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Abstract. We examine the topology of the clique complexes of the graphs of weakly
and strongly separated subsets of the set [n] = {1, 2, . . . , n}, which, after deleting all cone

points, we denote by ∆̂ws(n) and ∆̂ss(n), respectively. In particular, we find that ∆̂ws(n)

is contractible for n ≥ 4, while ∆̂ss(n) is homotopy equivalent to a sphere of dimension
n− 3. We also show that our homotopy equivalences are equivariant with respect to the

group generated by two particular symmetries of ∆̂ws(n) and ∆̂ss(n): one induced by
the set complementation action on subsets of [n] and another induced by the action on
subsets of [n] which replaces each k ∈ [n] by n + 1− k.

1. Introduction

In [5], Leclerc and Zelevinsky define the relations of strong separation and weak separation
on the subsets of [n] = {1, 2, . . . , n}. For A and B disjoint subsets of [n], we say that A lies
entirely to the left of B, written A ≺ B, if max(A) < min(B). We say that A surrounds
B if A can be partitioned into a disjoint union A = A1 tA2, where A1 ≺ B ≺ A2.

Definition 1.1. We say that subsets A,B ⊂ [n] are strongly separated from one another
if either ArB ≺ B rA or B rA ≺ ArB.

Definition 1.2. We say that subsets A,B ⊂ [n] are weakly separated from one another if
at least one of the following two conditions holds:

• |A| ≤ |B| and ArB surrounds B rA
• |B| ≤ |A| and B rA surrounds ArB

For each of these relations, we may construct a graph whose vertices are the subsets of [n]
and a simplicial complex which is the clique complex of this graph. After removing frozen
vertices, meaning those corresponding to sets that are strongly or weakly separated from
every subset of [n], we denote what remains by ∆̂ss(n) and ∆̂ws(n) for the strongly and
weakly separated complexes, respectively. In either case, the frozen vertices correspond to
initial or final segments of [n], of the form {1, 2, . . . , k} or {k, k + 1, . . . , n}.

For example, if n = 1 or n = 2, then ∆̂ss(n) = ∆̂ws(n) = ∅. The case n = 3 is pictured
in Figure 1 and the case n = 4 is pictured in Figure 2.

(Note that in these figures, as well as throughout this paper, we omit the braces and
commas when referring to subsets of [n]. For example, instead of {1, 2, 3, 4} ⊂ [5] we write
1234 ⊂ [5].)
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Figure 1. The simplicial complex ∆̂ss(3) = ∆̂ws(3).
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Figure 2. The simplicial complexes ∆̂ss(4) and ∆̂ws(4), respectively.

Letting α denote the action of set complementation on subsets of [n] and w0 denote the
action on subsets of [n] which replaces each k ∈ [n] by n+ 1− k, we note that both actions
respect the relations of strong and weak separation, so that they induce symmetries on
∆̂ss(n) and ∆̂ws(n). We let G = 〈α,w0〉 ∼= Z/2Z× Z/2Z be the group generated by these
symmetries.

In §3 and §4 of this paper, we prove the following two theorems:

Theorem 1.1. The simplicial complex ∆̂ws(n) is G-contractible for n ≥ 4.

Theorem 1.2. The simplicial complex ∆̂ss(n) is G-homotopy equivalent to the (n − 3)-
sphere Sn−3.

The action of G on ∆̂ss(n) corresponds to an action on the sphere Sn−3 (with the usual
embedding in Rn−2) where α acts as the antipodal map and where w0 acts by permuting
the axes as follows: if we use the labels x2 through xn−1, we replace each xk with xn+1−k.

To prove Theorem 1.1 we will formulate and apply an equivariant nerve lemma to a
suitable covering of ∆̂ws(n). To prove Theorem 1.2 we will find a G-equivariant deformation

retraction onto a subcomplex of ∆̂ss(n) that is the boundary of an (n−2)-dimensional cross-

polytope, giving a G-equivariant homotopy equivalence between ∆̂ss(n) and Sn−3. In §5,
we remark upon and explore further questions concerning the topology of these and related
simplicial complexes.

