 • R and f8 homogeneous of degree less than d. By 

induction we have f8 • M. It follows that f • M. 

Now let G be a finite reflection group, as before. Let I be the 

homogeneous ideal in S generated by the homogeneous elements of S G of 

strictly positive degree. So we are in the situation of 4.2.6, with 

R = S G . 

4.2.7. Lemma. Let x i • S G, Yi • S (1 < i < m) be homoseneous elements. 

such that xlY 1 + ...+ XmY m = 0. If x I ~ sGx2 + ...+ SGxm then Yl • I. 

We put P = IG1-1 E g (acting on S). This is an sG-linear map 

geG sG 
S ~ S G which is the identity on (see the proof of 4.1.4). We prove 

the lemma by induction on the degree d of Yl" If d = 0 then there are 

z2,...,z m • S such that 

x I = z2x 2 + ... + ZmX m, 

and we arrive at the contradiction 

x I : (Pz2)x 2 +...+ (PZm)X m • sGx 2 +...+ SGxm . 

Assume that d > 0 and that the assertion is true for lower degrees. Let 

s • G be a reflection. A s being as in 4.2.3, we have 

XlAs(y 2) +...+ XmAs(y m) = 0. 

By induction it follows that Asy I e I, whence sy I Yl e I, for any 

reflection s in G. Since G is a reflection group it follows that 

gYl Yl e I for all g e G (check this), whence y~ - PYl e I. This 

implies Yl e I. 
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4.2.8. Lemma. Let yl,...,y m be homogeneous elements of S such that 

their classes modulo I are linearly independent in the vector space S/I. 

Then yl,...,y m are linearly independent over S G. 

Assume that xlY 1 +...+ XmY m : 0, with x i e S G. By 4.2.7 we can write 

x I = z2x 2 +...+ ZmXm, with z i e S G, whence 

x2(Y2+z2y 1) +...+ Xm(Ym+ZmYl ) = 0. 

By an induction on m we may assume x 2 = ...: x m = 0, which implies the 

assertion of the lemma. 

4.2.9. We can now prove the implication (1) ~ (2) of 4.2.5. With 

the previous notations, choose homogeneous elements (e) e A of S such 

that (e +l)ee A is a basis of S/I. It follows from 4.2.6 and 4.2.8 

that S is a free module over S G, with basis (e). It remains to see 

that this basis is finite. Now it is clear that (e) is also a basis of 

K, the quotient field of S, over the quotient field of S G. The 

finiteness now follows from 4.1.2. In fact, the basis has IGI elements. 

The next lemma will take care of the implication (2) ~ (3) of the 

theorem, 

In this lemma k is an arbitrary field of characteristic 0 and S : 

= k[T1,...,T n] a graded polynomial algebra over k. 

4.2.10. Lemma. Let R be a graded subalgebra of S such that the R-module 

S has a finite basis consisting of homoseneous elements. Then there 

exist elements fl,...,fn i__nn R which are homogeneous and algebraically 

indeRenden ~ over k such that R = k[fl,...,fn] . 

S is integral over R (see e.g.[14~p.238]). It follows from 2.4.3 that R 

is of finite type over k. In particular, R is a noetherian ring. Let R + be 

the ideal of R generated by the homogeneous elements of strictly positive 

degree. Choose homogeneous elements fl,...,fm in R such that R + = 

= Rf I + ...+ Rf m and let the set {fl,...,fm} be minimal for this 

property, i.e. no element can be omitted. As in the proof of 2.4.5 

one sees that R = k[fl,...,fm] . To establish 4.2.10 we shall prove 
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that fl,...,fm are algebraically independent. 

Assume that this is not the case. Then there is a nonzero h• k[X1,...,X m] 

such that h(fl,...,f m) = 0. Assume that h has minimum possible degree. 

8h 
Put gi = ~.(fl'''''fm )' then not all gi are 0. We may assume the gi 

i 
to be homogeneous elements of R (check this). Let J be the ideal in R 

generated by gl,...,g m and assume that ~l,...,gs}iS a minimal set of 

generators of J occurring among the subsets of {gl,...,gm }, So there are 

homogeneous elements rij • R (s+l < i ~ m, 1 < j < s), such that 

s 

gj = Z rijg i 
i=1 

~f. 
_ 1 

Let hi£ ~T£ (1 ~ i ~ m, 

Sh m 
0 : ~-~£ (fl,...,fm) = E 

i=1 

1~£ ~<n 

Put 

Then 

s m 

: Z h i + E rijhj£). 
gihi£ i:1 gi( ~ j:s+l 

m 

(2) uiz = hi£ + Z rijhj£ (1 < i < s, 1 < Z ~ n). 
j:s+l 

Let (e)l<~<t be a homogeneous basis of S over R and write 

: E ri£~e ~. ui£ 

Then 
s 

Z giri£e = O, 
i=1 

and by the choice of gl~...,g s we ha~e that the nonzero elements 

ri£ e must have constant term zero. Hence we can write 

m 

ui£ : E Ui£h fh" 
h=l 

Let d i be the degree of fi" Since fi is homogeneous we have 

n 

d i f  i = ~ T ~ h i ~ .  
~=1 

If 1 ~<i~<s it follows from (2) that 

m n m 

Z ~ ui£ h T£f h = dif i + 
h=l ~:1 j=s+l 

d.r..f. 
3 13 3 

Taking homogeneous components of degree di, we see that fi is a linear 
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combination with coefficients in S of the fj with j i i. Because S has 

