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Abstract

In this paper, we present recent findings about the games of Bulgarian Solitaire
and Carolina Solitaire, specifically about their level sizes and the possible existence of
a geometric constant cp relating orbit sizes in Bulgarian Solitaire. We then introduce
two non-deterministic extensions of Bulgarian Solitaire, Block Bulgarian Solitaire and
Minnesota Solitaire, along with a method of making them deterministic. We prove that
the sink of Block Bulgarian Solitaire contains exactly the Bulgarian Solitaire recurrent
cycles. In Maximal Block Bulgarian Solitaire, the analogous structure to staircase par-
titions in Bulgarian Solitaire is a staircase of squares, while in Maximal Minnesota
Solitaire, the number of analogous partitions is equal to the number of triangular num-
bers that divide the starting number.
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1 Introduction
Bulgarian Solitaire is an interesting mathematical game invented in the second half of the
20th Century and popularized by Martin Gardner in 1983. The game follows a set of simple
rules, dividing a deck of n cards into some number of piles, and then taking the top card
from each pile in order to form a new pile. The game itself has inspired several variants that
each add a twist to the original gameplay. Before diving into the games, we first provide a
refresher on a few underlying concepts that we will use throughout this paper.

1.1 Integer Partitions and Young Diagrams

1.1.1 Integer Partitions

The game of Bulgarian Solitaire (and many of its variants) is closely tied to integer partitions.

Definition 1.1. An integer partition of n, denoted λ $ n, is an unordered list of integers
λ “ pλ1, λ2, . . . , λlq such that

l
ÿ

i“1

λi “ n

where each λi is a positive integer less than or equal to n.

For partitions, the order does not matter, but by convention they are usually written in
weakly descending order. That is, p2, 3, 6q, p3, 2, 6q and p6, 3, 2q are all the same partition,
but to avoid confusion, we write it as p6, 3, 2q. [Pha22] includes other interesting results
that have been found regarding integer partitions. Finding a closed form for the number of
partitions of n is an open question that still is of interest to mathematicians today.

1.1.2 Young Diagrams

A good visual representation of integer partitions is the Young Diagram. The Young Diagram
assigns rows to be the elements of the partition in weakly descending order. The Young
Diagram for the partition (7,4,4,3,1) is below.

1.1.3 Special Partitions

There are a few special cases of partitions that come up when working with Bulgarian
Solitiare and its variants.

Definition 1.2. When n “
`

b`1
2

˘

we say a partition is a staircase partition, ∆b $ n, if

∆b “ pb, b ´ 1, . . . , 2, 1q

If n is not a triangular number, no such staircase partition exists. The partition ∆4 “

p4, 3, 2, 1q of n “ 10 is a staircase partition.
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The second special partition we will work with is called a square staircase partition

Definition 1.3. When n “ a2
`

b`1
2

˘

, a square staircase partition is a partition, Λpa,bq $ n, of
the form

Λpa,bq “ pab, ab, . . . , ab, apb ´ 1q, apb ´ 1q, . . . , a, a, . . . , aq

where each multiple of a has exactly a copies.

We can think of ∆b as Λp1,bq. Some examples of square staircases are Λp2,1q “ p2, 2q and
Λp3,2q “ p6, 6, 6, 3, 3, 3q.

Λp2,1q Λp3,2q

The final special partition we look at in this paper is the stretched staircase partition.

Definition 1.4. For n “ a
`

b`1
2

˘

, a partition is a stretched staircase partition, Γpa,bq, if

Γpa,bq “ pab, apb ´ 1q, apb ´ 2q, . . . , aq

Again, we can view ∆b as Γp1,bq. Some examples of stretched staircases are Γp2,1q “ p2q

and Γp3,2q “ p6, 3q.

Γp2,1q Γp3,2q

1.2 Black and White Necklaces

[Bra82] proved the existence of a bijection between Bulgarian Solitaire recurrent cycles and
Black and White necklaces under rotation. Because of this, we will repeatedly refer to Bul-
garian Solitaire recurrent cycles by their corresponding necklace. Pham ([Pha22, Definition
2.2.1] provides the following definition of a necklace as it is used in Bulgarian Solitaire:

Definition 1.5. Let α “ pα1, ..., αnq be a finite sequence of letters tB,W u. Define the cyclic
rotation ω by

ωpαjq “ αpj`1q mod n

A necklace N of black and white beads is an equivalence class of sequences of letters tB,W u

under cyclic rotation ω. We call N a primitive necklace if it cannot be written as a concate-
nation N “ P k “ PP . . . P of copies of another necklace P . We will reserve P for primitive
necklaces.
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BBW pBBW q2 pBBW q3

1.3 Integer Compositions

While nearly every variant of Bulgarian Solitaire we look at in this paper can be represented
as integer partitions, when we discuss Carolina Solitaire, the order of the cards becomes
relevant. As a result, we need a slightly different mathematical concept to work with Carolina
Solitaire. That concept is integer compositions.

Definition 1.6. An integer composition of n, C ( n, is an ordered tuple of integers C “

pC1, C2, . . . , Clq such that
l

ÿ

i“1

Ci “ n

where each Ci is a positive integer less than or equal to n.

An integer composition is essentially the same as an integer partition except that or-
der matters. So p2, 6, 3q, p3, 2, 6q and p6, 3, 2q are the same partition, but are all distinct
compositions.

(6,3,2)(3,2,6)(2,6,3)

Remark 1.7. The composition analogue to a staircase partition is also a staircase, and a
staircase composition must be in descending order.

The reason for Remark 1.7 will be clear when we discuss Carolina Solitaire.

1.4 Directed Graphs

Mapping possible outcomes of Bulgarian Solitaire and its variants involves using directed
graphs, commonly referred to as digraphs. In graph theory, a digraph is a set of vertices
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connected by directed edges. An example of a digraph is below.

C

AB G E

F

The first key concept for digraphs that we examine is the concept of strongly connected
components.

Definition 1.8. In a digraph D, a strongly connected component is a maximal subgraph of
d Ď D such that there exists a path along the directed edges from any vertex v to any other
vertex u in the subgraph.

In the graph above, we have 4 strongly connected components, tBu, tA,Gu, tC,F u, and
tEu.

It is possible to form a new digraph S from the strongly connected components of D,
called the strongly connected components digraph. In the case above, the strongly connected
components digraph is

tBu

tC,F u

tA,Gu tEu

This gives rise to the concept of a sink.

Definition 1.9. In a digraph, a sink is a vertex that has no edges leading out of it.

In the example above, we can see that E is a sink, while the other half of the graph has
no sink. However, the strongly connected components digraph has both tEu and tC,F u as
sinks. In general, for this paper we will use the term sink of a given game to refer to the
sink of the strongly connected components digraph for that game’s game graph.
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2 Existing Variants
Now we are ready to get into our discussion of the main purpose of this thesis. The original
game of Bulgarian Solitaire has been studied since the 1980s, and several key results regarding
orbits and levels sizes have been proven.

2.1 Bulgarian Solitaire

Bulgarian Solitaire is played by starting with a deck of n cards (Gardner presented the game
as starting with n “ 45 cards), divided into a number of piles. Each turn, the player performs
the Bulgarian Solitaire move, B by taking the top card from each pile and combining them to
form a new pile. The original game would end when performing the Bulgarian Solitaire move
does not change the sizes of the piles. For any triangular number Tk, Gardner conjectured
in [Gar83] you will reach a stable configuration of 1, 2, 3, . . . , k in at most kpk ´ 1q moves.
While Gardner focused on the case where n is a triangular number, others began researching
the behavior of Bulgarian Solitaire for non-triangular n.

As mentioned above, one can use integer partitions to model Bulgarian Solitaire. In this
case, we define the Bulgarian Solitaire move B to be

Definition 2.1. For a partition λ $ n of length l, where λ “ pλ1, λ2, . . . , λlq we have the
Bulgarian Solitaire move,

Bpλq “ pλ1 ´ 1, λ2 ´ 1, . . . , λl ´ 1, lq

(reordered as needed to be in nonincreasing order)

For Young Diagrams, the Bulgarian Solitaire move removes the leftmost column, and
then adds it back into the Young Diagram as a row where it fits in the weakly decreasing
order.

