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A COLORFUL HOCHSTER FORMULA AND UNIVERSAL PARAMETERS
FOR FACE RINGS

ASHLEIGH ADAMS AND VICTOR REINER

This paper has two related parts. The first generalizes Hochster’s formula on resolutions of Stanley–
Reisner rings to a colorful version, applicable to any proper vertex-coloring of a simplicial complex. The
second part examines a universal system of parameters for Stanley–Reisner rings of simplicial complexes,
and more generally, face rings of simplicial posets. These parameters have good properties, including
being fixed under symmetries, and detecting depth of the face ring. Moreover, when resolving the face
ring over these parameters, the shape is predicted, conjecturally, by the colorful Hochster formula.

1. Introduction

This paper has two closely related parts, concerned with resolutions of Stanley–Reisner rings of simplicial
complexes and face rings of simplicial posets as defined by Stanley in [21].

Part I: Stanley–Reisner rings. The first part deals with the Stanley–Reisner ring k[1] for an abstract
simplicial complex 1 on vertex set V = [n] := {1, 2, . . . , n}. Recall that

k[1] := k[x1, . . . , xn]/I1,

where the ideal I1 is the k-linear span of all monomials not supported on a face of 1.
Assume that one is given a map κ : V → [d] which is a proper vertex d-coloring of 1 in the sense

that every edge {i, i ′
} of 1 has κ(i) ̸= κ(i ′). Section 3 below discusses how this endows k[1] with

an Nd -multigrading, in which deg(xi ) is the standard basis vector ϵκ(i) in Nd . It is also shown there that
k[1] is a finitely generated Nd -graded module over the polynomial ring A := k[z1, . . . , zd ] via a ring map

A → k[1], z j 7→ γ j :=
∑

i∈κ−1( j)
xi for j = 1, 2, . . . , d.

The shape of the minimal free resolution of k[1] as an A-module is described by our first main result, a
colorful Hochster formula (Theorem 3.3), generalizing a celebrated formula of Hochster [14, Theorem 5.1]
for the case d = n with trivial coloring κ assigning each vertex a different color. Our formula asserts
that, for b in Nd , the b-multigraded component of TorA

∗
(k[1], k) vanishes unless b lies in {0, 1}

d , so
b =

∑
j∈S ϵ j for a subset S ⊆ [d], in which case

TorA
m(k[1], k)b ∼= H̃ #S−m−1(1|S, k).
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Here H̃∗(−, k) denotes reduced simplicial cohomology with coefficients in k, and 1|S is the S-color-
selected subcomplex of 1, consisting of its simplices whose vertices all have κ-coloring lying in S.

Part II: Face rings and universal parameters. The second part of this paper connects the colorful
Hochster formula with our original motivation: to better understand the face rings associated by Stanley
to what he called simplicial posets, along with their symmetries. These are posets having a unique bottom
element in which all lower intervals are isomorphic to Boolean algebras. Each simplicial poset P is the
face poset of an associated regular CW-complex 1, generalizing an abstract simplicial complex. Stanley
associated to each of them a face ring k[1] = S/J1 generalizing the Stanley–Reisner ring; see Section 4
below. Here S is a polynomial ring having a variable yF for each nonempty face F of 1 (with convention
that the empty face ∅ has y∅ := 1), while J1 is the ideal generated by two kinds of quadratic relations:
one sets yF yF ′ = 0 in k[1] for faces F, F ′ having no face G containing both of them, and otherwise

yF yF ′ = yF∩F ′

∑
G

yG,

where the sum is over faces G in 1 which are minimal among those containing both F, F ′. When 1 is
actually a simplicial complex, the above face ring is isomorphic to the usual Stanley–Reisner ring for 1,
via the map sending yF 7→

∏
i∈F xi to the product of variables corresponding to vertices of F .

We were originally motivated to study the face ring k[1] for any such complex 1 as a graded
representation of the group of (cellular) automorphisms of 1. A helpful feature in this regard is a certain
universal system of parameters, discussed in Section 5, that has appeared in work of De Concini, Eisenbud
and Procesi [8] on algebras with straightening laws, work of Garsia and Stanton [11] on invariant theory
of permutation groups, work of D. E. Smith [18] on sheaves on posets, and most recently work of Herzog
and Moradi [13]. The face ring k[1] has Krull dimension d when 1 has topological dimension d − 1,
and the sequence of elements 2 = (θ1, . . . , θd) defined by

θ j :=
∑

faces F∈1
dim(F)= j−1

yF

turn out to give a universal system of parameters, fixed pointwise by any cellular automorphism of 1.
Generalizing the work of D. E. Smith, Theorem 5.3 will show that these parameters 2 detect depth

of k[1] by

depth k[1] = max
{
δ : (θ1, θ2, . . . , θδ) forms a regular sequence on k[1]

}
.

We then go on to conjecture (Conjecture 6.1) the shape of the N-graded minimal resolution of the face
ring k[1] over the universal parameter ring k[2] = k[θ1, . . . , θd ], and connect it to the colorful Hochster
formula from Part I. Because k[1] is an algebra with straightening law [8] over the face poset of 1,
it may be regarded as a Gröbner deformation of the Stanley–Reisner ring k[Sd 1] for the barycentric
subdivision Sd 1. This subdivision has a canonical proper vertex d-coloring κ which assigns color j
to the barycenter vertex of each ( j − 1)-dimensional face. Therefore, as in the first part of this paper,
k[Sd 1] has a minimal free resolution over a “colorful” parameter ring A = k[0] = k[γ1, . . . , γd ], and
the Nd -graded resolution Betti numbers are predicted by the colorful Hochster formula Theorem 3.3. The
universal parameter ring k[2] for k[1] maps to this colorful parameter ring k[0] for k[Sd 1] under the
Gröbner deformation. Conjecture 6.1 asserts that, after specializing the Nd -multigrading of k[Sd 1] via
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the map Nd
→ N sending ϵ j 7→ j, the N-graded Betti numbers are equal:

(1) Tork[2]

m (k[1], k) j ∼= Tork[0]

m (k[Sd 1], k) j ∼=

⊕
S⊆[d]

j=
∑

s∈S s

H̃ #S−m−1((Sd 1)|S, k).

In fact, it was the form of the right side of (1) in examples that led us to the formulation of Theorem 3.3.

Remark 1.1. The authors thank Patricia Klein for pointing out that, since k[Sd 1] is a square-free
Gröbner deformation of k[1], Conjecture 6.1 is in the spirit of a conjecture of Herzog, proven by
Conca and Varbaro [7], concerning preservation of extremal Betti numbers under square-free Gröbner
deformations. It is unclear why all Betti numbers would be preserved in this case.

The rest of the paper is structured as follows.
Section 2 reviews material on Stanley–Reisner rings, introduces their proper vertex-colorings, and

discusses the group of color-preserving symmetries, as well as Hilbert series, f -vectors and h-vectors that
take this symmetry into account. It also discusses order complexes of posets, which naturally come with a
proper vertex-coloring, including some of our motivating examples with large groups of symmetries.

Section 3 states and proves the colorful Hochster formula, Theorem 3.3.
Section 4 reviews simplicial posets and their face rings, including their relationship to algebras with

straightening laws, and Gröbner deformations.
Section 5 explains why the universal parameters 2 really are a system of parameters for the face

ring k[1], and proves that they detect its depth in Theorem 5.3. Section 6 states Conjecture 6.1 on the
k[2]-resolution of k[1], and indicates some evidence in its favor.

2. Stanley–Reisner review and set-up

Stanley–Reisner rings. Let 1 be an abstract simplicial complex on a finite vertex set

V = [n] := {1, 2, . . . , n},

meaning that 1 is a collection of subsets F ⊂ [n] called faces, with the property that whenever F lies
in 1, then any subset F ′

⊆ F also lies in 1.
A face F in 1 has dimension dim(F) := #F − 1. Zero- and one-dimensional faces are called vertices

and edges, respectively. The dimension dim(1) := max{dim(F) : F ∈ 1}. Say that 1 is pure if all of its
maximal faces have the dimension, namely dim(1).

Fix a field k, and let k[x] := k[x1, . . . , xn] be the polynomial ring in variables indexed by the vertices
V =[n]. For a vector a = (a1, . . . , an) in Nn , we use multiindex notation for monomials xa

:= xa1
1 · · · xan

n .

Letting e1, . . . , en be standard basis vectors in Zn , the square-free monomial indexed by S ⊆ [n] is

xS
:=

∏
i∈S

xi = x
∑

i∈S ei .

Definition 2.1. For a simplicial complex 1 on vertices V = [n], the Stanley–Reisner ring k[1] is

k[1] := k[x]/I1,

where the Stanley–Reisner ideal I1 is generated by all square-free monomials xS with S not in 1.

It is easily seen that k[1] has k-basis the monomials xa with support set supp(a) := {i : ai > 0} in 1.
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Vertex-colorings.

Definition 2.2. A (proper, vertex-) d-coloring of 1 is a map V κ
−→ [d] such that the vertices in any

face F in 1 have #F distinct colors, that is, #κ(F) = #F . Equivalently, κ(i) ̸= κ( j) for all edges {i, j}
in 1.

There are two extreme cases of such colorings:

• The trivial n-coloring κ is the identity map V = [n] → [n] assigning every vertex its own color.

• A balanced d-coloring is a proper coloring κ with d = dim(1) + 1, which may or may not exist;
when one does exist then 1 is called a balanced simplicial complex.