a basis over R it then follows that f. is such a combination with co- 

efficients in R (check this). This is a contradiction. The lemma 

follows. 

4.2.11. We finally prove the implication (3) ~ (1) of 4.2.5. 

Assume that S G = {[fl,...,fn ] , where fi is homogeneous of degree d i. 

(Since the transcendence degree of the quotient field of S G equals n, 

by 4.1.2, this already implies that the fi are algebraically indepen- 

n 
dent.) Then the Poincar6 series PG(T) equals i~l(1-Tdl) -1 (2.5.5). It 

follows, using 4.1.5 and 4.1.6, that if G ~ {1} (which we may assume) 

there are refections in G. Let G' be the subgroup of G generated by 

them. By the implication (1) ~ (3) of 4.2.5 (which was already estab- 

lished) we know that there are homogeneous elements hl,...,h n in S G' 

which generate this algebra. Let e i be the degree of h i . 

We may assume that d I ~ d 2 ~ ...~ dn, e I ~ e 2 ~ ...~ e n. Since S G c S G' 

there exists for i = 1,...,n a (unique) polynomial Pie {[T1,...,Tn] 

such that fi = Pi(hl'''''hn )" Fix an i. Since fl,...,fi are algebraic- 

ally independent the polynomials P1,...,Pi cannot be built up only from 

T1,...,Ti_ 1. Hence there is j ~ i and ~ ~ i such that Tj occurs in P~. 

It follows that 

d i ~ d~ ~ ej ~ e i. 

n n 
Since E d. ~ Z e. (as follows from 4.1.6) we have d. = e i. Then, 

i=1 i i=1 l 1 

by 4.1.5, it follows that G' = G. This shows that G is a reflection 

group, which had to be proved. 

4.2.12. Corollary. Let G be a reflection ~roup. Let S G = ~[fl,...,fn] , 

where fi is homogeneous of degree d i. Th___e integers d i are uniquely 

n 
determined by G, up to order. The order of G is H d. and the number 

-- i=1 1 n 
of r e f l e c t i o n s  in  G equa l s  Z ( d i - 1 ) .  

...... i=1 

This follows from 2.5.5, 4.1.5 and 4.1.6. We call the integers d i the 
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degrees of the reflection group G. 

4.2.13. Exercises. 

(1) Show, in the examples of 4.2.2 (2) that the degrees of the re- 

flection groups are 1,2,...,n and 2,...,n, respectively. 

Determine the reflections in these groups. 

(2) Let G be a reflection group, let hl,...,h n b e n algebraically in- 

dependent homogeneous elements of S G, let e i be the degree of h i • Then 
n 

e. ~ IGI and if equality holds then S G = k[hl,...,hn]. 
i:1 i 

(Hint: use 4.1.5.) 

4.2.14. The finite reflection groups can be classified. The classifi- 

cation can be reduced to that of the irreducible ones (see exercise 

4.2.16 (1) below). We shall not go into the classification here. Some 

examples of irreducible finite reflection groups can be found in the 

exercises below. 

The subgroup G c GL(V) is called recZ if there is a G-ste&01e subset V 0 of V 

which is a vector space over ~ (the vector space operations being in- 

duced by those of V), such that dim R V 0 = dim{ V. The classi- 

fication of reflection groups decomposes in two cases: that of the real 

ones and that of the others. The classification of real finite re- 

flection groups (also called finite Coxeter groups) can be found in 

[1, Ch. VI~§4] . For the other ones see [4]. 

We insert a le~ma, to be used occasionally. Assume V = {n and denote 

by , ) the standard nositive definite hermitian form on V with 

n n n 

( ~ xiei, ~ Yiei ) = Z xiY i , 
i=1 i=1 i=1 

(e i) denoting the canonical basis of {n. Recall that a linear trans- 

formation a of {n is called hermitian if (ax,y) = (x,ay) and unitary 

if (ax,ay) : (x,y) (for all x,y e cn). The unitary transformations form 

a subgroup Un({) of GLn({). The hermitian a is called positive definite 

if (ax,x) > 0 for x ~ 0. 


