
STANLEY-REISNER, SIMPLICIAL COMPLEX, FAN EXERCISES

VICTOR REINER

For the first half of Spring 2021 Math 8680 Topics in Combinatorics:
Combinatorial rings and the Kahler package

1. Recall Stanley’s triangle shortcut mentioned in lecture is a means of computing
the h-vector h = (h0, h1, . . . , hd) from the f -vector f = (f−1, f0, f1, . . . , fd−1) of a
(d− 1)-dimensional simplicial complex ∆, shown here for d = 4:

1
1 f0

1 . f1

1 . . f2

1 . . . f3

(1 , h1 , h2 , h3 , h4)

The dots are filled in from top row to bottom, using this local rule:
x y
y−x

(a) Prove that this does indeeed compute the h-vector defined in class.

(b) Prove that the rows of the triangle are simultanously computing the h-vectors
of each of the i-dimensional skeleta ∆(i), that is, the subcomplex generated by all
of the i-dimensional faces.

2. Let ∆ be a simplicial complex on vertex set {1, 2, . . . , n}, with n ≥ 1, and all
vertices present as faces, that is, f0(∆) = n. Let K[∆] its Stanley-Reisner ring with
coefficients in some field K.

(a) Prove that the sum of all vertex variables θ := x1 + x2 + · · · + xn is always a
non-zero-divisor in K[∆].

(b) Prove that if ∆ is disconnected, then the quotient ring K[∆]/(θ) contains a
nonzero element of degree one annihilated by all elements of positive degree. Con-
clude that every element of positive degree is a zero-divisor.

3. Prove that if a simplicial complex ∆ is (pure and) shellable, then the same is
true of star∆(F ) and link∆(F ) for every face F in ∆.
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4. Let ∆ := {∅, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34}, the 1-dimensional simplicial complex
which is the complete graph on vertex set {1, 2, 3, 4}.

(a) Prove that for a field K, the ring K[∆] contains a linear system of parameters
(that is, θ1, θ2 in K[∆]1 with K[∆] finitely generated as a K[θ1, θ2]-module) if and
only if #K ≥ 3, that is, K 6= F2.

(b) Show that the ring Z[∆] contains no pair of degree one elements θ1, θ2 in Z[∆]1
for which Z[∆] is finitely generated over Z[θ1, θ2].

5. Recall that a cyclic d-polytope with n vertices Cd(n) for d ≥ 2 is the convex
hull of the n vertices {x(ti)}ni=1 where x(t) := [t, t2, . . . , td] in Rd and t1 < t2 <
· · · < tn are any n strictly increasing real numbers. Use ideas from the argument
in lecture proving bd2c-neighborlineess of Cd(n) to prove Gale’s evenness criterion,
characterizing which d-element subsets F = {i1 < i2 < · · · < id} ⊂ {1, 2, . . . , n}
index the vertices of a boundary facet {x(ti)}i∈F of Cd(n):

This happens if and only if any two elements in the complementary
set {1, 2, . . . , n}\F have an even number of elements of the ordered
sequence i1 < i2 < · · · < ik lying between them in the usual order
on the integers.

6. Given two simplicial complexes ∆1,∆2 on vertex sets V1, V2, their simplicial join
∆1 ∗∆2 is the simplicial complex having the disjoint union V1 t V2 as vertex set,
and with faces F1 t F2 for all (F1, F2) in the Cartesian product ∆1 ×∆2.

(a) Defining the f -polyomial and h-polynomials of ∆ by

f(∆, t) :=

d∑
i=0

fi−1t
i,

h(∆, t) :=

d∑
i=0

hit
i

prove that
f(∆1 ∗∆2, t) = f(∆1, t)f(∆2, t),

h(∆1 ∗∆2, t) = h(∆1, t)h(∆2, t).

(b) Use this to compute the h-vector of the cone {∅, {v}} ∗∆ and the suspension
or bipyramid {∅, {v}, {v′}}∗∆ over a simplicial complex ∆, in terms of the h-vector
of ∆.

(c) Show how to use the constructions in (b) to find for each d a list of simplicial
d-polytopes having affinely independent h-vectors that lets you prove the following:

The Dehn-Sommerville equations hi = hd−i for 0 ≤ i ≤ bd2c to-
gether with h0 = 1 imply any other (affine-)linear equations satis-
fied by the f -vectors or h-vectors of all simplicial d-polytopes.
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7. Let n1, n2, . . . , nd+1 be vectors in Rd which are minimally dependent, in the
sense that any proper subset of them are independent.

(a) Show that, up to an overall scaling, there is only one linear dependence among
them, which after re-indexing can be assumed to take the form∑

i∈G
aini =

∑
j∈Gc

bjnj

for disjoint subsets G,Gc with G tGc = {1, 2, . . . , d+ 1}, and all ai, bj > 0.

(b) Now assume further that n1, n2, . . . , nd+1 are acyclically oriented meaning that
there is some linear function f in (Rd)∗ having f(ni) > 0 for i = 1, 2, . . . , d + 1.
Show that this forces G,Gc to both be nonempty, proper subsets, that is, ∅ 6=
G,Gc ( {1, 2, . . . , d+ 1}.

(c) Under the assumptions in (b), show that the cone R+n1 + · · ·R+nd+1 which
they span has only two possible triangulations into d-dimensional simplicial cones
σF :=

∑
i∈F R+ni:

• either F runs through the sets {1, 2, . . . , d+ 1} \ {i} for i ∈ G, or
• F runs through the sets {1, 2, . . . , d+ 1} \ {j} for j ∈ Gc.