Given a d-coloring κ of 1, one can endow k[x] with an Nd-multigrading in which deg(xi ) := ϵκ(i),
where ϵ j is the j-th standard basis vector in Zd . One can check that the Stanley–Reisner ideal I1 is
homogeneous with respect to this Nd-grading, and hence this induces an Nd-multigrading on k[1] =

k[x]/I1.

Symmetries. Because our motivation was originally representation-theoretic,1 we wish to incorporate
the action on all of these objects of a subgroup of the simplicial automorphism group Aut(1), namely
the subgroup of color-preserving automorphisms

Autκ(1) :=
{
g ∈ Aut(1) : κ(g(i)) = κ(i) for all i in V = [n]

}
.

This group acts on k[1] preserving the Nd -multigrading. Thus, for each fixed multidegree b in Nd , the b-
homogeneous component of k[1], denoted k[1]b, is not only a k-vector space, but also a representation of
the group Autκ(1), or a module over the group algebra k[Autκ(1)]. To keep track of these representations
with fields k of any characteristic, it is convenient to introduce a certain Grothendieck ring.

Definition 2.3. For a finite group G (such as any subgroup G of Autκ(1)), define the Grothendieck
ring Rk(G) of virtual kG-modules first as an abelian group: Rk(G) is the quotient of the free Z-module
having basis elements [U ] for each kG-module U , in which one mods out by the relations

• [U ] = [U ′
] if U ∼= U ′ as kG-modules, and

• U2 = U1 + U3 when 0 → U1 → U2 → U3 → 0 is a short exact sequence of kG-modules.

Then ring multiplication in Rk(G) is induced from [U ] · [U ′
] := [U ⊗U ′

], which descends to the quotient.

The Jordan–Hölder theorem implies that Rk(G) is a free Z-module, with a Z-basis given by the classes
{[U1], . . . , [Ut ]} of the inequivalent simple kG-modules Ui . Among these is the class of the trivial
one-dimensional module k, on which every g acts as the identity; the class of this trivial module is the
multiplicative identity in Rk(G), and will therefore be denoted by 1.

Equivariant assertions that involve Rk(G) can always be specialized to nonequivariant ones that ignore
the kG-module structure, by applying the dimension homomorphism, a ring map defined as

(2) Rk(G)
dim
−→ Z, [U ] 7→ dimk U.

1We hope the representation-theoretic baggage does not greatly annoy readers interested solely in Stanley–Reisner rings.
Such readers can safely ignore discussions involving the phrases symmetry, equivariant, and Grothendieck ring.
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Hilbert series and equivariant Hilbert series. Let 1 be a simplicial complex 1 with a proper d-
coloring κ , and G a subgroup of Autκ(1)). One can then keep track of the Nd-graded Hilbert series
lying in Z[[t]] := Z[[t1, . . . , td ]], and more generally its equivariant Hilbert series lying in Rk(G)[[t]]:

Hilb(k[1], t) :=
∑

b∈Nd
dimk k[1]b · tb, Hilbeq(k[1], t) :=

∑
b∈Nd

[k[1]b] · tb.

To write down formulas for these Hilbert series, we introduce the following notions.

Definition 2.4. For any proper d-coloring κ of 1, define the κ-flag f -vector ( f κ
S )S⊆[d] with entries

f κ
S (1) = #{F ∈ 1 : κ(F) = S},

and the κ-flag h-vector (hκ
S)S⊆[d] with entries

hκ
S(1) :=

∑
T :T ⊆S

(−1)S\T f κ
T (1)

or equivalently, via inclusion-exclusion

f κ
S (1) :=

∑
T :T ⊆S

hκ
T (1).

More generally, define [ f κ
S (1)] in Rk(G) to be the class of the G-permutation representation on the set

{F ∈ 1 : κ(F) = S},

or the sum of the coset representations for the stabilizer subgroups of orbit representatives of this set.
Then define the element [hκ

S(1)] as (compare Stanley [20, Section 1])

(3) [hκ
S(1)] :=

∑
T :T ⊆S

(−1)#S−#T
[ f κ

S (1)] = (−1)#S−1χ̃eq(1|S),

where χ̃eq(1|S) is the (equivariant) reduced Euler characteristic

(4) χ̃eq(1|S) =
∑

i≥−1
(−1)i

[C̃ i (1|S, k)] =
∑

i≥−1
(−1)i

[H̃ i (1|S, k)]

for the color-selected subcomplex

(5) 1|S := {F ∈ 1 : κ(F) ⊆ S}.

Of course, applying the dimension homomorphism (2) to [ f κ
S (1)], [hκ

S(1)] recovers their nonequivariant
versions, that is, f κ

S (1) = dim[ f κ
S (1)] and hκ

S(1) = dim[hκ
S(1)].

The next proposition generalizes formulas of Stanley [22, p. 54] and Garsia and Stanton [11, (0.8)].

Proposition 2.5. Given any d-coloring κ of a simplicial complex 1, one has the following expressions
for the Nd -graded equivariant Hilbert series

(6) Hilbeq(k[1], t) =
∑

S⊆[d]

[ f κ
S (1)] · t S∏
j∈S(1 − t j )

=
1∏d

j=1(1 − t j )

∑
S⊆[d]

[hκ
S(1)] · t S
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and nonequivariant versions

Hilb(k[1], t) =

∑
S⊆[d]

f κ
S (1) · t S∏
j∈S(1 − t j )

=
1∏d

j=1(1 − t j )

∑
S⊆[d]

hκ
S(1) · t S.

Proof. It suffices to prove (6), and apply the dimension homomorphism (2) to deduce the nonequivariant
versions. The first equality in (6) comes from observing that a face F ∈ 1 with colors κ(F) = S has∑

monomials m
supp(m)=F

tdeg
Nd (m)

=

∏
j∈S

(t j + t2
j + · · · ) =

∏
j∈S

t j

1 − t j
=

t S∏
j∈S

(1 − t j )
.

The second equality in (6) puts the sum over the common denominator
∏d

j=1(1 − t j ) with this numerator:∑
S⊆[d]

[ f κ
S (1)] · t S

∏
j∈[d]\S

(1 − t j ) =

∑
S⊆[d]

[ f κ
S (1)]

∑
T :S⊆T ⊆[d]

(−1)#S−#T tT
=

∑
T ⊆[d]

[hκ
T (1)] · tT . □

Example 2.6. Consider this two-dimensional simplicial complex 1 on vertex set V = [8]:

1 =

1

2 3
4

56

7

8

Using the trivial 8-coloring κ , the group Autκ(1) is trivial, and the N8-multigraded Hilbert series is

Hilb(k[1], t) = 1 +

8∑
i=1

ti
1 − ti

+

∑
i j in

{15,16,18,24,26,
27,28,34,35,37,

38,48,58,68}

ti t j

(1 − ti )(1 − t j )
+

∑
i jk in

{158,168,248,
268,348,358}

ti t j tk
(1 − ti )(1 − t j )(1 − tk)

,

which specializes via ti = t to an N-graded Hilbert series in Z[[t]]:

(7) Hilb(k[1], t) = 1 +
8t

1 − t
+

14t2

(1 − t)2 +
6t3

(1 − t)3 =
1 + 5t + t2

− t3

(1 − t)3 .

On the other hand, 1 happens to have a proper 3-coloring κ : V → [3]:

1, 2, 3 7→ 1, 4, 5, 6, 7 7→ 2, 8 7→ 3.

This κ has one nontrivial color-preserving symmetry, σ = (1)(4)(7)(8)(23)(56), generating the two-
element group G = Autκ(1) = {1, σ }. Assuming that k does not have characteristic 2, there are exactly
two simple kG-modules, both one-dimensional: the trivial module 1 and the nontrivial module in which
σ scales k by −1. Denoting the class of the nontrivial module by ϵ, one can identify the Grothendieck
ring for G as Rk(G) ∼= Z[ϵ]/(ϵ2

− 1). One can then tabulate the κ-flag f -vector and h-vector entries,
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along with their equivariant generalizations, as follows, using the fact that G-orbits of faces in 1 either
have size one or two, and contribute either 1 or 1 + ϵ to the equivariant f -vector entries:

S f κ
S hκ

S [ f κ
S ] [hκ

S]

∅ 1 1 1 1
{1} 3 2 2 + ϵ 1 + ϵ

{2} 4 3 3 + ϵ 2 + ϵ

{3} 1 0 1 0
{1, 2} 8 2 4 + 4ϵ 2ϵ

{1, 3} 3 0 2 + ϵ 0
{2, 3} 3 −1 2 + ϵ −1

{1, 2, 3} 6 −1 3 + 3ϵ −ϵ

For example, [hκ
{1,2}

] = 2ϵ agrees with the subcomplex 1{1,2} being a graph with two independent 1-cycles
(or 1-cocycles), both reversing orientation under the action of σ . On the other hand, [hκ

{2,3}
] = −1 because

the subcomplex 1{2,3} is a graph with H̃ 1
= 0 but H̃ 0

= k, where σ fixes the 0-cohomology class.
The hκ

S entries in the above table give, via Proposition 2.5, this N3-graded Hilbert series in Z[[t1, t2, t3]]:

Hilb(k[1], t) =
1 + 2t1 + 3t2 + 2t1 t2 − t2 t3 − t1 t2t3

(1 − t1)(1 − t2)(1 − t3)
.

Specializing ti = t again gives (7) above. The [hκ(S)] entries give this refinement in Rk(G)[[t1, t2, t3]]:

(8) Hilbeq(k[1], t) =
1 + (1 + ϵ)t1 + (2 + ϵ)t2 + 2ϵt1 t2 − t2 t3 − ϵt1 t2 t3

(1 − t1)(1 − t2)(1 − t3)
.