(7,4,4,3,1)

B

(6,5,3,3,2)

Remark 2.2. For a staircase partition ∆b, we have Bp∆bq “ ∆b, and it is easy to check that
these staircase partitions are the only partitions to be fixed under B.

(4,3,2,1)

B

(4,3,2,1)
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2.1.1 Past Results

One of the first key results involving Bulgarian Solitaire was Brandt’s ([Bra82]) discovery
and characterization of recurrent cycles for non-triangular n. He showed that, after defining
the unique a and b such that n “

`

b`1
2

˘

´ a, for 0 ď a ď b ´ 1, then the number Capbq of
recurrent cycles for n equals

Capbq “
1

n

ÿ

d|pb,aq

ϕpdq

ˆ

b{d

a{d

˙

where ϕpdq is Euler’s phi function. Brandt’s discovery of recurrent cycles flowed naturally
into the existence of a bijection between elements of Bulgarian Solitaire recurrent cycles and
black/white beaded necklaces. An visual of the bijection is:

BBW The recurrent cycle
p2, 2, 1q, p3, 1, 1q, and (3, 2)

Specifically, for any n “ 1`2`¨ ¨ ¨`pk´1q`r, where 0 ď r ď k´1, elements of a Bulgarian
Solitaire recurrent cycle can be written in the form λ “ pλ1 ` δ1, λ2 ` δ2 ` ¨ ¨ ¨ ` λl ` δlq,
where each δi is either 1 or 0 and

l
ÿ

i“1

δi “ r

The bijection assigns black beads to each δi that is 1, and white beads to the δi that are 0.
A useful tool for understanding Bulgarian Solitaire behavior is the game graph.

Definition 2.3. A game graph for Bulgarian solitaire is a digraph whose nodes are partitions
of n, and has edges from λ Ñ Bpλq.
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An example Bulgarian Solitaire game graph for n “ 5 is below.

n=5

p5q

p1, 1, 1, 1, 1q

(4,1)

(3,2) (3,1,1)(2,2,1)

(2,1,1,1)

Each level of the game graph is a move, and we say two partitions are in the same level if
they are the same number of moves away from the recurrent cycle. In the example above,
the zero level is the recurrent cycle tp2, 2, 1q, p3, 2q, p3, 1, 1qu, the first level is tp4, 1qu, the
second level is tp5q, p2, 1, 1, 1qu, and the third level is tp1, 1, 1, 1, 1qu.

In the same paper that he identified recurrent cycles, Brandt also conjectured that the
number of levels in the game graph for triangular n “ 1` 2` ¨ ¨ ¨ ` k was at most k2 ´ k ` 1.
Igusa in [Igu85] introduced a method of looking at gaps, or the differences between sizes
of adjacent piles. Nguyen and I produced a similar concept of working with these gaps in
[HN23], which can be applied to the forward game as follows

Definition 2.4. For a given partition of n, λ “ pλ1, λ2, . . . , λlq, define the gaps of λ to be
µ “ pµ1, µ2, . . . , µlq where

µi “ λi ´ λi`1

and we assume λl`1 “ 0

Igusa used this concept to prove that not only did Brandt’s conjecture of reaching a
stable configuration in at most kpk ´ 1q moves hold, but for n ă 1 ` 2 ` ¨ ¨ ¨ ` k, the game
graph of n has strictly less than k2 ´ k ` 1 levels. Later on, this result was improved on by
Griggs and Ho in [GH98], to show that for n ă 1 ` 2 ` ¨ ¨ ¨ ` k and k ě 4, a cycle is reached
in at most k2 ´ 2k ´ 1 moves.

Another area of interest in Bulgarian Solitaire is the question of which partitions you can
only reach by starting with them. In a biblical analogy, these partitions were named Garden
of Eden partitions.

Definition 2.5. In Bulgarian Solitaire, a Garden of Eden partition is a partition λ $ n,
such that there is no partition λ1 satisfying λ “ Bpλ1q.

The following result from Hopkins and Jones in [HJ06, Corollary 1] determines exactly
every Garden of Eden partition for Bulgarian Solitaire.

10



Proposition 2.6. A partition λ $ n, such that λ “ pλ1, . . . , λlq is a Garden of Eden
partition if and only if λ1 ă l ´ 1

Eriksson and Jonsson proved in [EJ17] that in the triangular case, n “
`

k`1
2

˘

, as k grows,
the level sizes have the generating function

HW pxq “
p1 ´ xq2

1 ´ 3x ` x2

which converges to the evenly indexed Fibonacci numbers. They also introduced the concept
of the quasi-infinite game tree, which Pham in her thesis ([Pha22]) last year generalized to
the idea of the quasi-infinite forest. Nguyen and I ([HN23]) improve on her discussion of the
quasi-infinite forest in our paper. Using the quasi-infinite forest, Pham proved that

Theorem 2.7. For primitive necklaces P with |P | ě 3, there is a power series HP in Zrrxss

such that the sequence of generating functions pDPkq8
k“0 converges to HP . Moreover, HP is

a rational function having denominator polynomial of degree at most |P |.

Along the lines of this Theorem, Pham introduced the idea of dual necklaces P and P 1,
where P 1 is formed by reversing the order of P and swapping black and white beads. For
example, if P “ BBW , then P 1 “ BWW .

P “ BBW P 1 “ BWW

She conjectured that HP pxq and HP 1pxq would have the same denominator. Recently,
Nguyen and I used our µ method of gaps with Reverse Bulgarian Solitaire to prove Pham’s
conjecture in the specific cases of

HBpWBqkpxq “ HW pBW qkpxq

and that
HBpW qkpxq and HW pBqkpxq

share the same denominator.

Pham also made the following very surprising conjecture ([Pha22, Conjecture 3.1.4]).

Conjecture 2.8. For any primitive necklace P with |P | ě 3, there is an integer cP such
that for k ě 2,

|OPk | “ pcP q
k´1

|OP |

for some constant cP that depends only on P . Moreover, if P and P 1 are obtained from each
other by reversing their order swapping black and white beads, then cP “ cP 1 .

The existence (or nonexistence) of this cP is what initially started our research into
Bulgarian Solitaire, and one area we decided to investigate was if cP (assuming Pham’s
conjecture holds) is unique to Bulgarian Solitaire, or if it appears in the variants as well.
The first place we checked was the first variant released: Carolina Solitaire.
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2.2 Carolina Solitaire

Now we move into the first of the variants that we look at in this paper. Carolina Solitaire
was introduced to Griggs and Ho by Andrey Andreev in 1997, which they then publicized in
[GH98]. In this game, the play C is the same as Bulgarian Solitaire, except that the piles are
now labeled in order, and after taking the l cards, you place them in front of the old piles. As
mentioned above, since the piles are now ordered, instead of working with integer partitions,
we use integer compositions. On compositions, this means that for a given composition c ( n
of length l,

Cpcq “ pl, c1 ´ 1, c2 ´ 1, . . . , cl ´ 1q

On Young Diagrams, C is taking the first column and placing it in as the first row.

(7,3,4,3,1)

C

(5,6,2,3,2)

Note that no reordering is necessary in this case, since we are working with compositions
now. Griggs and Ho showed that there are many analogies between Bulgarian and Carolina
Solitaire. One of the first that they found is that

Theorem 2.9. A composition, c ( n, is in a recurrent cycle under C if and only if the
corresponding partition, λ $ n, is in a recurrent cycle under B.

This means that even though the Carolina Solitaire game graph may be larger than Bul-
garian Solitaire, understanding the behavior of Bulgarian Solitaire recurrent cycles exactly
determines the same behavior in Carolina Solitaire cycles.

p1, 1, 1, 1q

p4q

p1, 3q

p2, 2qp2, 1, 1q p3, 1q

p1, 1, 2q p1, 2, 1q

The Carolina Solitaire Game Graph
for n “ 4

p1, 1, 1, 1q

p4q

p2, 2qp2, 1, 1q p3, 1q

The Bulgarian Solitaire Game Graph
for n “ 4

They also proved the following.

Theorem 2.10. For a triangular number, n “ 1`2` ¨ ¨ ¨ `k, playing the Carolina Solitaire
move will reach a fixed composition pk, k ´ 1, . . . , 1q in at most k2 ´ 1 moves.

