Bulgarian Solitaire Variants

AJ Harris Advisor: Vic Reiner Latin Honors Thesis

Agenda

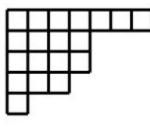
- Integer Partitions
- Bulgarian Solitaire
- Block Bulgarian Solitaire
- Minnesota Solitaire
- Future Directions

Integer Partitions and Young Diagrams

Definition 1.1. An *integer partition* of n, denoted $\lambda \vdash n$, is an unordered list of integers $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l)$ such that

$$\sum_{i=1}^l \lambda_i = n$$

where each λ_i is a positive integer less than or equal to n.



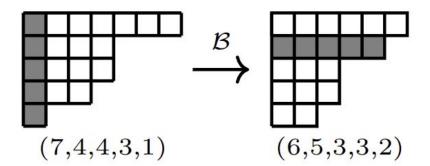
Young Diagram

The Bulgarian Solitaire Move

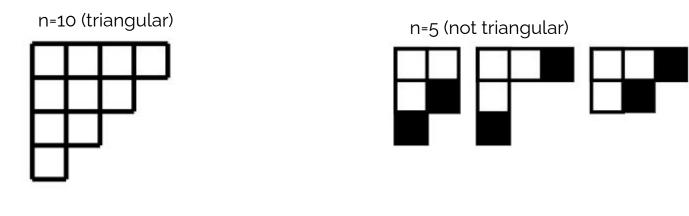
• On partitions

$$\mathcal{B}(\lambda) = (\lambda_1 - 1, \lambda_2 - 1, \dots, \lambda_l - 1, l)$$

• On Young Diagrams

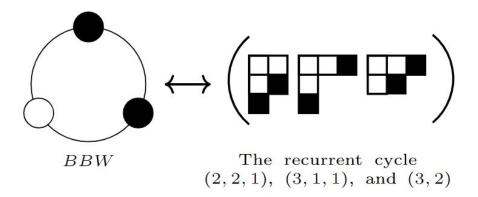


- (Gardner) Staircase partitions for triangular numbers
- (Brandt) Nearly staircase partitions for non-triangular numbers



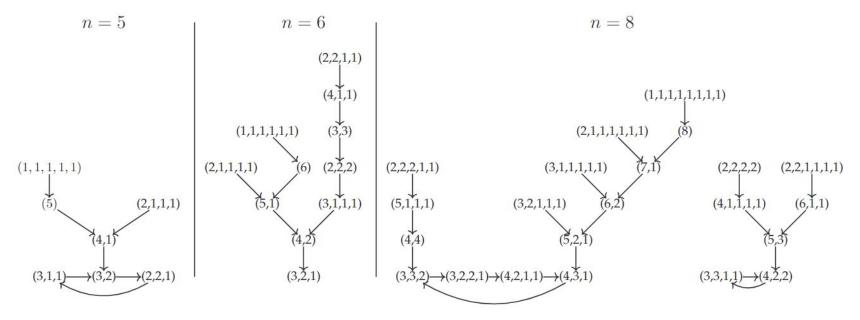
Brandt's Bijection

- Following Brandt's results, a way to understand recurrent cycles
- Bijection between recurrent cycle (and thus whole orbit) and a necklace



Bulgarian Solitaire Game Graph

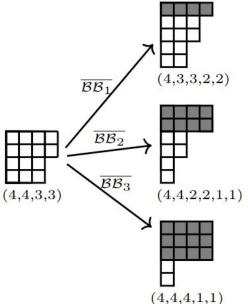
- Game Graph display all orbits
 - Levels = distance from recurrent cycle



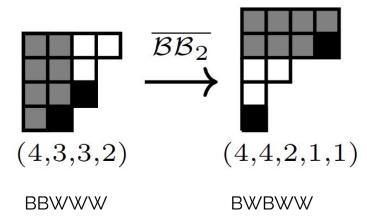
Block Bulgarian Solitaire

- Non-deterministic
- Take multiple cards from each pile (up to the size of the smallest pile), and create new piles
- BBS move

$$\overline{\mathcal{BB}_i}(\lambda) = (\lambda_1 - i, \lambda_2 - i, \dots, \lambda_l - i, l, l, \dots, l)$$