Examples: order complexes. An important example of a balanced simplicial complex is the order
complex for a finite poset P , recalled here.

Definition 2.7. Given a finite poset P , its order complex is the simplicial complex 1P with vertex set
V := P , whose faces F are the totally ordered subsets (chains) of P .

If the largest chain in P has d elements, then 1P has a proper d-coloring V := P κ
−→ [d] defined

by κ(p) = ℓ where ℓ is the number of elements in the longest chain p1 < p2 < · · · < pℓ := p with top
element p. In this case, poset automorphisms of P give rise to simplicial automorphisms of 1P , and all
such automorphisms respect this coloring κ , so they lie in Autκ(1P).

If the poset P has all of its maximal chains of length d, then 1P is a pure (d − 1)-dimensional
simplicial complex. The situation where 1P is not only pure, but also Cohen–Macaulay over k has
been explored extensively since the work of Stanley [20] on [ f κ

S ], [hκ
S] in this setting2. In that situation,

because H̃ i (1|S, k) = 0 for i ̸= #S − 1, the equivariant reduced Euler characteristic χ̃(1|S) has only one
nonvanishing term when computed as in the right side of (4), simplifying the κ-flag h-vector

(9) [hκ
S(1)] = [H̃ #S−1(1|S, k)].

Stanley [20] gave explicit irreducible decompositions for [hκ
S(1)] in several interesting families of

Cohen–Macaulay order complexes 1P , some of which we discuss briefly here; see [20] for more details.

2In [20], representations of Autκ (1) are over k = C, and [ f κ
S ], [hκ

S] are studied via their characters, called αS, βS there.
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Example 2.8. The Boolean algebra P = 2[n] is the poset of all subsets of [n], ordered via inclusion. Its
order complex 1P is Cohen–Macaulay over any field k. The symmetric group Sn is the group of poset
automorphisms of P , and hence a subgroup of Autκ(1P). When k has characteristic zero, the simple
k[Sn]-modules are indexed by (number) partitions λ of n. Denote by [λ] the class within Rk(Sn) of the
simple module indexed by λ. Recall that the dimension of this simple module is the number of standard
Young tableau Q of shape λ, which are labelings of the cells of the boxes in the Ferrers diagram for λ

by the numbers 1, 2, . . . , |λ| = n, increasing left-to-right in rows, and increasing top-to-bottom down
columns. For example,

Q = 1 2 4 7
3 6
5

is a standard Young tableau of shape λ(Q) := (4, 2, 1). One has a notion of descent set for such a tableau:

Des(Q) :=
{
i ∈ [n − 1] : i + 1 appears in a lower row than i within Q

}
.

For example, the tableau Q shown above has Des(Q) = {2, 4}.
Stanley then proves the following expression [20, Theorem 4.3] for the numerator on the far right side

of (6), crediting it in different language to L. Solomon:

(10)
∑

S⊂[n]

[hκ
S(1P)] · t S

=
∑
Q

[λ(Q)] · tDes(Q),

here Q runs over all standard Young tableaux of size n. This gives, via Proposition 2.5, a very explicit
expression for the Sn-equivariant Hilbert series of k[1P]:

(11) Hilbeq(k[1P], t) =

∑
Q[λ(Q)] · tDes(Q)∏n

i=1(1 − ti )
.

Example 2.9. Stanley [20, Section 6] also proves a type B analogue of the previous results. He replaces
the Boolean algebra with the poset of boundary faces of the n-dimensional cross-polytope, that is, the
convex hull of the vectors {±e1, . . . ,±en} where e1, . . . , en are standard basis vectors in Rn . This face
poset P is isomorphic to a Cartesian product {0, +1, −1}

n , with this componentwise order:

0

+1 −1

The isomorphism sends an element P = (ϵ1, . . . , ϵn) in {0, +1, −1}
n to the boundary face of the cross-

polytope which is the convex hull of the vectors {ϵi · ei : ϵi ̸= 0}.
It is again true that 1P is Cohen–Macaulay over any field k. The group of poset automorphisms of P

is the hyperoctahedral group Bn of all n × n signed permutation matrices, that is, matrices in {0, ±1}
n×n

having one nonzero entry in each row and column. Hence Bn is a subgroup of the group Autκ(1P).
When k has characteristic zero, the simple k[Bn]-modules are indexed by double partitions of n, which

are ordered pairs (λ(1), λ(2)) of partitions whose sum of entries |λ(1)
|+ |λ(2)

| = n. Denote by [(λ(1), λ(2))]

the class of this simple module within Rk(Bn). The dimension of this simple module is given by the
number of double standard Young tableaux Q = (Q1, Q2) of shape (λ(1), λ(2)), where each Qi is a
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labeling of the cells of λ(i) with values in [n] so that each i in [n] appears exactly once, either in Q1

or Q2.
Stanley defines a notion of descent set for a double standard Young tableau Q = (Q1, Q2):

Des(Q) :=
{
i ∈ [n − 1] : i, i + 1 both appear in the same Q j , and i + 1 appears in a lower row than i

}
∪

{
i ∈ [n] : i appears in Q1, and i + 1 in Q2, or i = n and n appears in Q1

}
.

Repeating one of his examples, this double standard Young tableau

Q = (Q1, Q2) =

 1 4 5
6 9

, 2 7
3
8


has Des(Q) = {1, 2, 5, 6, 7, 9} and (λ(1)(Q), λ(2)(Q)) = ((3, 2), (2, 1, 1)).

He then states and proves the following result [20, Theorem 6.4] analogous to (10):

(12)
∑

S⊂[n]

[hκ
S(1P)] · t S

=
∑
Q

[λ(1)(Q), λ(2)(Q)] · tDes(Q),

where Q runs over all double standard Young tableaux with n cells. Then Proposition 2.5 again gives a
very explicit expression for the Sn-equivariant Hilbert series of k[1P]:

(13) Hilbeq(k[1P], t) =

∑
Q[λ(1)(Q), λ(2)(Q)] · tDes(Q)∏n

i=1(1 − ti )
.

Our last family of Cohen–Macaulay order complexes 1P were studied by Athanasiadis [2], who
decomposed [hκ

S(1P)] into irreducibles. In fact, this family provided the original motivation for our
study.

Example 2.10. The poset P of injective words on n letters has as its underlying set all words in the
alphabet [n] using each letter at most once. One has u ≤ v in P if u is a (not necessarily contiguous)
subword of v = (v1, . . . , vm), meaning that u = (vi1, . . . , viℓ) for some indices 1 ≤ i1 < i2 < · · · < iℓ ≤ m.
We depict P here for n = 2, 3, abbreviating a word v = (v1, v2, . . . , vm) as v1v2 · · · vm :

∅

1 2

12 21

∅

1 2 3

12 21 13 31 23 32

123 132 213 231 312 321

The symmetric group Sn permutes the letters [n], and thus permutes the injective words u = (u1, . . . , uℓ)

via w(u) := (w(u1), . . . , w(uℓ)). Hence Sn is a subgroup of poset automorphisms of P , and of Autκ(1P).
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It is known that 1P is Cohen–Macaulay over any field k. We review here Athanasiadis’s description of
[hκ

S(1P)]; see [2] for more details. When k has characteristic zero, we will use the same notation [λ] for the
class of the irreducible kSn-module indexed by λ as in Example 2.8. For permutations w = (w1, . . . , wn)

in Sn introduce their usual descent set

Des(w) := {i ∈ [n − 1] : wi > wi+1}.

For each pair (w, Q) of a permutation w in Sn and standard Young tableau Q of size n, introduce a certain
statistic τ(w, Q) taking values in {0, 1, 2 . . . , n}, defined as follows. If Des(w) = S = {s1 < s2 < · · · < sk},
with convention s0 = 0, sk+1 = n, let wS be the unique longest permutation in Sn (the one with most
inversions i < j with w(i)>w( j)) satisfying Des(wS)= S = Des(w). Then define τ(w, Q) be the largest
index i in {0, 1, . . . , k +1} for which both w(x) = wS(x) for all x > sk−i+1 and min Des(Q) ≥ n−sk−i+1.

Athanasiadis then proves this expression [2, Theorem 1.2] for the numerator on the far right of (6):

(14)
∑

S⊂[n]

[hκ
S(1P)] · t S

=
∑
Q

[λ(Q)]

( ∑
w∈Sn

τ(w,Q) odd

tDes(w)
+ tn

∑
w∈Sn

τ(w,Q) even

tDes(w)

)
.

Here Q runs over all standard Young tableaux with n cells. Again Proposition 2.5 gives an expression for
the Sn-equivariant Hilbert series of k[1P], with numerator (14) and denominator

∏n
i=1(1 − ti ).

Equivariant resolutions and Tor. One way to compute the Hilbert series of a finitely generated graded
module M over a graded ring A is by an A-free resolution of M . This still holds in an equivariant setting
where one has a finite group G acting on M in a grade-preserving fashion, but one must be slightly more
carefully about the statements. We collect here some of the facts that we will need in our setting.

We will work with A = k[z1, . . . , zd ] a polynomial ring, possibly multigraded, and M a finitely
generated multigraded A-module. Assume one is given a finite group G that acts trivially on A, that is,
fixing it pointwise. Also assume that G acts on M in a grade-preserving fashion that commutes with the
A-module structure, that is, g(am) = ag(m) for all a in A and m in M .

Proposition 2.11. In the above setting, there exists an equivariant finite free A-resolution F of M

(15) F : 0 → Fd → · · · → F0 → M → 0.