The strong similarities for both recurrent cycles and level sizes between Carolina Solitaire
and Bulgarian Solitaire raises the question of if other results that have come up in Bulgarian
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Solitaire might apply similarly to Carolina Solitaire. Specifically, we wanted to find out if a
analogous cp might exist for Carolina Solitaire. However, using the data from Table 1, we
found that in the case of BBW , we would need 16cp “ 16318, and since 16 does not divide
16318, we conclude

Proposition 2.11. Carolina Solitaire orbits do not exhibit the same geometric growth as
Bulgarian Solitaire orbits: In Carolina Solitaire, there do not exist constants cP for each
primitive necklace P with |P | ě 3, such that

|OPk | “ pcP q
k´1

|OP |

Given how much more quickly the number of compositions grows than the number of
partitions, we were heavily limited by computing power, and were unable to produce sufficient
data to investigate Carolina Solitaire orbits’ sizes further.
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3 New Non-Deterministic Variants

3.1 Block Bulgarian Solitaire

Now we introduce the first of two new non-deterministic variants that can be thought of as
extensions of Bulgarian Solitaire. In Block Bulgarian Solitaire, the player instead of taking
just a single card from each pile, now has the ability to take either 1 card from each pile or
2 cards from each pile, up to k cards from each pile, where k is the size of the smallest pile.
If they took i cards from each pile, then they make i new piles each of size l, where l was the
number of piles before the move. In partition notation, the Block Bulgarian Solitaire Move
is defined as follows: For a partition λ $ n, with smallest nonzero pile of size k,

BBipλq “ pλ1 ´ i, λ2 ´ i, . . . , λl ´ i, l, l, . . . , lq

where 0 ă i ď k (and we place the i piles of size l where they belong in weakly descending
order). An example Block Bulgarian Solitaire move on Young Diagrams is below.

(4,4,3,3)

(4,4,4,1,1)

BB3
(4,4,2,2,1,1)

BB2

(4,3,3,2,2)BB1

Note that playing BB1pλq is the Bulgarian Solitaire move Bpλq, so every Bulgarian Soli-
taire game tree is contained within the Block Bulgarian Solitaire game graph. This non-
deterministic variant adds a great deal of complexity to the well-understood Bulgarian Soli-
taire, but also provides an interesting similarity.

Theorem 3.1. Block Bulgarian Solitaire has a single sink containing exactly the elements
of Bulgarian Solitaire recurrent cycles.

Recall that when we use the term "Block Bulgarian Solitaire sink", we mean the sink of
the strongly connected components digraph for a Block Bulgarian Solitaire game graph.

To prove Theorem 3.1, we first prove the following lemma.
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Lemma 3.2. When possible, in a Bulgarian Solitaire recurrent cycle, playing the Block
Bulgarian Solitaire 2-move (BB2) will switch you into a new Bulgarian Solitaire recurrent
cycle that has the same number of black and white beads, just in a permutation of their order.

Before proving this lemma, it might help to show a simple motivating example.

(4,3,3,2)

BB2

(4,4,2,1,1)

In the example, we can see that our initial partition is in the recurrent cycle corresponding to
BBWWW , while after playing BB2, the new partition is in the recurrent cycle corresponding
to BWBWW .

Proof. The number of black and white beads cannot change since we are still partitioning
the same n. Thus we only need to show that for some λ in a Bulgarian Solitaire recurrent
cycle, such that the smallest part has size 2, then BB2pλq is in a different Bulgarian Solitaire
recurrent cycle.

First, note that in order to have BB2pλq be a legal move, λ must be pλ1, λ2, . . . , 2q, so the
corresponding necklace must end in . . . BW . Playing BB2pλq will then create 2 new piles of
length l, where l is the length of λ. Furthermore, since λ is in a Bulgarian Solitaire recurrent
cycle, the largest pile in λ, λ1 must have size either l or l ` 1 (depending on if λ starts with
W or B). In either case, λ1 ´ 2 ă l, so when we play BB2pλq, the 2 piles of length l will
be the largest piles and will be added to the front of λ1 “ BB2pλq. Then λ1 will start with
pl, l, λ1 ´ 2, . . . q, which corresponds to WB . . . as a necklace. Thus λ1 is still a necklace, so
it is a Bulgarian Solitaire recurrent cycle. But because we permuted the B and W at the
end when we played BB2pλq, the necklace for λ1 is not a rotation of the necklace for λ. Thus
we must be in a different Bulgarian Solitaire recurrent cycle.

Now we are ready to prove Theorem 3.1 directly.

Proof. First, note that from any given starting partition, playing BB1 is always an option,
and playing it enough times will eventually lead us into a Bulgarian Solitaire recurrent cycle.

Once we are in a Bulgarian Solitaire recurrent cycle, by [Bra82] the smallest nonzero pile
can either have size 1 or size 2. Then the only possible moves from a Bulgarian Solitaire
recurrent cycle are BB1 or BB2.

Playing BB1 is simply the Bulgarian Solitaire move, which keeps us in the same recurrent
cycle.

By Lemma 3.2, playing BB2 will switch us into a new Bulgarian Solitaire recurrent cycle.
Since BB1 and BB2 both keep us in a Bulgarian Solitaire recurrent cycle, it follows that

the sink of Block Bulgarian Solitaire can only contain Bulgarian Solitaire recurrent cycles.
Because every Bulgarian Solitaire recurrent cycle for a given n is just a different ordering

of the black and white beads in the necklace, playing BB2 enough times will eventually yield
every possible permutation of black and white beads, and thus every possible recurrent cycle.

15



Thus every Bulgarian Solitaire recurrent cycle is in the same connected component of the
Block Bulgarian Solitaire game graph.

Therefore the sink of Block Bulgarian Solitaire contains exactly the Bulgarian Solitaire
recurrent cycles.

Remark 3.3. In the situation where BB2pλq is not possible for any λ in the Bulgarian Solitaire
recurrent cycle, then there is no consecutive BW in the recurrent cycle, which only happens
if we are in the case where λ “ Bk or λ “ W k, which are both ways to represent a staircase
partition. In this case, the sink is clearly the Bulgarian Solitaire recurrent cycle since λ is
fixed.

This theorem shows that while Block Bulgarian Solitaire is a more complex variant of
Bulgarian Solitaire, understanding the behavior of Bulgarian Solitaire will still be valuable
for Block Bulgarian Solitaire.

3.2 Minnesota Solitaire

The second non-deterministic extension of Bulgarian Solitaire is Minnesota Solitaire. In
Minnesota Solitaire, the player again can choose up to k cards from each pile. The player
then forms a single new pile of length il. In partition notation, the Minnesota Solitaire move
is defined as follows: For a partition λ $ n, with smallest pile of size k,

Mipλq “ pλ1 ´ i, λ2 ´ i, . . . , λl ´ i, ilq

where 0 ă i ď k (and we place the pile of size il where it belongs in weakly descending
order). Some example Minnesota Solitaire moves on Young Diagrams are below.

(4,4,3,3)

(12,1,1)

M3
(8,2,2,1,1)

M2

(4,3,3,2,2)M1

Like Block Bulgarian Solitaire, playing M1pλq is simply playing Bpλq, so Minnesota Solitaire
can also be thought of as an extension of Bulgarian Solitaire. With this variant, we were
unable to prove anything definitive, but the data in Table 4 supports the following conjecture.
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Conjecture 3.4. Minnesota Solitaire has a single sink containing every element of the
Bulgarian Solitaire recurrent cycles for n.

Table 4 shows that the sink(s) contains more than just the elements of the Bulgarian
Solitaire recurrent cycle.

Table 5 suggests another conjecture, this time regarding the number of elements in the
sink for certain n.

Conjecture 3.5. For a nearly triangular n “ Tk ´ 1, the Minnesota Solitaire sink contains
exactly 2pk ´ 1q elements.
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4 New Deterministic Variants
The non-deterministic variants, while interesting on their own, provide a level of complexity
that makes them more difficult to work with than the deterministic games. With this in
mind, we propose a few modifications that convert Block Bulgarian Solitaire and Minnesota
Solitaire into deterministic variants that are more manageable. While Bulgarian Solitaire
can be thought of as Minimal Block Bulgarian and Minimal Minnesota Solitaire, we choose
instead to take the maximal number of cards.