2. Preliminaries

2.1. Simplicial Complexes. A simplicial complex ∆ is a nonempty collection of finite
sets σ called faces such that if σ ∈ ∆ and τ ⊂ σ, then τ ∈ ∆. The singleton subsets v ∈ ∆
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are called the vertices of ∆, and the maximal (with respect to inclusion) faces are called
the facets of ∆. We say that ∆ is pure if all facets of ∆ have the same dimension. We
denote by |∆| the geometric realization of ∆ and by |σ| the geometric realization of a face
σ ∈ ∆.

We will use several constructions involving simplicial complexes:

• Given a graph G, the clique complex of G is the simplicial complex whose faces are
precisely the cliques (complete subgraphs) in G.
• Given a simplicial complex ∆, the face poset of ∆, denoted F (∆), is the set of faces
σ of ∆ ordered by inclusion.
• Conversely, given a poset P , the order complex of P , denoted ∆(P ), is the simplicial

complex whose vertices are the elements of P and whose faces are the chains in P .
For any simplicial complex ∆, the order complex of the face poset of ∆ is called
the barycentric subdivision of ∆ and is denoted by Sd(∆). Hence the vertices of
Sd(∆) are the faces of ∆ and the faces of Sd(∆) are chains τ = {σ1 ⊂ · · · ⊂ σm} of
faces σi of ∆. We note that there is a natural homeomorphism |∆| ∼= | Sd(∆)|.

Let ∆ be a simplicial complex. For a face σ ∈ ∆ we define subcomplexes of ∆ called the
the star, deletion, and link of σ by

st(σ) = {τ ∈ ∆ : τ ∪ σ ∈ ∆},
dl(σ) = {τ ∈ ∆ : τ ∩ σ = ∅},
lk(σ) = {τ ∈ ∆ : τ ∪ σ ∈ ∆ and τ ∩ σ = ∅},

respectively. The following proposition is a useful relationship between stars in a clique
complex:

Proposition 2.1. Let ∆ be the clique complex of a graph G and let σ, τ ∈ ∆ be faces such
that σ ∪ τ ∈ ∆. Then st(σ) ∩ st(τ) = st(σ ∪ τ).

Proof. If ρ is a set whose elements form a clique in G, then ρ ∪ σ ∪ τ forms a clique if and
only if ρ∪ σ, ρ∪ τ , and σ ∪ τ form cliques. By assumption σ ∪ τ forms a clique, and hence
ρ ∪ σ ∪ τ is a face of ∆ if and only if ρ ∪ σ and ρ ∪ τ are faces. Therefore ρ ∈ st(σ ∪ τ) if
and only if ρ ∈ st(σ) ∩ st(τ), as desired. �

A cone point of a simplicial complex ∆ is defined as a vertex v ∈ ∆ such that σ∪{v} is a
face of ∆ for any face σ ∈ ∆. We say that a face τ ∈ ∆ is a cone face if all elements of τ are
cone points of ∆; that is, if σ∪ τ is a face of ∆ for all faces σ ∈ ∆. In particular, note that
any simplicial complex with a cone point (or cone face) is contractible by a straight-line
homotopy to the cone point (or to any point on the geometric realization of the cone face).
Hence any star st(σ) is contractible, since any vertex v ∈ σ is a cone point of st(σ).

Finally, we recall the usual statement of the nerve lemma:

Lemma 2.1 (Nerve Lemma). [2, 10.6] Let ∆ be a simplicial complex and let {∆i}i∈I
be a family of subcomplexes such that ∆ =

⋃
i∈I ∆i. If every nonempty finite intersection

∆i1∩∆i2∩· · ·∩∆ik is contractible, then ∆ and the nerve N ({∆i}) are homotopy equivalent.
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Here, the nerve N ({∆i}) of the covering {∆i}i∈I is defined as the simplicial complex
on the vertex set I such that a finite subset σ ⊂ I is a face of N ({∆i}) if and only if⋂
i∈σ ∆i 6= ∅.

2.2. Equivariant Tools. In the following, we let G be any group.
A G-simplicial complex is a simplicial complex together with an action of G on the

vertices that takes faces to faces. A G-topological space (or G-space) is a topological space
together with a continuous action of G. A map f : X → Y between G-topological spaces
is called G-continuous (or a G-map) if it is continuous and respects the action of G so that
f(gx) = gf(x) for all x ∈ X.