Here each Fi is both a free A-module of finite rank and a kG-module, of the form A ⊗k Ui for some
finite-dimensional graded kG-module Ui , with all maps being A-module and kG-module morphisms.

This gives an expression for the equivariant Hilbert series of M as

(16) Hilbeq(M, t) = Hilb(A, t)
d∑

i=0
(−1)i Hilbeq(Ui , t) = Hilb(A, t)

d∑
i=0

(−1)i Hilbeq(TorA
i (M, k), t).

This resolution F is not necessarily minimal, but when kG is semisimple (so #G lies in k×), then it may be
chosen minimally. In this case, one has kG-module isomorphisms TorA

i (M, k) ∼= Ui for i = 0, 1, 2, . . . , d.

Proof. This is [4, Proposition 2.1(i)–(iv)] for polynomial rings with trivial G-action, and modules over
them. □
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3. A colorful Hochster formula

Having fixed a d-coloring κ of 1, the denominator
∏d

j=1(1 − t j ) on the rightmost side of (6) suggests
regarding k[1] as a module over an auxiliary polynomial ring A :=k[z1, . . . , zd ], with an Nd -multigrading
in which deg(z j ) = ϵ j . One can naturally endow k[1] with such an A-module structure if one lets z j act
on k[1] as multiplication by the following element γ j in k[1], the sum of all vertices of color j :

γ j :=
∑

i∈[n]

κ(i)= j

x j .

The following proposition shows how z j acts on the monomial k-basis for k[1]. We omit the proof,
which is straightforward, using the properness of the d-coloring κ .

Proposition 3.1. Given a ∈ Nn with supp(a) ∈ 1, then z j acts on xa
= xa1

1 · · · xan
n in k[1] as follows:

(i) If j appears in κ(supp(a)), say ai > 0 and κ(i) = j , then

z j (xa) := γ j · xa
= xa+ei .

(ii) If j does not appear in κ(supp(a)), then

z j (xa) := γ j · xa
=

∑
i

xa+ei ,

where the sum is over vertices i in V = [n] for which κ(i) = j and supp(a) ∪ {i} is a face in 1.

Corollary 3.2. In the above setting, k[1] is finitely generated over A = k[z1, . . . , zd ], by {xF
: F ∈ 1}.

Proof. Proposition 3.1(i) shows that if a face F = {i1, . . . , ir } of 1 has vertices colored κ(iℓ) = jℓ for
ℓ = 1, 2, . . . , r , then the k-basis element

∏
i∈F xai

i with ai ≥ 1 can be rewritten as za1−1
j1 · · · zar −1

jr · xF . □

Note that when Autκ(1) acts on k[1], it fixes each of γ1, . . . , γd . Therefore, regarding A as having
trivial Autκ(1)-action, Proposition 2.11 applies to the Nd-graded polynomial ring A and Nd-graded
A-module k[1]. One can therefore consider TorA

m(k[1], k) as an Nd-graded k-vector space, whose b-
homogeneous component will be denoted TorA

m(k[1], k)b. Our colorful version of Hochster’s formula [14]
expresses TorA

m(k[1], k)b in terms of the (reduced) cohomologies H̃∗(1|S, k), where for S ⊆ [d], the
color-selected subcomplex 1|S is defined in (5). Note that Autκ(1) acts as automorphisms on each 1|S ,
and on H̃∗(1|S).

Theorem 3.3 (colorful Hochster formula). Fix any proper d-coloring κ of a simplicial complex 1.
Then in the above notations, for any b in Nd , one has

TorA
m(k[1], k)b ∼=

{
0 if b ̸∈ {0, 1}

d ,

H̃ #S−m−1(1|S, k) if b =
∑

j∈S ϵ j ∈ {0, 1}
d .

Furthermore, these k-vector space isomorphisms are equivariant with respect to the group Autκ(1).

Remark 3.4. If κ is the trivial n-coloring of V =[n], Theorem 3.3 is Hochster’s formula [14, Theorem 5.1].
For an interesting generalization of Hochster’s formula in a different direction, see Bruns, Koch and Römer
[6, Section 4]. If κ is a balanced d-coloring for 1, Theorem 3.3 is closely related to Conjecture 6.1 below.

Remark 3.5. We note that Theorem 3.3 gives a second proof of the rightmost expression in (6) for the
equivariant Hilbert series of k[1]. Applying Proposition 2.11, one has
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Hilbeq(k[1], t) = Hilb(A, t)
d∑

m=0
(−1)m Hilbeq(TorA

m(k[1], k), t)

=
1∏d

j=1(1 − t j )

d∑
m=0

(−1)m ∑
S⊆[d]

[H̃ #S−m−1(1|S, k)] · t S

=
1∏d

j=1(1 − t j )

∑
S⊆[d]

[hκ
S(1)] · t S,

where the first equality used Proposition 2.11, the second used Theorem 3.3 and the third applied the
definitions (3), (4) of [hκ

S(1)].
Example 3.6. Continuing with the simplicial complex 1 from Example 2.6, using the trivial 8-coloring κ ,
one obtains the resolution whose shape is predicted by Hochster’s original formula. It has homological
dimension 6 = 8 − 2, as predicted by the Auslander–Buchsbaum theorem [10, Theorem 19.9], since the
depth of k[1] is 2. Here is some (singly-graded) Macaulay2 [17] output:
i1 : S = QQ[x_1..x_8];

i2 : IDelta = ideal(x_1*x_2, x_1*x_3, x_1*x_4, x_1*x_7, x_2*x_3, x_2*x_5, x_3*x_6,
x_4*x_5, x_4*x_6, x_4*x_7, x_5*x_6, x_5*x_7, x_6*x_7, x_7*x_8);

i3 : betti res IDelta;

0 1 2 3 4 5 6
o3 = total: 1 14 36 39 22 7 1

0: 1 . . . . . .
1: . 14 34 32 11 1 .
2: . . 2 7 11 6 1

For example, here the southeasternmost 1 entry in the Betti table comes from the fact that H̃ 1(1) = k1,
while the entry of 6 = 1 + 1 + 1 + 1 + 2 directly to its left comes from

H̃ 1(1|{1,2,3,4,5,6,7,8}\{i}) =


0 if i = 2, 3, 7,

k1 if i = 1, 4, 5, 6,

k2 if i = 8.

On the other hand, using the proper 3-coloring κ of 1 discussed in the same example, one obtains a much
shorter resolution of k[1] over A = k[z1, z2, z3], having homological dimension 1 = 3 − 2, as shown
here:
i4 : phi = map(S, QQ[z_1..z_3], matrix {{x_1+x_2+x_3, x_4+x_5+x_6+x_7, x_8}});

i5 : betti res pushForward(phi, S^1/IDelta);

0 1
o5 = total: 8 2

0: 1 .
1: 5 1
2: 2 1
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The equivariant and N3-multigraded refinement of the above N-graded nonequivariant Betti table is this:

(17)

Hilbeq(TorA
0 (k[1], k), t) Hilbeq(TorA

1 (k[1], k), t)

1 —
+(1 + ϵ) t1 + (2 + ϵ) t2 1 · t2 t3

+2ϵ · t1 t2 +ϵ · t1 t2 t3

which one can check is consistent with the equivariant N3-graded Hilbert series shown in (8).

Our proof of Theorem 3.3 simply generalizes Hochster’s proof of his original formula [14, Theorem 5.1].

Proof of Theorem 3.3.. We compute TorA(k[1], k) via a Koszul resolution K of k. Here k is the trivial
A-module k = A/(z1, . . . , zm), carrying trivial action of Autκ(1). This Koszul resolution K has m-th
term

Km = A ⊗k ∧
mkd ,

where kd has standard basis elements ϵ1, . . . , ϵd . Applying k[1]⊗A (−) gives a complex k[1]⊗A K of
A-modules, whose homology computes TorA(k[1], k). The m-th term of k[1] ⊗A K is the A-module

k[1] ⊗A A ⊗k ∧
mkd ∼= k[1] ⊗k ∧

mkd ,

where A = k[z1, . . . , zd ] acts with z j multiplying by γ j in the left tensor factor of k[1]⊗k ∧
mkd . The

group Autκ(1) also acts trivially on the right tensor factor ∧
mkd , but nontrivially on the left factor k[1].

The differential ∂ acts on a k-basis element xa
⊗ ϵ j1 ∧ · · · ∧ ϵ jm with 1 ≤ j1 < · · · < jm ≤ d as

(18) ∂(xa
⊗ ϵ j1 ∧ · · · ∧ ϵ jm ) =

m∑
ℓ=1

(−1)ℓ−1γ jℓ · xa
⊗ ϵ j1 ∧ · · · ∧ ϵ̂ jℓ ∧ · · · ∧ ϵ jm .

Given b in Nd , we consider the b-multigraded strand (k[1] ⊗A K)b, whose k-basis are the elements

(19)
{

xa
⊗ ϵ j1 ∧· · ·∧ ϵ jm : supp(a) ∈ 1 and 1 ≤ j1 < · · · jm ≤ d and degNd (xa)+ ϵ j1 +· · ·+ ϵ jm = b

}
.

We show (k[1]⊗A K)b is acyclic if b ̸∈ {0, 1}
d , and otherwise identify it with C̃(1|S, k) if b =

∑
j∈S ϵ j .

Case 1. The multidegree b does not lie in {0, 1}
d .