4.1 Maximal Block Bulgarian Solitaire

First, we create a deterministic variant of Block Bulgarian Solitaire by requiring the player
to take the maximum number of cards possible (k). In this case, we have the move BB,
where for λ “ pλ1, λ2, . . . , λl´1, kq, we have

BBpλq “ pl, l, . . . , l, λ1 ´ k, λ2 ´ k, . . . , λl´1 ´ kq

where there are k copies of l in the new partition (reordered in nonincreasing order as
necessary).

(4,4,3,3)

BB

(4,4,4,1,1)

Since we now have a deterministic game, a reasonable area to look at is how Block Bulgarian
Solitaire compares with regular Bulgarian Solitaire with respect to recurrent cycles of size
1, that is, fixed partitions. We see a few in the diagrams, mostly squares, but we can
generalize this using the idea of square staircase partitions. A square staircase is just a
visual representation of the product of a square times a triangular number, and since it isn’t
hard to see that anything other than a square staircase is not fixed under BB, we have the
following analogue to Gardner’s initial Bulgarian Solitaire conjecture.

Theorem 4.1. A partition λ $ n is fixed under BB if and only if it is a square staircase.

We prove Theorem 4.1 directly.

Proof. Suppose we have a square staircase partition Λpa,bq $ n, such that Λpa,bq “ pab, ab, . . . , ab, apb´
1q, apb´1q, . . . , a, a, . . . , aq (as defined in Definition 1.3) Then Λpa,bq has length ab and small-
est pile size a. Then we have

BBpΛpa,bqq “ pab ´ a, ab ´ a, . . . , ab ´ a, apb ´ 1q ´ a, . . . , 0, 0, . . . , 0, ab, ab, . . . , abq

Reordering and simplifying, we get

BBpΛpa,bqq “ pab, ab, . . . , ab, apb ´ 1q, apb ´ 1q, . . . , a, a, . . . , aq

Thus square staircase partitions are fixed under BB.
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Now consider some partition λ $ n, such that λ “ pλ1, . . . , λlq, with λl “ k and r total
piles of size k. Then

BBpλq “ pλ1 ´ k, λ2 ´ k, . . . , 0, kr, . . . , krq

Since k ‰ 0, λ can be fixed under BB only if λ1 “ λ2 “ ¨ ¨ ¨ “ λr “ kr, λr`1 “ ¨ ¨ ¨ “ λ2r “

kr ´ k “ λ1 ´ k, and so on. But this is exactly the definition of a square staircase. Thus
square staircases are the fixed partitions under BB.

Here is an alternative way of interpreting Theorem 4.1, using Definition 1.3 from Section
1.1.3.

Corollary 4.2. The number of fixed partitions of n under BB is equal to the number of ways
n can be written as a2

`

b`1
2

˘

, for integers a and b.

An easy way to construct numbers that have multiple fixed partitions is by using trian-
gular numbers that are also perfect squares.
Remark 4.3. One can create a number that has any number of partitions that are fixed under
BB simply by taking the product of enough square triangular numbers.

However these are not the only numbers that have more than 1 fixed partition. Taking
n to be 100800, we have solutions pa1, b1q “ p2, 224q and pa2, b2q “ p60, 7q. But neither
`

8
2

˘

“ 28 nor
`

225
2

˘

“ 25200 are perfect squares.
Remark 4.4. We can see even in the triangular case that the number of recurrent cycles
in Maximal Block Bulgarian Solitaire is not the same as the number in regular Bulgarian
Solitaire or Carolina Solitaire.

Table 6 contains more data on Maximal Block Bulgarian Solitaire recurrent cycles.

4.1.1 Reverse Maximal Block Bulgarian Solitaire

There are times where the reverse is easier to work with, especially when trying to understand
level sizes. In this case, we define the Reverse Maximal Block Bulgarian Solitaire move, RB
as follows

Definition 4.5. Starting with an initial partition λ $ n of length l, RBpλqpr,kq is defined
by taking r piles of length k such that k ą l ´ r, and by adding r cards to k piles, including
piles of 0 cards as necessary.

In partition notation, we have for a partition λ $ n of length l, and λi`1 “ λi`2 “ ¨ ¨ ¨ “

λi`j “ k, then for r ď j

RBpr,kq “ pλ1 ` r, λ2 ` r, . . . , λi ` r, λi`r`1 ` r, . . . , λl ` r, r, r, . . . , rq

where there are k ` r ´ l piles of length r.

(4,4,3,3)

RBp2,3q

(6,6,2)
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Using Reverse Block Bulgarian Solitaire, along with the fact that squares are trivially square
staircases, we then are able to show that

Proposition 4.6. The last level set before reaching a kˆk square has exactly k´1 elements.

Reverse Block Bulgarian Solitaire gives us all the tools we need to prove Proposition 4.6.

Proof. Given n “ k2 ą 1 (n “ 1 has a single element (1), and thus the level set before (1)
has 0 elements), and starting from the partition λ “ pk, k, . . . , kq, we have k piles of size
k, and the length of λ is also k. By Definition 4.5, RBpλq is defined if k ą l ´ r “ k ´ r.
Then RBpλq is defined for 1 ď r ď k, which is k total moves. However, playing RBkpλq

is simply taking k piles of length k, and adding k cards to each remaining pile, which are
all 0 before adding the cards back in. Thus RBkpλq “ λ (which is necessary since a k ˆ k
square is fixed under BB). Furthermore, playing each r ă k will yield a distinct partition,
as increasing r will increase the number of piles that are 0 before adding the cards back in.
Hence the number of elements in the level set immediately preceding a k ˆ k square will be
exactly k ´ 1.

Reverse games also lend themselves to identifying Garden of Eden partitions. In a similar
idea to Definition 2.5, in Maximal Block Bulgarian Solitaire, a Garden of Eden partition is a
partition λ $ n such that there does not exist another partition λ1 $ n such that λ “ BBpλ1q.

Another way to think about Garden of Eden partitions is that they are the sinks of the
reverse game. In the proof of Proposition 4.7, we use this concept to show that our game
graph is complete.

Right away, from Definition 4.5, we can recognize that the Garden of Eden partitions
are those where k ` r ď l for any legal choice of k and r. One such type of partition that
satisfies the requirements to be a Garden of Eden partition is the staircase partition. Since
staircase partitions are also square staircases, this means that in Maximal Block Bulgarian
Solitaire, the game graph for a staircase partition is just the staircase.

In Section 5.6, a pattern that appears is that we see in several graphs a connected
component that follows the pattern of a direct path of length 2 into a three-cycle. As it
turns out, this connected component appears for any odd n ě 5.

Proposition 4.7. For any odd n ě 5, the Maximal Block Bulgarian Solitaire game graph
has a connected component with level sizes [3,1,1].

The game graph in Proposition 4.7 looks like this

p2, 2, . . . , 2, 1, 1, 1q

`

n`3
2
, 1, 1, . . . , 1

˘

`

n`1
2
, n´1

2

˘

p2, 2, . . . , 1q
`

n`1
2
, 1, 1, . . . , 1

˘

The Maximal Block Bulgarian Solitaire
Game Graph for odd n ě 5
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We prove Proposition 4.7 directly, using the Reverse Block Bulgarian Solitaire move and
Garden of Eden partitions.

Proof. Suppose for a given odd n, that we make our starting partition be λ “ p2, 2, . . . , 2, 1, 1, 1q,
where there are n´3

2
copies of 2. Then BBpλq “ λ1 “ pn`3

2
, 1, 1, . . . , 1q, where there are n´3

2

copies of 1. Playing again, we have BBpλ1q “ λ2 “ pn`1
2
, n´1

2
q. From here, we get BBpλ2q “

λp3q “ p2, 2, . . . , 2, 1q, with n´1
2

copies of 2. Next BBpλp3qq “ λp4q “ pn`1
2
, 1, 1, . . . , 1q, with

n´1
2

copies of 1. Finally, playing BBpλp4qq “ λ2, so we have found the recurrent cycle.
If we try to play RBpλq, we can either play the piles of 2 (which we could play up to

n´3
2

of them, or we could play the piles of 1, of which there are 3. The length of λ is
l “ n´3

2
` 3 “ n`3

2
. Then in order to play from here, we need 2 ą n`3

2
´ n´3

2
“ 3, or

1 ą n`3
2

´ 3 “ n´3
2

. The first case is clearly impossible, and in the second case, we need
1 ą n´3

2
, so n ď 3. Thus for n ě 5, λ is a Garden of Eden partition.