A contractible carrier from a simplicial complex ∆ to a topological space X is an
inclusion-preserving map sending faces of ∆ to contractible subspaces of X. We say that a
map f : |∆| → X is carried by a contractible carrier C if f(|σ|) ⊂ C(σ) for each face σ ∈ ∆.
For σ a face of a G-simplicial complex ∆, we denote by Gσ the subgroup {g ∈ G : gσ = σ}.

In [10], Thévenaz and Webb prove equivariant formulations of the contractible carrier
lemma and the Quillen fiber lemma:

Lemma 2.2. [10, Lemma 1.5(b)] Let ∆ be a G-simplicial complex such that for each face
σ ∈ ∆, Gσ fixes the vertices of σ. Let X be a G-space, and let C be a contractible carrier
from ∆ to X such that C(gσ) = gC(σ) for all g ∈ G and σ ∈ ∆, and such that Gσ acts
trivially on C(σ) for all σ ∈ ∆. Then any two G-maps |∆| → X that are both carried by
C are G-homotopic.

Lemma 2.3. [10, Theorem 1] Let P and Q be G-posets, and let f : P → Q be a mapping
of G-posets. Suppose that for all q ∈ Q the fiber f−1(Q≥q) is Gq-contractible, or for all
q ∈ Q the fiber f−1(Q≤q) is Gq-contractible. Then f induces a G-homotopy equivalence
between the order complexes ∆(P ) and ∆(Q).

In this section, we slightly generalize the former in Lemma 2.4, and use the latter to
prove an equivariant formulation of the nerve lemma in Lemma 2.5. We note that the result
of Lemma 2.4 also appears in [11, Satz 1.5], and that a stronger formulation of Lemma 2.5
appears in [12]. The formulation of the equivariant nerve lemma that we give in Lemma
2.5 serves our purposes. Finally, we prove in Proposition 2.2 that any G-simplicial complex
with a cone point is G-contractible.

Our slightly more general equivariant contractible carrier lemma is the following:

Lemma 2.4. If C is a contractible carrier from a G-simplicial complex ∆ to a G-space X
such that C(gσ) = gC(σ) for each g ∈ G and each face σ ∈ ∆, and such that each C(σ) is
Gσ-contractible, then any two G-maps carried by C are G-homotopic.

Proof. We define a carrier from the barycentric subdivision Sd(∆) of ∆ to X as follows:
If τ = {σ1 ⊂ · · · ⊂ σm} is a face of Sd(∆), where each σi is a face of ∆, let C ′(τ) be the
subset of points in C(σm) that are fixed by each element of Gτ . This contracts to a point
by the restriction of the homotopy that Gσm-contracts C(σm) to a point. Also, if τ ⊂ τ ′

then σm ⊂ σ′m, so that C(σm) ⊂ C(σ′m) and Gτ ′ ⊂ Gτ . Hence C ′(τ), which is the subset
of points in C(σm) fixed by Gτ , is contained in the subset of points in C(σ′m) fixed by Gτ ,
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which is contained in the subset of points in C(σ′m) fixed by Gτ ′ . This is C ′(τ ′), so that
C ′ is a contractible carrier.

We have for any face τ ∈ Sd(∆) that Gτ fixes the vertices of τ (because it sends each
face of ∆ to a face of the same dimension) and that C ′(gτ) = gC ′(τ) and that Gτ acts
trivially on C ′(τ), so we may apply Lemma 2.2: Any two G-maps |Sd(∆)| → X that are
carried by C ′ are G-homotopic. But any G-map |∆| ∼= |Sd(∆)| → X that is carried by C
is also carried by C ′: A face of Sd(∆), call it again τ = {σ1 ⊂ · · · ⊂ σm}, is fixed pointwise
by Gτ , and |τ | ⊂ |σm|, so that the image of |τ | under a G-map carried by C is contained
in C(σm), so that the image of |τ | under a G-map carried by C is contained in C ′(τ), so
that any G-map carried by C is also carried by C ′, as desired. �

To formulate an equivariant nerve lemma, we need a condition on a cover of a G-
simplicial complex which will allow the action of G on the entire simplicial complex to
induce an action on the nerve of the covering.