Here we wish to show (k[1] ⊗A K)b is acyclic. Since b lies in Nd but not in {0, 1}
d , we may assume

without loss of generality, by reindexing the coordinates, that it has first coordinate b1 ≥ 2. We will use
this to define a k-linear chain contraction

(k[1] ⊗A Km)b
D

−→ (k[1] ⊗A Km+1)b

satisfying ∂ D + D∂ = 1, which then implies acyclicity.
To define D, note that the inequality b1 ≥ 2 together with the conditions in (19) imply that xa is divisible

by at least one variable xi0 with color κ(i0) = 1. But then the fact that κ is a proper vertex-coloring, along
with the condition in (19) that supp(a) lies in 1, forces this variable xi0 to be unique. Thus we can define

D(xa
⊗ ϵ j1 ∧ · · · ∧ ϵ jm ) := xa−ei0 ⊗ ϵ1 ∧ ϵ j1 ∧ · · · ∧ ϵ jm

and extend this map k-linearly to all of (k[1] ⊗A Km)b. It remains to check that ∂ D + D∂ acts as the
identity on each k-basis element from (19). There are two cases to consider, namely j1 ≥ 2 or j1 = 1.
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If j1 ≥ 2, then we calculate

∂ D(xa
⊗ϵ j1 ∧·· ·∧ϵ jm )=∂(xa−ei0 ⊗ϵ1 ∧ϵ j1 ∧·· ·∧ϵ jm )

=γ1xa−ei0 ⊗ϵ j1 ∧·· ·∧ϵ jm −

m∑
ℓ=1

(−1)ℓ−1γ jℓ xa−ei0 ⊗ϵ1 ∧ϵ j1 ∧·· ·∧ ϵ̂ jℓ ∧·· ·∧ϵ jm

and also calculate

D∂(xa
⊗ ϵ j1 ∧ · · · ∧ ϵ jm ) =

m∑
ℓ=1

(−1)ℓ−1 D(γ jℓ xa
⊗ ϵ j1 ∧ · · · ∧ ϵ̂ jℓ ∧ · · · ∧ ϵ jm )

=

m∑
ℓ=1

(−1)ℓ−1γ jℓ xa−ϵi0 ⊗ ϵ1 ∧ ϵ j1 ∧ · · · ∧ ϵ̂ jℓ ∧ · · · ∧ ϵ jm .

Adding the previous two calculations shows that

(∂ D + D∂)(xa
⊗ ϵ j1 ∧ · · · ∧ ϵ jm ) = γ1xa−ei0 ⊗ ϵ j1 ∧ · · · ∧ ϵ jm = xa

⊗ ϵ j1 ∧ · · · ∧ ϵ jm ,

where the last equality used the fact that i0 is the unique vertex with κ(i0) = 1 in supp(a), and a1 ≥ 2,
allowing us to employ case (i) from Proposition 3.1.

If j1 = 1, then the fact that ϵ1 ∧ ϵ1 = 0 implies that D annihilates xa
⊗ ϵ1 ∧ ϵ j2 ∧ · · · ∧ ϵ jm , and hence

so does ∂ D. On the other hand,

D∂(xa
⊗ ϵ1 ∧ ϵ j2 ∧ · · · ∧ ϵ jm )

= D(γ1xa
⊗ ϵ j2 ∧ · · · ∧ ϵ jm ) +

m∑
ℓ=2

(−1)ℓ−1 D(γ jℓ xa
⊗ ϵ1 ∧ ϵ j2 ∧ · · · ∧ ϵ̂ jℓ ∧ · · · ∧ ϵ jm )

= D(xa+ei0 ⊗ ϵ j2 ∧ · · · ∧ ϵ jm ) = xa
⊗ ϵ1 ∧ ϵ j2 ∧ · · · ∧ ϵ jm ,

where in the first line, the terms in the summation on ℓ all vanish again because ϵ1 ∧ ϵ1 = 0.
Thus we have checked ∂ D + D∂ fixes each basis element (k[1] ⊗A K)b, showing acyclicity.

Case 2. The multidegree b lies in {0, 1}
d , so b =

∑
j∈S ϵ j for some S ⊆ [d].

We wish to identify H̃ #S−1−m(1|S, k) ∼= TorA
m(k[1], k)b, by exhibiting a chain complex isomorphism

(20) C̃(1|S, k)
ϕ

−→ (k[1] ⊗A K)b,

where C̃(1|S,k) is an augmented simplicial cochain complex computing (reduced) cohomology H̃(1|S,k).
We recall one way to set up this complex, by first fixing a total order ≺ on the color set S. This allows

one to define a sign sgn(s1, . . . , sp) ∈ {±1} for any ordered p-subset of S, as the sign of the permutation
that sorts (s1, . . . , sp) into its ≺-order. Then since each (p − 1)-dimensional face F = {i1, . . . , i p} in 1

has at most one vertex of each color in S, one can reindex so that κ(i1) ≺ · · · ≺ κ(i p), and choose a
k-basis element [i1, . . . , i p]

∗ within the oriented cochains C̃ p−1(1|S, k) corresponding to the face F ;
these cochains {[i1, . . . , i p]

∗
} are the dual basis elements to the oriented simplices {[i1, . . . , i p]} that form

a basis for the simplicial chains C̃ p−1(1|S, k). To express the simplicial coboundary map

C̃ p−1(1|S, k)
δ

−→ C̃ p(1|S, k),

adopt the sign orientation convention that

[iσ1, . . . , iσp ]
∗
= sgn(σ ) · [i1, . . . , i p]

∗
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for any permutation σ ∈ Sp, and then the coboundary map looks as

δ[i1, . . . , i p]
∗
=

∑
i∈[n]

κ(i)∈S
F∪{i}∈1

sgn(κ(i1), . . . , κ(i p), κ(i)) · [i1, . . . , i p, i]∗.

If S \ F = { j1, . . . , jm} with j1 ≺ · · · ≺ jm in the ordering on S, then this can be reexpressed as

(21) δ[i1, . . . , i p]
∗
:=

m∑
ℓ=1

∑
i∈[n]

κ(i)= jℓ
F∪{i}∈1

sgn(κ(i1), . . . , κ(i p), jℓ) · [i1, . . . , i p, i]∗.

Having fixed these notations, one can define the isomorphism ϕ from (20) by mapping the basis as

(22) [i1, . . . , i p]
∗ ϕ
7→ sgn(κ(i1), . . . , κ(i p), j1, . . . , jm) · xi1 · · · xi p ⊗ ϵ j1 ∧ · · · ∧ ϵ jm .

Note the correspondence in homological degrees here: the basis element on the left lies in C̃ p−1(1|S, k),
and maps to an element of k[1] ⊗A Km , where p = #S − m. It is not hard to check from the conditions
in (19) on the typical basis element xa

⊗ ϵ j1 ∧· · ·∧ ϵ jm that this map sends our chosen basis of C̃(1|S, k)

to the basis of (k[1] ⊗A K)b, so it is a k-vector space isomorphism. To check that it is an isomorphism
of complexes, note the action of the differential (18) on xi1 · · · xi p ⊗ ϵ j1 ∧ · · · ∧ ϵ jm is as

∂(xi1 · · · xi p ⊗ ϵ j1 ∧ · · · ∧ ϵ jm ) =

m∑
ℓ=1

(−1)ℓ−1γ jℓ xi1 · · · xi p ⊗ ϵ j1 ∧ · · · ∧ ϵ̂ jℓ ∧ · · · ∧ ϵ jm

=

m∑
ℓ=1

(−1)ℓ−1 ∑
i∈[n]

κ(i)= jℓ
F∪{i}∈1

xi1 · · · xi p xi ⊗ ϵ j1 ∧ · · · ∧ ϵ̂ jℓ ∧ · · · ∧ ϵ jm .

Comparing this last expression with the image of the right side of (21) under the isomorphism ϕ described
in (22), we see that they are equal using the following equality for ℓ = 1, 2, . . . , m:

sgn
(
κ(i1), . . . , κ(i p), j1, . . . , jm

)
= (−1)ℓ−1

· sgn
(
κ(i1), . . . , κ(i p), jℓ, j1, . . . , ĵℓ, . . . , jm

)
. □

Remark 3.7. When 1 is Cohen–Macaulay over k and has a balanced d-coloring κ , then k[1] will be a
free A-module, and TorA

m(k[1], k) vanishes except for m = 0. As in (9), one then has this interpretation
for each S and b =

∑
j∈S ϵ j ∈ {0, 1}

d :

(23) [hκ
S(1)] = [H̃ #S−1(1|S, k)] = TorA

0 (k[1], k)b.

This applies, for example, in each of Examples 2.8, 2.9, and 2.10.

4. Simplicial posets and their face rings

As mentioned in the introduction, the second part of this paper deals not only with Stanley–Reisner rings
of simplicial complexes, but more generally with Stanley’s face rings of simplicial posets, which we
review here; see Stanley [21] or [22, Section III.6] for more background.

Definition 4.1. A simplicial poset P is a poset with (unique) bottom element ∅, in which every lower
interval [∅, x] := {y ∈ P : ∅ ≤P y ≤P x} is isomorphic to a Boolean algebra.
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Remark 4.2. Björner [3, Section 2.3] called these posets of Boolean type, and Garsia and Stanton [11]
called them Boolean complexes.

To each simplicial poset P there is an associated regular CW-complex 1 that has P as its poset of
faces, with bottom element ∅ corresponding to the empty face. For this reason, we will call a typical
element of P by F . Stanley associated the following two rings to 1 or P .

Definition 4.3. Given a simplicial poset P or its corresponding cell complex 1, let k[1] be the quotient
of the polynomial ring k[yF ] having a variable for each F in P , by the ideal with generators such as

(a) yF yF ′ if F, F ′ have no upper bounds in P , and

(b) yF yF ′ − yF∧F ′

∑
G yG where the sum is over all the minimal upper bounds G for F, F ′ in P ,

(c) y∅ − 1.