If we try to play RBpλ1q, our options are to either play 1 pile of length n`3
2

, or we can
try to play n´3

2
piles of length 1. If we play the pile of length n`3

2
, we get RBpλ1q “ λ (since

that’s just the reverse of the move we did to get to λ1). If we instead wish to play the piles
of length 1, we need 1 ą n´3

2
` 1´ n´3

2
=1. Thus the only Reverse Maximal Block Bulgarian

Solitaire move from λ1 returns us to λ.
If we wish to play from λ2, we can either play the pile of n`1

2
or the pile of n´1

2
, both

of which are playable. But we already know Forward Maximal Block Bulgarian has two
partitions (λ1 and λp4q) that play into λ2. Thus we already know both possible Reverse
Maximal Block Bulgarian Solitaire plays will stay in the current game graph.

If we wish to play λp3q, we check if we can play either n´1
2

piles of 2, which is playable,
or we can play 1 pile of 1, which is clearly not playable. Thus, the only Reverse Maximal
Block Bulgarian Solitaire play from λp3q is back to λ2.

Finally, looking at λp4q, we can try to play the pile of n`1
2

or the n´1
2

piles of 1. The first
pile is playable, but if we try to play the piles of 1, we find 1 ą n´1

2
` 1 ´ n´1

2
“ 1, so the

only playable move is the first pile. Then this must play into λp3q to fit with the Forward
Maximal Block Bulgarian Solitaire.

Thus we have defined the entire orbit explicitly for any odd n ě 5.

4.2 Maximal Minnesota Solitaire

The final game we introduce here is the deterministic variant of Minnesota Solitaire, called
Maximal Minnesotan Solitaire. In this game, the Maximal Minnesota Solitaire move, M is
defined as playing Mk, so for a given partition λ $ n with smallest pile of size k,

Mpλq “ pλ1 ´ k, λ2 ´ k, . . . , λl ´ k, klq

(4,4,3,3)

M

(12,1,1)

It turns out that once again, a special set of partitions is fixed under M. In this case,

Proposition 4.8. The fixed partitions under M are the stretched staircase partitions.
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Proof. First, consider some stretched staircase partition Γpa,bq $ n. Then by Definition 1.4,
we know that the smallest nonzero pile in Γpa,bq has size a and Γpa,bq has length b. Then
playing MpΓpa,bqq will return

MpΓpa,bqq “ pab ´ a, apb ´ 1q ´ a, . . . , apb ´ pb ´ 2qq ´ a, a ´ a, abq

Then by reordering in nonincreasing order and simplifying, we find

MpΓpa,bqq “ pab, apb ´ 1q, apb ´ 2q, . . . , aq

Thus all stretched staircases are fixed under M.

If we have a partition λ $ n that is not a stretched staircase, then if our smallest nonzero
pile has size k, for some λi P λ of length l, it must be the case that λi ´ k ‰ λi`1 (including
λl`1 “ 0). Then when we play Mpλq, we get

Mpλq “ pλ1 ´ k, λ2 ´ k, . . . , λi ´ k, . . . , 0, klq

Since k ‰ 0, the only way λ can be fixed under M is if for j “ 1, 2, . . . , l, we have λj ´ k “

λj`1. But this only happens when λ is a stretched staircase! Thus the partitions that are
fixed under M are the stretched staircase partitions.

Unlike the number of square staircase partitions, the number of stretched staircase par-
titions of n is a known quantity. Wiseman first posted this claim in [Wis19] without proof.
We prove it here as a lemma.

Lemma 4.9. The number of stretched staircase partitions of n is equal to the number of
triangular numbers that divide n.

Proof. This lemma follows directly from Definition 1.4. Since a stretched staircase partition
is of the form pab, apb ´ 1q, . . . , aq, which summed together gives n “ a

`

b`1
2

˘

, we have a
stretched staircase partition if and only if

`

b`1
2

˘

divides n.

Theorem 4.10 combines Proposition 4.8 and Lemma 4.9.

Theorem 4.10. The number of fixed partitions of n under M is equal to the number of
triangular numbers that divide n.

This sequence is much easier to understand than the number of square staircase partitions.

Remark 4.11. Once again the number of recurrent cycles in Maximal Minnesota Solitaire
is not the same as the number in regular Bulgarian Solitaire or Maximal Block Bulgarian
Solitaire.

Table 9 contains more data on Maximal Minnesota Solitaire recurrent cycles.

4.2.1 Reverse Maximal Minnesota Solitaire

We can define the Reverse Maximal Minnesota Solitaire move as follows:

Definition 4.12. For a starting partition λ $ n of length l, we define the Reverse Maximal
Minnesota Solitaire move RMpi,kq by taking the ith pile, and distributing those cards evenly
among the remaining piles (including piles of size 0 as necessary).
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On partitions, this move is

RMpi,kq “ pλ1 ` k, λ2 ` k, . . . , λi´1 ` k, λi`1 ` k, . . . , λl ` k, k, k, . . . , kq

where k divides λi, and the number of piles of size k is λi

k
. Note that RMpi,kq is a legal move

if and only if λi

k
ą l.

(6,3,2)

RMp1,2q

(5,4,2)

Again looking for Garden of Eden partitions in Maximal Minnesota Solitaire, we can see
from the definition that a partition λ $ n is a Garden of Eden partition if and only if λ1 ď l.
Then once again, the staircase partitions (where λ1 “ l) are both fixed partitions under M
and Garden of Eden Partitions. Using Reverse Maximal Minnesota Solitaire, we can then
prove the following about the orbit containing the stretched staircase p2p, pq.

Proposition 4.13. For a prime number, p ą 2, the Reverse Maximal Minnesota Solitaire
game graph for the r2p, ps starting has level sizes of 1, 3, 2.

The Reverse Maximal Minnesota Solitaire game graph in this case looks like this

p2p, pq

pp ` 1, 1, . . . , 1qpp ` 2, 2, . . . , 2q p2p ` 1, 1, . . . , 1q

p3, . . . , 3, 1, 1, 1q p2, . . . , 2, 1, . . . , 1q
p-1 terms, p+2 terms

Proof. First, note that λ “ p2p, pq is a stretched staircase, so by Theorem 4.10, it must be
fixed under M. Then playing Reverse Maximal Minnesota Solitaire, we can either play the
pile of size 2p or the pile of size p. Since p ą 1, both piles are playable. If we choose to
play the pile of size p, then, since p is prime, we can only give one card to p piles, making
λ1 “ p2p ` 1, 1, . . . , 1q (where there are p ´ 1 piles of size 1). From λ1, we can only play the
pile of size 2p ` 1, and since 2p ` 1 is not divisible by p, we again can only give one card
to each pile, making λ2 “ p2, 2, . . . , 2, 1, 1, . . . , 1q (where there are p ´ 1 piles of size 2, and
3p ´ 2pp ´ 1q “ p ` 2 piles of size 1). Since 2 ă p ´ 1 ` p ` 2 for any prime p ą 2, λ2 must
be a Garden of Eden Partition.
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Now we go back and start by playing the pile of size 2p. Note that giving p cards to 2
piles just gives λ again. The other options for plays are to give 1 card to 2p piles, giving
λp3q “ pp ` 1, 1, 1, . . . , 1q, where there are 2p ´ 1 piles of size 1. Then, since p ` 1 ă 2p ´ 1
for any prime p ą 2, λp3q is a Garden of Eden partition.

Finally, if we play 2p, and give 2 cards to p piles, then we make λp4q “ pp ` 2, 2, . . . , 2q

(p´ 1 piles of size 2). Then the pile of size p` 2 is playable, and since p´ 2 does not divide
p` 2, we can only distribute 1 card to p` 2 piles. This gives λp5q “ p3, 3, . . . , 3, 1, 1, 1q (p´ 1
piles of size 3). Then, since 3 ă p`1 for any prime p ą 2, λp5q is a Garden of Eden partition.