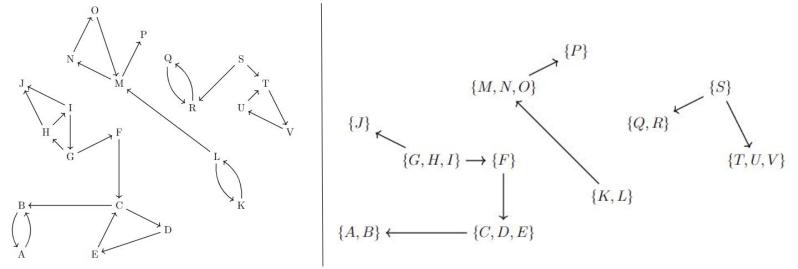
Lemma 3.2. When possible, in a Bulgarian Solitaire recurrent cycle, playing the Block Bulgarian Solitaire 2-move $(\overline{BB_2})$ will switch you into a new Bulgarian Solitaire recurrent cycle that has the same number of black and white beads, just in a permutation of their order.



Digraph Sinks

Definition 1.9. In a digraph, a *sink* is a vertex that has no edges leading out of it.

- A digraph of Strongly Connected Components inherits acyclic digraph structure
- In Bulgarian Solitaire and its variants, when referring to a *sink*, we actually mean a sink strongly connected component.



Theorem 3.1. Block Bulgarian Solitaire has a single sink containing exactly the elements of Bulgarian Solitaire recurrent cycles.

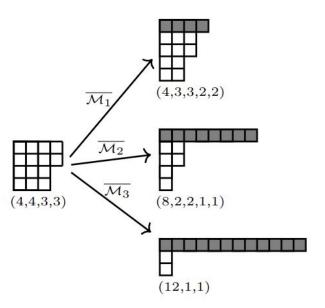
n	Block Bulgarian Solitaire Sink	Corresponding Necklaces
1	(1)	$B = W^2$
2	(2),(1,1)	BW, WB
3	(2,1)	$B^2 = W^3$
4	(2,2), (3,1), (2,1,1)	WBW, BWW, WWB
5	(2,2,1), (3,2), (3,1,1)	WBB, BBW, BWB
6	(3,2,1)	$B^3 = W^4$
7	(3,2,1,1), (3,2,2), (4,2,1), (3,3,1)	WWWB, WWBW, BWWW, WBWW
8	(4,2,1,1), (4,2,2), (4,3,1),	BWWB, BWBW, BBWW,
	(3,3,1,1), (3,3,2), (3,2,2,1)	WBWB, WBBW, WWBB
9	(3,3,2,1), (4,3,2), (4,3,1,1), (4,2,2,1)	WBBB, BBBW, BWBB
10	(4,3,2,1)	$B^4 = W^5$

Table 2: Block Bulgarian Solitaire Sinks

Minnesota Solitaire

- Take multiple cards from each pile and form a single new pile
- Minnesota Solitaire move

$$\overline{\mathcal{M}_i}(\lambda) = (\lambda_1 - i, \lambda_2 - i, \dots, \lambda_l - i, il)$$



Conjectures

Conjecture 3.4. Minnesota Solitaire has a single sink containing every element of the Bulgarian Solitaire recurrent cycles for n.

Conjecture 3.5. For a nearly triangular $n = T_k - 1$, the Minnesota Solitaire sink contains exactly 2(k-1) elements.

\overline{n}	Minnesota Solitaire Sink	Corresponding Necklaces
1	(1)	$B = W^2$
2	(2),(1,1)	BW, WB
3	(2,1)	$B^2=W^3$
4	(2,2), (3,1), (2,1,1), (4)	WBW, BWW, WWB, n/a
5	(2,2,1), (3,2), (3,1,1), (4,1)	WBB, BBW, BWB, n/a
6	(3,2,1)	$B^3=W^4$
7	(3,2,1,1), (3,2,2), (4,2,1), (3,3,1),	WWWB, WWBW, BWWW, WBWW
	(4,3), (6,1), (5,2)	n/a, n/a, n/a
	(4,2,1,1), (4,2,2), (4,3,1), (3,3,1,1)	BWWB, BWBW, BBWW, WBBW
8	(3,3,2), (3,2,2,1), (7,1), (8),	WBBW, WWBB, n/a, n/a
	(4,4), (6,2), (5,2,1), (6,1,1), (5,3)	n/a, n/a, n/a, n/a, n/a
9	(3,3,2,1), (4,3,2), (4,3,1,1), (4,2,2,1)	WBBB, BBBW, BWBB
	(5,3,1), (6,2,1)	n/a, n/a
10	(4,3,2,1)	$B^4=W^5$