Let k̃[1] be the quotient of k[yF ] by only (a),(b) above, but not (c), so that k[1] = k̃[1]/(y∅−1). In [21],
these two rings k̃[1] and k[1] are denoted ÂP and AP .

Remark 4.4. As pointed out by Stanley [21, p. 323], when 1 happens to be an abstract simplicial
complex (equivalently, its face poset P is a meet-semilattice), the map yF 7→ x F

:=
∏

i∈F xi induces a
ring isomorphism between the face ring k[1] just defined and the Stanley–Reisner ring of 1 defined
earlier, also called k[1]. Thus the two seemingly conflicting terminologies are actually compatible.
Readers interested only in Stanley–Reisner rings can safely substitute yF = xF in all ensuing discussion.

Remark 4.5. Brun and Römer [5, Section 4] define an interesting extension of face rings k[1] beyond
simplicial posets, to what they call locally distributive lattices.

Example 4.6. One of our motivating examples of a simplicial poset is the poset P of injective words
on [n] discussed in Example 2.10. Its associated regular CW-complex 1 is called the complex of injective
words on [n], shown here for n = 2, along with the face poset P .

1 =

1

2

12 21
face
poset

P =

∅

1 2

12 21

Here one has ring presentations

k̃[1] = k[y∅, y1, y2, y12, y21]/(y12 y21, y1 y2 − y∅(y12 + y21)),

k[1] = k̃[1]/(y∅ − 1) ∼= k[y1, y2, y12, y21]/(y12 y21, y1 y2 − (y12 + y21)).

Two gradings. There are two kinds of gradings of k[1] that will play a key role. The first is an N-graded
ring structure employed by Stanley.

Definition 4.7 (N-grading as a ring). One can define [21, p. 325] an N-grading on the polynomial
algebra k[yF ] by decreeing degN(yF ) to be the rank ρ(F) of the Boolean interval [∅, F] in P , that is,

degN(yF ) := ρ(F) = 1 + dim(F),
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when F is regarded as a face of the cell complex 1. It is not hard to check from the relations (a), (b), (c)
that this N-grading descends to one on the quotient ring k̃[1], in which the degree 0 component consists
of the subalgebra k[y∅] generated by y∅. This then descends to an N-grading on the further quotient, the
face ring k[1], where one sets y∅ = 1, in which the degree 0 component is the field k.

The second grading on the face ring k[1] is related to De Concini, Eisenbud and Procesi’s theory of
Hodge algebras or algebra with straightening law (ASL) on the poset P , defined in [8]. Stanley observed
that k̃[1] is an ASL on the simplicial poset P which is the face poset of the cell complex 1. He showed
that this leads to standard monomial bases for the two rings:

• The ring k̃[1] has the monomials {ya1
F1

· · · yaℓ

Fℓ
: chains yF1 < · · · < yFℓ

in P} as k-basis.

• Its quotient the face ring k[1] has {ya1
F1

· · · yaℓ

Fℓ
: chains yF1 < · · · < yFℓ

in P \∅} as k-basis.

The standard monomial basis leads to the second kind of grading for k[1].

Definition 4.8 (Nd-grading as a k-vector space). Let d := dim(1) + 1. Then decree in k[1] that the
Nd -degree of ya1

F1
· · · yaℓ

Fℓ
with yF1 < · · · < yFℓ

in P \∅ is the vector b :=
∑ℓ

i=1 aiϵρ(Fi ) in Nd . This gives
a k-vector space decomposition (but not an Nd -graded ring structure)

k[1] =

⊕
b∈Nd

k[1]b,

where k[1]b is the k-span of standard monomials of Nd -degree b. Note that the grading specialization

(24) Nd
→ N, ϵ j 7→ j

specializes this k-vector space Nd -multigrading to the earlier N-grading as a ring.

Warning: Unlike the N-grading as a ring, small examples like the one below show that the vector space
Nd -grading on k[1] just defined does not respect its ring multiplication.

Example 4.9. The complex 1 of injective words on [2], considered in Example 4.6, had this face ring:

k[1] = k[y1, y2, y12, y21]/(y12 y21, y1 y2 − (y12 + y21)).

Using its N2-grading as a k-vector space, the element θ1 =: y1 + y2 is homogeneous with degN2(θ1) = ϵ1.
However, its square

θ2
1 = y2

1 + 2y1 y2 + y2
2 = y2

1 + 2(y12 + y21) + y2
2

is inhomogeneous for the N2-grading, assuming k does not have characteristic 2, since

degN2(y2
1) = degN2(y2

2) = 2ϵ1, degN2(y12) = degN2(y21) = 2ϵ2.

Comparison with the barycentric subdivision. For any simplicial poset P with cell complex 1, there
is a close relation between its face ring k[1] and the Stanley–Reisner ring k[Sd 1] for the simplicial
complex which is its barycentric subdivision Sd 1, that is, the order complex 1(P \∅); see Björner [3]
for more on the identification of 1(P \∅) with Sd 1.



168 ASHLEIGH ADAMS AND VICTOR REINER

If 1 has dimension d − 1, then Sd 1 is a balanced complex with vertex d-coloring V = P κ
−→ [d]

assigning κ(F) := ρ(F). One then has a k-vector space (but not ring) isomorphism sending

(25)

k[1] // k[Sd 1]

k[yF ]/J1 k[xF ]/ISd 1

where xF is the variable in the Stanley–Reisner ring k[Sd 1] corresponding to the barycenter vertex of
the face F in 1, and yF is the variable of the face ring k[1] associated to the face F as in Definition 4.3.
The isomorphism sends the k-basis elements {yF1 yF2 · · · yFℓ

} of k[1] indexed by multichains of faces
F1 ≤ F2 ≤ · · · ≤ Fℓ in P \∅ to the corresponding k-basis elements {xF1 xF2 · · · xFℓ

} of k[Sd 1]. This map
also respects the two Nd-multigradings, that is the one for k[Sd 1] that comes from its d-coloring as a
balanced simplicial complex, and the one for k[1] from Definition 4.8.

Remark 4.10. In fact, this vector space isomorphism (25) is really a Gröbner deformation coming
from an ASL structure, as we now explain. The face ring k[1] does not satisfy the axioms given in [8,
Section 1.1] to be an ASL on P \∅. However, if one considers the opposite or dual poset Popp having the
same underlying set but F <Popp F ′ if and only if F ′ <P F , then k[1] is an ASL on (P \∅)opp instead.3

Since
Sd 1 ∼= 1(P \∅) ∼= 1(P \∅)opp,

this implies that there is a term ordering on the polynomial rings k[yF ] and k[xF ] for which ISd 1 is the
initial ideal of J1; see Conca and Varbaro [7, Section 3.1, Remark 3.11]. In other words, the k-linear
map (25) is a (square-free) Gröbner deformation.

Note that the group G = Aut(1) of cellular automorphisms of the cell complex 1 corresponds to
the poset automorphisms of P , and color-preserving automorphisms for the balanced d-coloring κ

of Sd 1. Consequently, k[Sd 1] and k[1] have the same (equivariant) Nd-graded Hilbert series in
Rk(G)[[t1, . . . , td ]]:

(26) Hilbeq(k[1], t) = Hilbeq(k[Sd 1], t) =

∑
S⊆[d]

[ f κ
S (Sd 1)] · t S∏

j∈S(1 − t j )
=

1∏d
j=1(1 − t j )

∑
S⊆[d]

[hκ
S(Sd 1)] · t S,

where the last two expressions come from (6). Of course, the same holds if one specializes to N-gradings,
for example, via the map (24).

Example 4.11. Each of Examples 2.8, 2.9, 2.10 was an order complex 1P for a simplicial poset P with
some associated cell complex 1, with a large symmetry group G = Aut(1):

• In Example 2.8, 1 is an (n − 1)-dimensional simplex.

• In Example 2.9, 1 is the boundary of an n-dimensional cross-polytope.

• In Example 2.10, 1 is the complex of injective words on [n].

3The issue is as follows. When two incomparable faces F, F ′ of 1 have F ∧ F ′
= ∅, Definition 4.3(b, c) leads to a rewriting

rule that says yF yF ′ =
∑

G yG where G runs over all minimal upper bounds for F, F ′ in P . The ASL axioms would require
each term in that summation to be divisible by at least one yG with G < F, F ′, rather than G > F, F ′.
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Consequently in each case 1P = Sd 1. Furthermore, in each case 1P and 1 were Cohen–Macaulay
over any field k. Thus when k has characteristic zero, since those examples computed explicit expansions
into the classes of simple kG-modules for

∑
S[h

κ
S(Sd 1)] t S, using (26) they also give us such expansions

for Hilbeq(k[1], t) = Hilbeq(k[Sd 1], t), or for the N-graded version Hilbeq(k[1], t) after specializing
via (24).

Let us say a bit more about each example. In Example 2.8, since 1 is an (n − 1)-dimensional simplex,
its face ring is simply the polynomial ring k[1] = k[y1, . . . , yn]. In this case, the resulting Nn-graded
equivariant Hilbert series (11) for k[y1, . . . , yn] specializes to a formula in Rk(Sn)[[t]] equivalent to the
well-known Lusztig–Stanley fake-degree formula in type A from [19, Proposition 4.11]:

Hilbeq(k[y1, . . . , yn], t) =
1

(1 − t)(1 − t2) · · · (1 − tn)

∑
Q

[λ(Q)] tmaj(Q).