Hence we have identified the entire orbit containing the stretched staircase p2p, pq.

Another pattern involves stretching the partition p1q by the squares of primes. Table 11
shows the motivation behind Proposition 4.14.

Proposition 4.14. Stretching the partition r1s by squares of primes p2, the level sizes of the
game graph are 1, 2, 1, 1, ..., where the number of 1s after the 2 is equal to p.

Proof. The partition λ “ pp2q is a stretched staircase, so by Proposition 4.8, we know it is
fixed under M. Then, since p is prime, playing Reverse Maximal Minnesota Solitaire has
two possible moves, namely p1, 1q and p1, pq.

If we play RMp1,1qpλq, then we will have p2 piles each of size 1, that is

RMp1,1qpλq “ p1, 1, . . . , 1q

Since p2 ą 1, we have found a Garden of Eden Partition.
If we instead play RMp1,pqpλq, then we will have p piles of size p, so

RMp1,pqpλq “ pp, p, . . . , pq “ λp0q

Since p is prime, it follows that pp ´ 1q ∤ p, so the only possible move on λp0q is to play
RMp1,1qpλ

p0qq. This gives

RMp1,1qpλ
p0q

q “ pp ` 1, p ` 1, . . . , p ` 1, 1q “ λp1q

where there are p ´ 1 piles of size p ` 1. Since there are p piles in total, we can only play
the piles of size strictly greater than p ´ 1 (meaning piles of size at least p). Since the only
factor of p` 1 that is at least p is itself, the only playable move is RMp1,1qpλ

p1qq. This gives

RMp1,1qpλ
p1q

q “ pp ` 2, p ` 2, . . . , p ` 2, 2, 1, 1q “ λp2q

where there are p ´ 2 piles of size p ` 2 (and p ` 1 total piles).
Similarly, in the general case, since there are p ` a ´ 1 piles in total, we can only play

the piles with size at least p ` a ´ 1, which are exactly those of size p ` a. Since the only
factor of p ` a that is at least p ` a ´ 1 is itself, the only playable move is RMp1,1qpλ

paqq.
After p ´ 1 plays, we will reach the following partition

λpp´1q
“ p2p ´ 1, p ´ 1, p ´ 2, p ´ 2, . . . , 2, 2, 1, 1q

where there are 2p ´ 2 total piles. Then the only playable pile is the one of size 2p ´ 1, and
since p2p ´ 2q ∤ p2p ´ 1q for p ą 1, the only possible play is RMp1,1qpλ

pp´1qq. This gives

RMp1,1qpλ
pp´1q

q “ pp, p ´ 1, p ´ 1, . . . , 2, 2, 1, 1q “ λppq

which has 2p ´ 1 total piles. Then, since p ă 2p ´ 1 for p ą 1, we have reached a Garden of
Eden Partition.

Then the zero level is λ, the first level is λp0q and p1, 1, . . . , 1q, and each λpnq for 1 ď n ď p
is in its own level of size 1. Then the level sizes are 1, 2, 1, 1, . . . , 1, where there are exactly
p levels of size 1 after the first level.

24



The game graph in this case looks like this

pp2q

pp, p, . . . , pqp1, 1, . . . , 1q

pp ` 1, p ` 1, . . . , p ` 1, 1q

pp ` 2, p ` 2, . . . , p ` 2, 2, 1, 1q

pp ` 3, p ` 3, . . . , p ` 3, 3, 2, 2, 1, 1q

...

p2p ´ 1, p ´ 1, p ´ 2, p ´ 2, . . . , 2, 2, 1, 1q

pp, p ´ 1, p ´ 1, . . . , 2, 2, 1, 1q

(1 pile)

(p2 total piles) (p total piles)

(p total piles)

(p ` 1 total piles)

(p ` 2 total piles)

(2p ´ 2 total piles)

(2p ´ 1 total piles)
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5 Additional Data

5.1 Orbit Sizes for Necklaces in Carolina Solitaire

Here we provide data on |ON | for necklaces N “ P k in order to determine empirically if the
cp Pham conjectured for Bulgarian Solitaire exists in Carolina Solitaire.

5.1.1 BBW

N |ON |

BBW 16
pBBW q2 16318

Table 1: Orbit sizes for powers of BBW

5.2 Small Game Graphs for Block Bulgarian Solitaire

Here we provide Block Bulgarian Solitaire game graphs for small n. Note that in each
of these, the sink is exactly the Bulgarian Solitaire recurrent cycle for n, which supports
Theorem 3.1.

n=1

p1q

n=2

p2q p1, 1q

n=3

p3q

p2, 1q

p1, 1, 1q

n=4

p4q

p3, 1qp2, 2qp2, 1, 1q

p1, 1, 1, 1q
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n=5

p5q

p1, 1, 1, 1, 1q

(4,1)

(3,2) (3,1,1)(2,2,1)

(2,1,1,1)

n=6

(6)

(5,1)

(4,2)

(4,1,1)

(3,3)

(3,2,1)

(3,1,1,1)

(2,2,2)

(2,2,1,1)

(2,1,1,1,1)

(1,1,1,1,1,1)

5.3 Sinks for Block Bulgarian Solitaire

Here we provide the data that we found from the game graphs in a more organized fashion.
This data led to Theorem 3.1.

n Block Bulgarian Solitaire Sink Corresponding Necklaces
1 (1) B “ W 2

2 (2),(1,1) BW , WB
3 (2,1) B2 “ W 3

4 (2,2), (3,1), (2,1,1) WBW , BWW , WWB
5 (2,2,1), (3,2), (3,1,1) WBB, BBW , BWB
6 (3,2,1) B3 “ W 4

7 (3,2,1,1), (3,2,2), (4,2,1), (3,3,1) WWWB, WWBW , BWWW , WBWW
8 (4,2,1,1), (4,2,2), (4,3,1), BWWB, BWBW , BBWW ,

(3,3,1,1), (3,3,2), (3,2,2,1) WBWB, WBBW , WWBB
9 (3,3,2,1), (4,3,2), (4,3,1,1), (4,2,2,1) WBBB, BBBW , BWBB
10 (4,3,2,1) B4 “ W 5

Table 2: Block Bulgarian Solitaire Sinks

5.4 Sink Sizes for Block Bulgarian Solitaire

Here we provide data on the size of the Block Bulgarian Solitaire sink for n ď 30. Note that
thanks to Theorem 3.1, we know the size to be the size of each Bulgarian Solitaire recurrent
cycle times the number of recurrent cycles (as found by Brandt in [Bra82]).

27



n Sink Size n Sink Size
1 1 16 6
2 2 17 15
3 1 18 20
4 3 19 15
5 3 20 6
6 1 21 1
7 4 22 7
8 6 23 21
9 4 24 35
10 1 25 35
11 5 26 21
12 10 27 7
13 10 28 1
14 5 29 8
15 1 30 28

Table 3: Sizes of the Block Bulgarian Solitaire Sink for n ď 30

5.5 Small Game Graphs for Minnesota Solitaire

Here we provide Minnesota Solitaire game graphs for small n. Note that the sinks in n “ 4
and n “ 5 contain more elements than the Bulgarian Solitaire recurrent cycle, so we cannot
make the same claim as we did for Theorem 3.1. However, each n has a single sink containing
the Bulgarian Solitaire recurrent cycle, which leads to Conjecture 4.8.

n=1

p1q

n=2

p2q p1, 1q

n=3

p3q

p2, 1q

p1, 1, 1q

n=4

p4qp3, 1q p2, 2q p2, 1, 1q

p1, 1, 1, 1q
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n=5

p5q

p1, 1, 1, 1, 1q

(4,1) (3,2) (3,1,1) (2,2,1)

(2,1,1,1)

n=6

(6)(5,1)

(4,2)

(4,1,1)

(3,3)

(3,2,1)

(3,1,1,1)

(2,2,2)

(2,2,1,1)

(2,1,1,1,1) (1,1,1,1,1,1)

5.6 Sinks for Minnesota Solitaire

Here we provide sinks for Minnesota Solitaire, which shows that unlike Block Bulgarian
Solitaire, the sinks do not contain only the Bulgarian Solitaire recurrent cycles, but up to
n “ 10, the data agrees with Conjecture 3.4.