Definition 2.1. For a G-simplicial complex ∆, we say that a covering {∆i}i∈I of ∆ by
subcomplexes is G-invariant if for all i ∈ I and for all g ∈ G there exists a unique j ∈ I
such that g∆i = ∆j.

Given such a cover of a G-simplicial complex, we see that the action of G on ∆ induces
an action on the index set I, defined by letting gi = j when g∆i = ∆j . We claim that this
action of G sends faces to faces in the nerve N ({∆i}). If σ is a face of N ({∆i}), then the
intersection

⋂
i∈σ ∆i is nonempty. Hence

g
⋂
i∈σ

∆i =
⋂
i∈σ

g∆i =
⋂
j∈gσ

∆j

is also nonempty, so that gσ is a face of N ({∆i}). Thus the action of G on ∆ induces
a simplicial action on the nerve N ({∆i}). This induced action allows us to formulate an
equivariant nerve lemma as follows:

Lemma 2.5. Let ∆ be a G-simplicial complex and let {∆i}i∈I be a G-invariant covering
of ∆. If every nonempty finite intersection

⋂
i∈σ ∆i, where σ ⊂ I, is Gσ-contractible, then

∆ and the nerve N ({∆i}) are G-homotopy equivalent.

Proof. Let Q = F (∆) and P = F (N ({∆i})) be the face posets of ∆ and the nerveN ({∆i}),
respectively. Define a map f : Q → P by π 7→ {i ∈ I : π ∈ ∆i}. This is order preserving
and it is also G-equivariant: For any π ∈ Q and g ∈ G we have

gf(π) = g{i ∈ I : π ∈ ∆i}
= {j ∈ I : g∆i = ∆j for some ∆i containing π}
= {j ∈ I : gπ ∈ ∆j}
= f(gπ).

In addition, for any σ ∈ P , the fibers f−1(P≥σ) =
⋂
i∈σ ∆i are Gσ-contractible by hypoth-

esis. The result now follows from an application of Lemma 2.3. �
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Finally, we have the following useful condition for G-contractibility of a G-simplicial
complex:

Proposition 2.2. A G-simplicial complex ∆ with a cone point v ∈ ∆ is G-contractible.

Proof. As v is a cone point of ∆, we must have that the G-orbit of v, Gv, is a cone face of
∆. The straight-line homotopy to the barycenter of Gv respects the action of G, so that
∆ is G-contractible. �

3. Proof of Theorem 1.1

In this section, we assume that n ≥ 4.
Recall the action of the group G = 〈α,w0〉 on ∆̂ws(n) as defined in §1. To prove Theorem

1.1, we claim that the family {∆i}i∈I composed of the following subcomplexes of ∆̂ws(n):

dl(2), dl([n] r 2), dl(3), dl([n] r 3), . . . , dl(n− 1), dl([n] r (n− 1))

is a G-invariant covering to which we may apply the equivariant nerve lemma (Lemma
2.5). We show this with two lemmas:

Lemma 3.1. The family of subcomplexes {∆i}i∈I is a G-invariant covering of ∆̂ws(n)
with nerve N ({∆i}) a simplex.

Proof. Any face of ∆̂ws(n) either does not contain some singleton k ∈ {2, 3, . . . , n− 1}, in
which case it lies in dl(k), or it does, in which case it cannot also contain its complement

[n]r k and therefore lies in dl([n]r k). Hence these subcomplexes cover ∆̂ws(n). It is also
clear that this covering is G-invariant.

To see that N ({∆i}) is a simplex, notice that for any subset σ ⊂ I the intersection⋂
i∈σ ∆i contains the subcomplex st({1n, 23 · · ·n − 1}) ⊂ ∆̂ws(n) (as this subcomplex

consists of exactly those faces of ∆̂ws(n) which contain no singletons and no complements
of singletons) and is thus nonempty. �

Given Lemma 3.1, in order to apply Lemma 2.5 to the covering {∆i}i∈I to conclude that

∆̂ws(n) is G-contractible, it remains to verify the following:

Lemma 3.2. For every subset σ ⊂ I, the intersection
⋂
i∈σ ∆i is Gσ-contractible.