Here Q in the sum runs over standard Young tableaux with n cells, and maj(Q) :=
∑

i∈Des(Q) i .
In Example 2.9, where 1 is the boundary complex of an n-dimensional cross-polytope, one can check

that its face ring is this Stanley–Reisner ring:

(27) k[1] = k[x+

1 , x−

1 , x+

2 , x−

2 , . . . , x+

n , x−

n ]/(x+

i x−

i )i=1,2,...,n

Here the variables {x+

1 , x−

1 , . . . , x+
n , x−

n } correspond to the vertices {+e1, −e1, . . . ,+en, −en} of the
cross-polytope, and an element w in the hyperoctahedral group Bn of all signed permutation matrices
permutes the variables just as it permutes the vertices. In this case, the resulting Nn-graded equivariant
Hilbert series (13) specializes to a Bn-equivariant Hilbert series for the cross-polytope Stanley–Reisner
ring in (27) that appears to be new.

Lastly, in Example 2.10, where 1 is the complex of injective words, specializing Athanasiadis’s
formula (14) gives an Sn-equivariant description for the face ring k[1], which was our original goal.

5. Universal parameters and their depth-sensitivity

Recall that for a commutative k-algebra R of Krull dimension d , a system of parameters is a sequence of
elements 2 = (θ1, . . . , θd) in R for which the ring extension

k[2] := k[θ1, . . . , θd ] ↪→ R

is finite, meaning that R is finitely generated as a k[2]-module.
Stanley [21, Lemma 3.9] proves that k[1] is finitely generated as a module over the k-subalgebra

generated by its homogeneous component of degree one, and therefore will always contain linear systems
of parameters. However, such linear systems of parameters are rarely stable under the symmetries Aut(1).
Instead we will work with the following universal parameters that are invariant under symmetries.

Definition 5.1. Given a simplicial poset P and its associated cell complex 1, say of dimension d − 1,
call the universal parameters 2 := (θ1, . . . , θd) the elements defined for j = 1, 2, . . . , d as

θ j :=
∑

F∈P
ρ(F)= j

yF .
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In particular, when 1 is actually a simplicial complex, so that k[1] is its Stanley–Reisner ring, then

θ j =
∑

F∈1
#F= j

xF .

Proposition 5.2. For any simplicial poset P , these 2 form a system of parameters in k[1].

Proof. As k[1] is an ASL on (P \∅)opp, this is Theorem 6.3 of De Concini, Eisenbud and Procesi [8]. □

The universal parameters 2 = (θ1, . . . , θd) for Stanley–Reisner rings and face rings have already
appeared repeatedly in the literature. We have followed Herzog and Moradi [13, Section 3] in calling
them universal; they used this terminology in the case where 1 is a simplicial complex. In this case, one
may think of 2 as the (nonzero) images under k[x] ↠ k[1] of the elementary symmetric functions in
the variables x1, . . . , xn , which form a well-known system of parameters for k[x]. The parameters 2

were also considered by D. E. Smith, whose result [18, Corollary 6.5] is a special case of our next result,
Theorem 5.3, removing two extra hypotheses that he assumed:

• 1 is a simplicial complex, not allowing for simplicial posets.

• 1 is pure.

Theorem 5.3. For any simplicial poset with cell complex 1, not necessarily pure, the depth of the face
ring k[1] is detected by the universal parameters 2 as

depth k[1] = max{δ : (θ1, θ2, . . . , θδ) forms a regular sequence on k[1]}.

Proof. Since depth k[1] is the length of the longest regular sequence of elements in the irrelevant
ideal k[1]+, it will always be bounded below by the right side in the theorem. On the other hand, Duval
[9, Corollary 6.5] has shown that for a simplicial poset P with cell complex 1, denoting its i -skeleton 1(i),
one has

depth k[1] = max{δ : 1(δ−1) is Cohen–Macaulay over k}.

The theorem would therefore follow after proving the following assertion:

If 1 has 1(δ−1) Cohen–Macaulay over k, then (θ1, θ2, . . . , θδ) is a k[1]-regular sequence.

We prove this assertion by induction on the cardinality #1 \1(δ−1). In the base case, 1 = 1(δ−1) is a
Cohen–Macaulay complex and k[1] a Cohen–Macaulay ring, so the assertion follows from Proposition 5.2,
since every system of parameters forms a regular sequence.

In the inductive step, pick a maximal face F in 1 \1(δ−1), and let P̂, 1̂ be the simplicial poset and
cell complex obtained by removing F from P, 1. Maximality of F gives an exact sequence of k-vector
spaces:

(28) 0 → (yF ) → k[1] → k[1̂] → 0,

where (yF ) is the principal ideal of k[1] generated by yF . Letting A := k[z1, z2, . . . , zδ], one can check
that (28) is also a short exact sequence of A-modules in which zi acts

• on k[1] and on (yF ) as multiplication by θi , and

• on k[1̂] as multiplication by θ̂i :=
∑

G yG, with the sum over elements G in P̂ having ρ(G) = i .
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We wish to show that k[1] is a free A-module, since in this graded setting, it is equivalent to (θ1, θ2, . . . , θδ)

forming a k[1]-regular sequence. By induction, k[1̂] is free as an A-module. Since (28) is short exact,
using a standard fact about regular sequences [18, Lemma 6.3; 15, p. 103, Exercise 14], it suffices to
check that (yF ) is free as an A-module.

Assume F has vertex variables y1, . . . , ym , so m ≥ δ. Since F is a maximal face of 1, in k[1] one has

yF · yG =

{
0 if G is not a subface of F,

yF ·
∏

i∈G
yi if G is a subface of F.

Consequently, the k-linear map defined by

k[x] := k[x1, . . . , xm] → (yF ), xa1
1 · · · xam

m 7→ yF · ya1
1 · · · yam

m

is an isomorphism of k-vector spaces. It is also an isomorphism of A-modules if one lets zi act on k[x]

via multiplication by the i-th elementary symmetric function ei (x) := ei (x1, . . . , xm) for i = 1, 2, . . . , δ.
Since these are a subset of the system of parameters e1(x), . . . , em(x) on the Cohen–Macaulay ring k[x],
then e1(x), . . . , eδ(x) form a regular sequence, and k[x] is free as an A-module. Hence (yF ) is also free
as an A-module. □

Remark 5.4. Results like Theorem 5.3 are reminiscent of the role played by 2 in the combinatorial topo-
logical approach to invariant theory for subgroups G of the symmetric group Sn acting on Q[x1, . . . , xn]

pioneered by Garsia and Stanton [11].
From this viewpoint, Theorem 5.3 also fits with the (q-analogous) invariant theory for subgroups G of

the finite general linear groups GLn(Fq) acting on Fq [x1, . . . , xn]. There, one has Landweber and Stong’s
depth conjecture [16, p. 260] asserting that the depth of the invariant ring Fq [x1, . . . , xn]

G is similarly
detected by the sequence of Dickson polynomials, which are GLn(Fq)-invariant polynomials q-analogous
to the elementary symmetric functions. It would be interesting to find a closer link between these results.

Example 5.5. Theorem 5.3 is tight in a certain sense, witnessed by the following family of examples;
compare [18, Example 6.7]. For each δ, d with 1 ≤ δ ≤ d , define a simplicial complex 1(d, δ) on d + 1
vertices {x0, x1, . . . , xd+1} with two maximal faces:

• The larger maximal face F1 = {x1, x2, . . . , xd} of dimension d − 1.

• The smaller maximal face F2 = {x0, x1, x2, . . . , xδ−1} of dimension δ − 1 with intersection the
(δ − 2)-face F1 ∩ F2 = {x1, x2, . . . , xδ−1}.

Then 1 = 1(d, δ) has k[1] of Krull dimension d and depth δ. Theorem 5.3 shows that θ1, . . . , θδ

form a regular sequence. One can check that each θ j for j = δ + 1, δ + 2, . . . , d is a nonzero element
of k[1], but a zero-divisor, since these θ j are annihilated by multiplication with the (nonzero) element x0.
Thus the only subsets of {θ1, θ2, . . . , θd} which form k[1]-regular sequences are exactly the subsets of
{θ1, θ2, . . . , θδ}.

6. A conjecture on resolving over the universal parameters

Given a simplicial poset P with cell complex 1, Proposition 5.2 shows that the face ring k[1] is a finitely
generated module over the universal parameter ring k[2] = k[θ1, . . . , θd ]. It therefore makes sense to
consider the minimal finite free k[2]-resolution of k[1], and compute Tork[2](k[1], k).
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We should be slightly careful about the structures carried by these objects. Because the k[2]-module
structure on k[1] comes from its ring structure, it preserves the N-grading on k[1] as a ring described
in Definition 4.7, assuming that deg(θ j ) := j in k[2], as one would expect. However, the k[2]-module
structure on k[1] does not respect the Nd -grading as a k-vector space described in Definition 4.8. This
has been illustrated already by small examples such as Example 4.9, in which θ1 is homogeneous for the
N2-grading, while θ2

1 is inhomogeneous.
Hence we will only consider N-graded free k[2]-resolutions of k[1]. Also, note that each of the

universal parameters θ j is fixed by the group Aut(1), and hence this group action commutes with the
k[2]-module structure on k[1], preserving the N-grading. Using Proposition 2.11, one can produce a
group equivariant free k[2]-resolution, and Aut(1) also acts on each k-vector space Tork[2]

m (k[1], k) j .
Conjecture 6.1 below describes Tork[2](k[1], k) by comparing k[1] with the Stanley–Reisner ring

k[Sd 1] for the barycentric subdivision, as discussed on page 167. The k-vector space isomorphism
k[1] → k[Sd 1] and Gröbner deformation in (25) sends the universal parameter ring

k[2] = k[θ1, . . . , θd ] ⊂ k[1]

inside the face ring of 1 to the colorful parameter ring

k[0] = k[γ1, . . . , γd ] ⊂ k[Sd 1]

inside the Stanley–Reisner ring of Sd 1, where the colorful parameters come from Sd 1=1(P \∅) being
a balanced (d − 1)-dimensional simplicial complex. The colorful Hochster formula Theorem 3.3 then
describes the Nd -graded vector space Tork[0](k[Sd 1], k) in an equivariant fashion, while Conjecture 6.1
specializes this to an N-grading via the map in (24) to describe Tork[2](k[1], k) equivariantly.