n Minnesota Solitaire Sink Corresponding Necklaces
1 (1) B “ W 2

2 (2),(1,1) BW , WB
3 (2,1) B2 “ W 3

4 (2,2), (3,1), (2,1,1), (4) WBW , BWW , WWB, n/a
5 (2,2,1), (3,2), (3,1,1), (4,1) WBB, BBW , BWB, n/a
6 (3,2,1) B3 “ W 4

7 (3,2,1,1), (3,2,2), (4,2,1), (3,3,1), WWWB, WWBW , BWWW , WBWW
(4,3), (6,1), (5,2) n/a, n/a, n/a

(4,2,1,1), (4,2,2), (4,3,1), (3,3,1,1) BWWB, BWBW , BBWW , WBBW
8 (3,3,2), (3,2,2,1), (7,1), (8), WBBW , WWBB, n/a, n/a

(4,4), (6,2), (5,2,1), (6,1,1), (5,3) n/a, n/a, n/a, n/a, n/a
9 (3,3,2,1), (4,3,2), (4,3,1,1), (4,2,2,1) WBBB, BBBW , BWBB

(5,3,1), (6,2,1) n/a, n/a
10 (4,3,2,1) B4 “ W 5

Table 4: Minnesota Solitaire Sinks

5.7 Sink Sizes for Minnesota Solitaire

Here we provide data on the size of the Minnesota Solitaire sink for n ď 30. This data led
to Conjecture 3.5.
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n Sink Size n Sink Size
1 1 16 88
2 2 17 106
3 1 18 145
4 4 19 171
5 4 20 10
6 1 21 1
7 7 22 316
8 13 23 383
9 6 24 471
10 1 25 527
11 26 26 671
12 40 27 12
13 42 28 1
14 8 29 1133
15 1 30 1379

Table 5: Sizes of the Minnesota Solitaire Sink for n ď 30

5.8 Small Maximal Block Bulgarian Solitaire Game Graphs
n=1

p1q

n=2

p2q p1, 1q

n=3

p3q p2, 1qp1, 1, 1q

n=4

p4q

p3, 1q

p2, 2q

p2, 1, 1q

p1, 1, 1, 1q

n=5

p5q p1, 1, 1, 1, 1q

(4,1)

(3,2) (3,1,1)(2,2,1)

(2,1,1,1)

n=6

(6)

(5,1)

(4,2) (4,1,1)

(3,3)(3,2,1)

(3,1,1,1)

(2,2,2)

(2,2,1,1)(2,1,1,1,1)

(1,1,1,1,1,1)

5.9 Small Recurrent Cycles for Maximal Block Bulgarian Solitaire

Here we provide data on recurrent cycles for Maximal Block Bulgarian Solitaire. Highlighted
in green are the 3-cycles that occur in every odd n ą 3, and led to Proposition 4.7. The
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recurrent cycles of size 1 are highlighted in blue. They are all square staircase partitions,
which led to Theorem 4.1. We can also compare this table to Table 9, and see that Max-
imal Minnesota Solitaire usually has fewer recurrent cycles than Maximal Block Bulgarian
Solitaire, however that is not true in every case (such as n “ 15).

n Recurrent Cycles Cycles
1 tp1qu 1
2 tp2q, p1, 1qu 1
3 tp3q, p1, 1, 1qu, tp2, 1qu 2
4 tp4q, p1, 1, 1, 1qu, tp2, 2qu 2
5 tp5q, p1, 1, 1, 1, 1qu, tp3, 2q, p3, 1, 1q, p2, 2, 1qu 2
6 tp6q, p1, 1, 1, 1, 1, 1qu, tp2, 2, 2q, p3, 3qu, tp3, 2, 1qu 3
7 tp7q, p1, 1, 1, 1, 1, 1, 1qu, tp3, 3, 1q, p3, 2, 2qu,

tp4, 1, 1, 1q, p2, 2, 2, 1q, p4, 3qu 3
8 tp8q, p1, 1, 1, 1, 1, 1, 1, 1qu, tp4, 2, 2q, p3, 3, 1, 1q, p3, 3, 2qu,

tp4, 4q, p2, 2, 2, 2qu 3
9 tp9q, p1, 1, 1, 1, 1, 1, 1, 1, 1qu, tp5, 1, 1, 1, 1q, p5, 4q, p2, 2, 2, 2, 1qu,

tp3, 3, 3qu, tp4, 2, 2, 1q, p3, 3, 2, 1q, p4, 3, 1, 1q, p4, 3, 2qu 4
10 tp10q, p1, 1, 1, 1, 1, 1, 1, 1, 1, 1qu, tp4, 3, 2, 1qu, tp5, 5q, p2, 2, 2, 2, 2qu,

tp4, 4, 2q, p4, 2, 2, 2q, p4, 3, 3q, p3, 3, 2, 2q, p4, 4, 1, 1q, p3, 3, 3, 1qu 4
11 tp11q, p1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1qu, tp3, 3, 3, 2q, p5, 3, 3q, p4, 4, 1, 1, 1qu,

tp5, 2, 2, 2q, p3, 3, 3, 1, 1q, p4, 4, 3qu, tp4, 4, 2, 1q, p4, 3, 2, 2q, p4, 3, 3, 1qu,
tp6, 1, 1, 1, 1, 1q, p2, 2, 2, 2, 2, 1q, p6, 5qu 5

12 tp12q, p1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1qu, tp3, 3, 3, 3q, p4, 4, 4qu, tp4, 4, 2, 2qu,
tp2, 2, 2, 2, 2, 2q, p6, 6qu, tp3, 3, 3, 2, 1q, p5, 4, 3q, p5, 2, 2, 2, 1q, p5, 4, 1, 1, 1qu 5

13 tp13q, p1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1qu, tp4, 3, 3, 3q, p4, 4, 4, 1qu,
tp5, 5, 3q, p5, 2, 2, 2, 2q, p3, 3, 3, 3, 1q, p5, 5, 1, 1, 1q, p3, 3, 3, 2, 2q, p5, 4, 4qu,

tp5, 3, 3, 1, 1q, p4, 4, 2, 2, 1q, p5, 4, 2, 2q, p4, 4, 3, 2qu,
tp4, 4, 3, 1, 1q, p5, 3, 3, 2qu, tp2, 2, 2, 2, 2, 2, 1q, p7, 6q, p7, 1, 1, 1, 1, 1, 1qu 6

14 tp14q, p1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1qu, tp2, 2, 2, 2, 2, 2, 2q, p7, 7qu,
tp5, 3, 3, 3q, p4, 4, 4, 2q, p4, 4, 3, 3q, p5, 5, 2, 2q, p4, 4, 4, 1, 1q, p4, 4, 2, 2, 2qu,

tp6, 4, 4q, p3, 3, 3, 3, 2q, p5, 5, 1, 1, 1, 1qu, tp6, 2, 2, 2, 2q, p5, 5, 4q, p3, 3, 3, 3, 1, 1qu,
tp5, 3, 3, 2, 1q, p5, 4, 2, 2, 1q, p5, 4, 3, 2q, p5, 4, 3, 1, 1q, p4, 4, 3, 2, 1qu 6

15 tp15qp1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1qu, tp6, 3, 3, 3q, p4, 4, 4, 3q, p4, 4, 4, 1, 1, 1qu,
tp5, 4, 3, 2, 1qu, tp5, 5, 5q, p3, 3, 3, 3, 3qu,

tp4, 4, 3, 3, 1q, p5, 5, 2, 2, 1q, p4, 4, 4, 2, 1q, p5, 4, 4, 1, 1q, p5, 3, 3, 3, 1q,
p5, 4, 2, 2, 2q, p5, 5, 3, 1, 1q, p5, 4, 3, 3q, p5, 5, 3, 2q, p4, 4, 3, 2, 2q,

p5, 3, 3, 2, 2q, p5, 4, 4, 2qu, tp8, 1, 1, 1, 1, 1, 1, 1q, p2, 2, 2, 2, 2, 2, 2, 1q, p8, 7qu,
tp6, 5, 4q, p6, 2, 2, 2, 2, 1q, p6, 5, 1, 1, 1, 1q, p3, 3, 3, 3, 2, 1qu 7