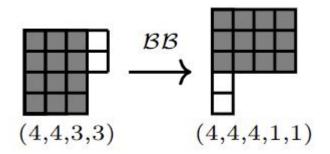
n	Sink Size	n	Sink Size
1	1	16	88
2	2	17	106
3	1	18	145
4	4	19	171
5	4	20	10
6	1	21	1
7	7	22	316
8	13	23	383
9	6	24	471
10	1	25	527
11	26	26	671
12	40	27	12
13	42	28	1
14	8	29	1133
15	1	30	1379

13

Maximal Block Bulgarian Solitaire

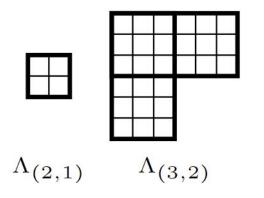
- Play the largest BBS move possible
- MBBS move

 $\mathcal{BB}(\lambda) = (l, l, \dots, l, \lambda_1 - k, \lambda_2 - k, \dots, \lambda_{l-1} - k)$



Theorem 4.1. A partition $\lambda \vdash n$ is fixed under \mathcal{BB} if and only if it is a square staircase.

Corollary 4.2. The number of fixed partitions of n under \mathcal{BB} is equal to the number of ways n can be written as $a^2\binom{b+1}{2}$, for integers a and b.



$$\Lambda_{(a,b)} = (ab, ab, \dots, ab, a(b-1), a(b-1), \dots, a, a, \dots, a)$$

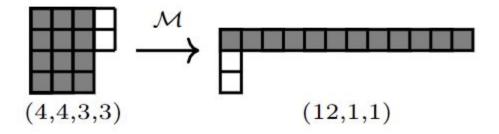
n	$\#\Lambda(a,b)$	n	$\#\Lambda(a,b)$	n	$#\Lambda(a,b)$
1	1	11	0	36	2
2	0	12	1	144	2
3	1	13	0	44100	3
4	1	14	0	100800	2
5	0	15	1	11524800	3
6	1	16	1		
7	0	17	0		
8	0	18	0		
9	1	19	0		
10	1	20	0		

Table 7: The number of square staircase partitions for select n

Maximal Minnesota Solitaire

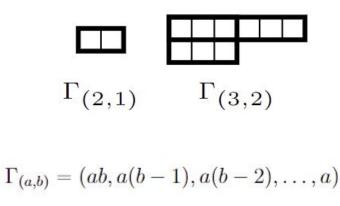
- Play the largest possible MS move
- Maximal MS move

$$\mathcal{M}(\lambda) = (\lambda_1 - k, \lambda_2 - k, \dots, \lambda_l - k, kl)$$



Proposition 4.8. The fixed partitions under \mathcal{M} are the stretched staircase partitions. **Lemma 4.9.** The number of stretched staircase partitions of n is equal to the number of triangular numbers that divide n.

Theorem 4.10. The number of fixed partitions of n under \mathcal{M} is equal to the number of triangular numbers that divide n.



n	$\#\Gamma_{(a,b)}$	n	$\#\Gamma_{(a,b)}$	n	$\#\Gamma_{(a,b)}$
1	1	11	1	21	3
2	1	12	3	22	1
3	2	13	1	23	1
4	1	14	1	24	3
5	1	15	3	25	1
6	3	16	1	26	1
7	1	17	1	27	2
8	1	18	3	28	2
9	2	19	1	29	1
10	2	20	2	30	5

Table 10: Number of fixed partitions under \mathcal{M} for n up to 30

Future Directions

Conjecture 3.4. Minnesota Solitaire has a single sink containing every element of the Bulgarian Solitaire recurrent cycles for n.

Conjecture 3.5. For a nearly triangular $n = T_k - 1$, the Minnesota Solitaire sink contains exactly 2(k-1) elements.

- Formulas for the number of Square Staircase Partitions and Stretched Staircase Partitions
- Understand Maximal Minnesota/Block Bulgarian Solitaire Recurrent
 Cycles

Jørgen Brandt. Cycles of partitions. Proceedings of the American Mathematical Society, pages 483–486, 1982.

Martin Gardner. Mathematical games: Tasks you cannot help finishing no matter how hard you try to block them. Scientific American, 249:12–21, 1983.

Gus Wiseman. Sequences counting and ranking integer partitions by the differences of their successive parts. On-Line Encyclopedia of Integer Sequences A007862, 2019.