Conjecture 6.1. For any simplicial poset with associated cell complex 1 of dimension d − 1, and any
subgroup G of Aut(1), for each m = 0, 1, . . . , d one has these equalities in Rk(G):

[Tork[2]

m (k[1], k) j ] = [Tork[0]

m (k[Sd 1], k) j ] =
∑

S⊆[d]

j=
∑

s∈S s

[H̃ #S−m−1((Sd 1)|S, k)].

Equivalently, one has this equality in Rk(G)[[t]]:

(29) Hilbeq(Tork[2]

m (k[1], k), t) = [Hilbeq(Tork[0]

m (k[Sd 1], k), t1, . . . , td)]t1=t, t2=t2,..., td=td .

Remark 6.2. When kG is semisimple, the first line of equalities in the conjecture would be isomorphisms:

Tork[2]

m (k[1], k) j ∼= Tork[0]

m (k[Sd 1], k) j =

⊕
S⊆[d]

j=
∑

s∈S s

H̃ #S−m−1((Sd 1)|S, k).

This happens, e.g., if one ignores the group action by taking G = {1}, or more generally, when #G ∈ k×.

Remark 6.3. After posting a version of this paper to the arXiv, S. Murai suggested the following question
about an even stronger assertion than Conjecture 6.1:

Question 6.4. Regard the universal parameters 2 and the colorful parameters 0 as generating the
same subalgebra A = k[z1, . . . , zd ] of the polynomial ring k[yF ]∅̸=F∈1, where zi :=

∑
F∈1, ρ(F)=i yF .

https://arxiv.org/abs/2007.13021


A COLORFUL HOCHSTER FORMULA AND UNIVERSAL PARAMETERS FOR FACE RINGS 173

Does there exist an isomorphism of (N-graded) A-modules k[1] ∼= k[Sd 1]? Is there an equivariant
isomorphism?

In all examples that we have checked so far, the answer is “yes”.

Example 6.5. The balanced simplicial complex considered in Example 2.6 is actually the barycentric
subdivision Sd 1 for this regular cell complex 1 coming from a simplicial poset:

1 =

y1

y2 y3y4

y5y6

y7

y8

We examine the free k[2]-resolution of k[1], where the universal parameter ring k[2] = k[θ1, θ2, θ3] has

θ1 = y1 + y2 + y3, θ2 = y4 + y5 + y6 + y7, θ3 = y8.

Here is the Macaulay2 output:

i1 : S = QQ[y_1..y_8, Degrees=>{1,1,1,2,2,2,2,3}];

i2 : IDelta = ideal(y_1*y_2-y_6, y_1*y_3-y_5, y_1*y_4-y_8, y_1*y_7,
y_2*y_3-(y_4+y_7), y_2*y_5-y_8, y_3*y_6-y_8,
y_4*y_5-y_3*y_8,y_4*y_6-y_2*y_8, y_4*y_7,
y_5*y_6-y_1*y_8, y_5*y_7, y_6*y_7, y_7*y_8);

i3 : phi = map(S, QQ[z_1..z_3,Degrees=>{1,2,3}],
matrix{{y_1+y_2+y_3, y_4+y_5+y_6+y_7, y_8}});

i4 : betti res pushForward(phi, S^1/IDelta);

0 1
o4 = total: 8 2

0: 1 .
1: 2 .
2: 3 .
3: 2 .
4: . 1
5: . 1

Conjecture 6.1 says this could have been obtained from the equivariant N3-graded Betti table (17)
for the k[0]-resolution of k[Sd 1] appearing in Example 3.6. One first applies the N3

→ N grading
specialization map ti 7→ t i from (24), giving these equivariant descriptions for [Tork[2]

i (k[1], k) j ] in
Rk(G) = Z[ϵ]/(ϵ2

− 1):
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j [TorA
0 (k[1], k) j ] [TorA

1 (k[1], k) j ]

0 1 —
1 1 + ϵ —
2 2 + ϵ —
3 2ϵ —
4 — —
5 — 1
6 — ϵ

Then applying the dimension homomorphism ϵ 7→ 1 from (2) gives the above Betti table from Macaulay2.

We close with various bits of evidence for Conjecture 6.1.

Proposition 6.6. Conjecture 6.1 predicts the correct N-graded equivariant Hilbert series for k[1].

Proof. Applying the grading specialization Nd
→ N map (24) to the equality in (26) shows that

(30) Hilbeq(k[1], t) = [Hilbeq(k[Sd 1], t)]t j =t j .

On the other hand, since both k[2] and k[0] have trivial G-action and the same N-graded Hilbert series
1/(1 − t)(1 − t2) · · · (1 − td), then by using Conjecture 6.1 in the form of (29), and taking an alternating
sum on m as in (16), one deduces this same equality (30) . □

Corollary 6.7. Conjecture 6.1 is correct when k[1] is Cohen–Macaulay.

Proof. When k[1] is Cohen–Macaulay, it is a free k[2]-module, so only TorA
0 (k[1], k) is nonvanishing,

and the rephrased version (29) of the conjecture is equivalent to the known equation (30). □

Proposition 6.8. Conjecture 6.1 is correct when 1 is a 1-dimensional complex, that is, a graph with
multiple edges allowed, but no self-loops.

Proof sketch. We omit the full details, which are slightly tedious. Note that since 1 is a graph, so that
k[2] = k[θ1, θ2], one knows that Tork[2]

m (k[1, k) vanishes for m ≥ 2. Hence (16) says here that

Hilbeq(k[1], t) = Hilb(k[2], t) ·
(
Hilbeq(Tork[2]

0 (k[1], k), t) − Hilbeq(Tork[2]

1 (k[1], k), t)
)
.

Since Proposition 6.6 says Conjecture 6.1 correctly describes Hilbeq(k[1], t), it suffices to check that the
conjecture correctly describes Tor0(k[1], k), and then it must also correctly describe Tor1(k[1], k).

We proceed by reformulating

Tork[2]

0 (k[1], k) ∼= k[1]/(2) = k[1]/(θ1, θ2).

One can then use a part of De Concini, Eisenbud and Procesi’s result [8, Theorem 6.3]: not only is 2

a system of parameters for k[1], but k[1] is generated as a k[2]-module by the standard monomials
{yF1 yF2 · · · yFℓ

} in which F1 ≨ F2 ≨ · · · ≨ Fℓ, that is, where the chain of faces {Fi }
ℓ
i=1 has no repeats.

In particular, when 1 = (V, E) is a graph with vertices V and edges E , the homogeneous components
(k[1]/(2)) j for j = 0, 1, 2, 3 are k-spanned, respectively by the images of these sets of monomials

{1}, {yv}v∈V , {ye}e∈E , {yv ye}v∈V,e∈E
v<e

,
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and (k[1]/(2)) j = 0 for j ≥ 4. This lets one write down four equivariant isomorphisms (details omitted):

H̃−1(Sd 1|∅, k) ∼= k ∼= (k[1]/(2))0, H̃ 0(Sd 1|{1}, k) ∼= (k[1]/(2))1,

H̃ 0(Sd 1|{2}, k) ∼= (k[1]/(2))2, H̃ 1(Sd 1|{1,2}, k) ∼= (k[1]/(2))3.

These isomorphisms show Conjecture 6.1 correctly describes Tork[2]

0 (k[1], k), completing the proof. □

Proposition 6.9. Ignoring group actions, Conjecture 6.1 gives a correct dimension upper bound:

dimk Tork[2]

m (k[1], k) j ≤ dimk Tork[0]

m (k[Sd 1], k) j .

Proof sketch. This requires a variant on the proof of the standard fact (as in Herzog [12, Theorem 3.1])
that for a polynomial ring S, the graded Betti numbers in a minimal S-free resolution of a graded
quotient S/I can only increase under Gröbner deformations S/J → S/I , like the map k[1] → k[Sd 1]

in (25). One needs a version that allows for resolutions of S/J, S/I over a smaller polynomial subalgebra
k[2] = k[θ1, . . . , θd ] ⊂ S. To alter the proof of [12, Theorem 3.1], consider k[2, t] ⊂ S̃ := S[t] and
a minimal graded free k[2, t]-resolution of S̃/ J̃ , rather than a free S̃-resolution. The rest proceeds as
before. □

Remark 6.10. Assuming that kG is semisimple, then Proposition 6.9 can be strengthened to say that
Tork[2]

m (k[1], k) j is a subquotient of Tork[0]
m (k[Sd 1], k) j as a kG-module (and hence, by semisimplicity,

also a kG-submodule). The proof requires further technicalities, so we omit it here. When kG is not
semisimple, we do not know if it is always a subquotient.

Remark 6.11. The Macaulay2 code used in the development of this paper is now available as the package
ResolutionsOfStanleyReisnerRings [1].
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