16 tp16q, p1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1qu, tp4, 4, 4, 4qu,
tp2, 2, 2, 2, 2, 2, 2, 2q, p8, 8qu, tp4, 4, 4, 2, 2q, p5, 5, 3, 3q, p5, 5, 2, 2, 2qu,

tp3, 3, 3, 3, 3, 1q, p3, 3, 3, 3, 2, 2q, p6, 2, 2, 2, 2, 2q, p6, 6, 1, 1, 1, 1q, p6, 6, 4q, p6, 5, 5qu,
tp5, 5, 3, 2, 1q, p5, 4, 3, 2, 2q, p5, 4, 4, 2, 1q, p5, 4, 3, 3, 1qu 6

Table 6: Maximal Block Bulgarian Solitaire Recurrent Cycles

5.10 Number of Square Staircase Partitions for Select n

Here we provide some data on the number of square staircase partitions for small n, as well
as some larger n of interest.
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n #Λpa, bq n #Λpa, bq n #Λpa, bq

1 1 11 0 36 2
2 0 12 1 144 2
3 1 13 0 44100 3
4 1 14 0 100800 2
5 0 15 1 11524800 3
6 1 16 1
7 0 17 0
8 0 18 0
9 1 19 0
10 1 20 0

Table 7: The number of square staircase partitions for select n

5.11 Maximal Block Bulgarian Solitaire Level Sizes for Squares

Here we provide data on level sets for k ˆ k squares in Maximal Block Bulgarian Solitaire.
The data strongly supported Proposition 4.6, but we were unable to find any other definite
patterns. There are a few possible sequences in OEIS that may coincide with the second
level set or the number of levels, but due to computing limitations, we were unable to collect
enough data to determine anything concrete.

n k Level Sizes Levels Orbit Size
1 1 (1) 1 1
4 2 (1,1,1) 3 3
9 3 (1,2,4,4,3,1) 6 15
16 4 (1,3,8,11,12,11,6,1) 8 53
25 5 (1,4,14,28,40,43,32,15,5,1) 10 183
36 6 (1,5,21,51,90,123,122,80,36,14,5,1) 12 549
49 7 (1,6,30,90,192,312,380,335,215,100,38,20,11,3) 14 1733

Table 8: Maximal BBS Levels and Orbit Sizes for Squares
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5.12 Small Maximal Minnesota Solitaire Game Graphs

Here we provide some Minnesota Solitaire game graphs for small n. Notice that in the n “ 4
case, we have level sizes of r1, 2, 1, 1s, which fits with Conjecture 4.14.

n=1

p1q

n=2

p2q

p1, 1q

n=3

p3qp2, 1q

p1, 1, 1q

n=4

p4q

p3, 1q

p2, 2q

p2, 1, 1q

p1, 1, 1, 1q

n=5

p5q

p1, 1, 1, 1, 1q

(4,1)(3,2)

(3,1,1)

(2,2,1)

(2,1,1,1)

n=6

(6)

(5,1)

(4,2)

(4,1,1)

(3,3)

(3,2,1)

(3,1,1,1) (2,2,2)

(2,2,1,1)

(2,1,1,1,1)

(1,1,1,1,1,1)

5.13 Small Recurrent Cycles for Maximal Minnesota Solitaire

Here we provide data on recurrent cycles for Maximal Minnesota Solitaire. We highlight the
recurrent cycles of size one in blue. Note that they are all stretched staircase partitions, which
supports Proposition 4.8. Fitting with Corollary 4.2 and Theorem 4.10, Maximal Minnesota
Solitaire has at least as many recurrent cycles of size 1 as Maximal Block Bulgarian Solitaire.
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n Recurrent Cycles Number of Cycles
1 tp1qu 1
2 tp2qu 1
3 tp3qu, tp2, 1qu 2
4 tp4qu 1
5 tp5qu, tp3, 2q, p4, 1qu 2
6 tp6qu, tp4, 2qu, tp3, 2, 1qu 3
7 tp7qu, tp6, 1q, p5, 2q, p4, 3qu 2
8 tp8qu 1
9 tp9qu, tp6, 3qu, tp8, 1q, p7, 2q, p5, 4qu, tp5, 3, 1q, p6, 2, 1q, p4, 3, 2qu 4
10 tp10qu, tp4, 3, 2, 1qu, tp6, 4q, p8, 2qu, tp5, 3, 2q, p6, 3, 1qu 4
11 tp11qu, tp7, 4q, p8, 3q, p10, 1q, p9, 2q, p6, 5qu 2
12 tp12qu, tp8, 4qu, tp6, 4, 2qu, tp6, 5, 1q, p8, 3, 1q, p5, 4, 3q, p9, 2, 1q, p7, 3, 2qu 4
13 tp13qu, tp10, 3q, p12, 1q, p7, 6q, p9, 4q, p11, 2q, p8, 5qu 2
14 tp14qu, tp12, 2q, p8, 6q, p10, 4qu, tp6, 5, 3q, p9, 3, 2q, p7, 6, 1qu, 4

tp5, 4, 3, 2q, p6, 4, 3, 1q, p7, 4, 2, 1q, p8, 3, 2, 1qu

15 tp15qu, tp10, 5qu, tp5, 4, 3, 2, 1qu,
tp14, 1q, p11, 4q, p13, 2q, p8, 7qu, tp9, 6q, p12, 3qu,
tp12, 2, 1q, p11, 3, 1q, p7, 6, 2q, p9, 4, 2q, p8, 6, 1q, 8

p7, 5, 3q, p6, 5, 4q, p10, 3, 2qu, tp8, 4, 3q, p9, 5, 1qu,
tp7, 4, 3, 1q, p8, 4, 2, 1q, p6, 4, 3, 2qu

16 tp16qu, tp7, 6, 3q, p9, 5, 2q, p8, 5, 3q, p9, 6, 1q, p9, 4, 3qu 2

Table 9: Maximal Minnesota Solitaire Recurrent Cycles

5.14 Number of Stretched Staircase Partitions for Select n

Here we provide the data that led to Theorem 4.10.

n #Γpa,bq n #Γpa,bq n #Γpa,bq

1 1 11 1 21 3
2 1 12 3 22 1
3 2 13 1 23 1
4 1 14 1 24 3
5 1 15 3 25 1
6 3 16 1 26 1
7 1 17 1 27 2
8 1 18 3 28 2
9 2 19 1 29 1
10 2 20 2 30 5

Table 10: Number of fixed partitions under M for n up to 30

5.15 Data for Proposition 4.14

Here we provide data in support of Proposition 4.14.
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5.15.1 Level Sizes

n Level Sizes
4 [1,2,1,1]
9 [1,2,1,1,1]
25 [1,2,1,1,1,1,1]
49 [1,2,1,1,1,1,1,1,1]

Table 11: Level sizes for stretching the partition p1q by squares of primes

5.15.2 Game Graphs for Proposition 4.14

Here we show the game graphs corresponding to the previous section.

p “ 2

p4q

p2, 2qp1, 1, 1, 1q

p3, 1q

p2, 1, 1q

p “ 3

p9q

p3, 3, 3qp1, 1, . . . , 1q

p4, 4, 1q

p5, 2, 1, 1q

p3, 2, 2, 1, 1q

p “ 5

p25q

p5, 5, 5, 5, 5qp1, 1, . . . , 1q

p6, 6, 6, 6, 1q

p7, 7, 7, 2, 1, 1q

p8, 8, 3, 2, 2, 1, 1q

p9, 4, 3, 3, 2, 2, 1, 1q

p5, 4, 4, 3, 3, 2, 2, 1, 1q

p “ 7

pp2q

p7, 7, . . . , 7qp1, 1, . . . , 1q

p8, 8, . . . , 8, 1q

p9, 9, . . . , 9, 2, 1, 1q

p10, 10, 10, 10, 3, 2, 2, 1, 1q

p11, 11, 11, 4, 3, 3, 2, 2, 1, 1q

p12, 12, 5, 4, 4, . . . , 1, 1q

p13, 6, 5, 5, . . . , 1, 1q

p7, 6, 6, . . . , 1, 1q
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