8. Consider a 3-dimensional complete simplicial fan Σ containing the following
configuration of simplicial cones within an orthant spanned by rays a, b, c below:

a

a′

b′ c′

b c

Assume abc and a′b′c′ are similar triangles, placed so that one is a scaled and
translated version of the other. Ignoring what might be happening inside other
parts of the fan, show that Σ is not polytopal, that is, it cannot be the face fan
of any 3-dimensional simplicial polytope, and hence also not the normal fan of any
3-dimensional simple polytope.
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9. Let ∆ be a 1-dimensional simplicial complex, that is, a simple graph, meaning
one with no parallel edges and no self-loops.

(a) Prove that ∆ is (pure and) shellable if and only if it is a connected graph.

(b) Prove that ∆ is (pure and) partitionable if and only if it has no isolated vertices
and has at most one connected component which is acyclic (that is, isomorphic to
a tree).

10. Let P be a d-dimensional convex polytope in Rd, which is k-neighborly for
some k ≥ bd2 + 1c. We want to show that P this forces P to be a d-simplex, that
is, it has d+ 1 vertices.

(a) Suppose P has at least d + 2 vertices, say v1, v2, . . . , vd+2. Prove that there

exist coefficients c1, c2, . . . , cd+2 in R with
∑d+2
i=1 civi = 0 and

∑d+2
i=1 ci = 0.

(b) Show that neither of the two sets {i : ci >} or {i : ci < 0} is empty, and at least
one of them has cardinality bounded above by k, so that it indexes a boundary face
of P .

(c) Explain how the observations in part (b) lead to a contradiction.
(Hint: what does it mean for as set of vertices to lie on a boundary face of P?)
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And here are some more exercise for the second half of Spring 2021 Math 8680
Topics in Combinatorics, in addition to those in pages 53-60 of
http://www-users.math.umn.edu/~reiner/Talks/Vienna05/Lectures.pdf.

1. Given a finite set E, say that a function f : 2E → R is submodular if

f(I) + f(J) ≥ f(I ∩ J) + f(I ∪ J)

for all subsets I, J ⊆ E. Say that f is strictly submodular if it is submodular and
additionally the above inequality is strict whenever I, J are incomparable or not
nested under inclusion, soI 6⊆ J and J 6⊆ I.

(a) Prove that the function f(I) := #I · (#E −#I) is strictly submodular.

(b) Prove that if M is a matroid on E, then its rank function rM (I) is submodular
as a function 2E → R, but not in general strictly submodular.

(c) Prove that for every submodular function f : 2E → R there exists some family
of strictly submodular functions {fε} defined for ε > 0, such that for all subsets
I ⊆ E one has fε(I) a continuous function of ε, and f(I) = limε→0+ fε(I).

2. Let (a0, a1, . . . , ar) be a sequence of real numbers which are strictly positive
(ai > 0) and log-concave (a2

i ≥ ai−1ai+1), interpreting ai = 0 for i < 0 or i > r.

(a) Prove that one also has the inequalities aiaj ≥ ai−kaj+k for k ≥ 0.

(b) Given (ai)i=0,1,...,r strictly positive and log-concave, define (ci)i=0,1,2,...,r+1 by

r+1∑
i=0

cit
i = (1 + t)

r∑
i=0

ait
i

and prove that (ci) is also strictly positive and log-concave.

(c) Generalize part (b): given (ai)i=0,1,...,r and (bj)j=0,1,...,s be two strictly positive
log-concave sequences, show that (ci)i=0,1,2,...,r+s defined by

r+s∑
i=0

cit
i =

(
r∑
i=0

ait
i

) s∑
j=0

bjt
j


is also strictly positive and log-concave.
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3. Fix a matroid M on ground set E, having lattice of flats L, with bottom, top
elements ∅, E. Let’s compare three closely related ways to present the Chow ring
A(M), starting with three polynomial rings

S := Z[{xF : F ∈ L with F 6= ∅}],

Ŝ := Z[{xF : F ∈ L with F 6= ∅, E}],

S̃ := Z[{xF : F ∈ L with F 6= E} ∪ {yi : i ∈ E}].

so that one has obvious inclusions Ŝ ↪→ S, S̃ sending xF 7→ xF for F 6= ∅, E.

• (Feichtner-Yuzvinsky)

A(M) := S/(I + J), where

I = ({xFxG : F 6⊆ G and G 6⊆ F}),

J =

({ ∑
F :i∈F

xF : i ∈ E

})
.

• (Adiprasito-Huh-Katz)

A(M) := Ŝ/(Î + Ĵ), where

Î = ({xFxG : F 6⊆ G and G 6⊆ F}),

Ĵ =

 ∑
F :i∈F

xF −
∑
G:j∈G

xG : i 6= j ∈ E


 .

• (Braden-Huh-Matherne-Proudfoot-Wang)

A(M) ∼= CH(M)/({yi}i∈E), with

CH(M) := S̃/(Ĩ + J̃), where

Ĩ = ({xFxG : F 6⊆ G and G 6⊆ F}) + ({yixF : i 6∈ F}),

J =

yi − ∑
F :i 6∈F

xF : i ∈ E


 .

Fix an element i0 in E,

(a) Define a ring map S −→ Ŝ on the variables sending xF 7−→ xF if F 6= E, and

xE 7−→ −
∑

F :i0∈F
∅ 6=F 6=E

xF .

Prove this map and Ŝ ↪→ S descend to mutually inverse ring isomorphisms

S/(I + J) ∼= Ŝ/(Î + Ĵ).

(b) Define a ring map S̃ −→ Ŝ on the variables sending xF 7→ xF for F 6= ∅, and

x∅ 7−→ −
∑

F :i0 6∈F
∅6=F 6=E

xF .

Prove this map and Ŝ ↪→ S̃ descend to mutually inverse ring isomorphisms

CH(M)/({yi : i ∈ E}) ∼= Ŝ/(Î + Ĵ).