To prove this, we induct on the number of free complementary pairs of an intersection⋂
i∈σ ∆i, meaning the number of pairs of subsets (k, [n] r k) such that neither dl(k) nor

dl([n] r k) is involved in
⋂
i∈σ ∆i.

Proof. For the base case, suppose that we are given an intersection⋂
i∈σ

∆i =
(

dl(k1) ∩ dl(k2) ∩ · · · ∩ dl(km)
)
∩
(

dl([n] r `1) ∩ dl([n] r `2) ∩ · · · ∩ dl([n] r `n)
)

which has no free complementary pairs. We claim that the family of subcomplexes {Kj}j∈J
which is composed of the subcomplexes

st(1n), st(23 · · ·n− 1),
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{st(r)}r∈{2,3,...,n−1}r{k1,k2,...,km},

{st([n] r s)}s∈{2,3,...,n−1}r{`1,`2,...,`n}
is a Gσ-invariant cover of

⋂
i∈σ ∆i to which we may apply Lemma 2.5. (Note: here, we

are taking the stars within the subcomplex
⋂
i∈σ ∆i. We may do this because each of the

vertices whose stars are in this cover do indeed lie in
⋂
i∈σ ∆i by hypothesis.)

To see that the subcomplexes Kj cover
⋂
i∈σ ∆i, note that any face of

⋂
i∈σ ∆i which is

not in st(1n) must contain some singleton r 6∈ {k1, k2, . . . , km}, and therefore lies in st(r),
which will be in the cover. Moreover, the cover {Kj}j∈J is Gσ-invariant as each element
of the subgroup Gσ of G either fixes or interchanges 1n and 23 · · ·n − 1, and thus either
preserves or interchanges their stars. Each element of Gσ sends singletons and complements
of singletons that are not contained in

⋂
i∈σ ∆i to one another, and thus sends elements of(

{2, . . . , n− 1}r {k1, . . . , km}
)
∪
(
{[n] r 2, . . . , [n] r (n− 1)}r {[n] r `1, . . . , [n] r `n}

)
to one another. Hence each element of Gσ sends their stars to one another as well.

Finally, we show that for every subset τ ⊂ J , the intersection
⋂
j∈τ Kj is (Gσ)τ -

contractible. We separate this into a few simple cases (that may overlap). In each case,
we exhibit a cone point for the intersection which, together with the fact that

⋂
j∈τ Kj

will always be a (Gσ)τ -simplicial complex, allows us to apply Proposition 2.2 to show
(Gσ)τ -contractibility.

• Case 1: For no j ∈ τ is Kj = st(1n) or Kj = st(23 · · ·n− 1).
Because

⋂
i∈σ ∆i has no free complementary pairs, for any singleton r whose star

is involved in
⋂
j∈τ Kj we know that no Kj = st([n] r r). Therefore

⋂
j∈τ Kj is an

intersection of stars of subsets which are all pairwise weakly separated, and hence⋂
j∈τ Kj is the star of a face of

⋂
i∈σ ∆i, which has a cone point.

• Case 2: For some j ∈ τ we have Kj = st(1n).

– Subcase 2.1: For at least two j ∈ τ we have that Kj is the star of a singleton.
Order the singletons whose stars are involved in

⋂
j∈τ Kj so that r1 and r2

are the two least such singletons. We claim that the vertex r1r2 is a cone
point of

⋂
j∈τ Kj . Because the subset r1r2 is weakly separated from 1n and

23 · · ·n − 1, it lies in both of their stars. It is also weakly separated from
every singleton whose star is involved in the intersection since r1 and r2 are
the least two such singletons. As there are no free complementary pairs in the
intersection

⋂
i∈σ ∆i, the stars of neither [n] r r1 nor [n] r r2 can be involved

in the intersection
⋂
j∈τ Kj , so that r1r2 is also weakly separated from each

complement of a singleton whose star is involved in the intersection. Thus the
vertex r1r2 lies in each Kj , and therefore lies in

⋂
j∈τ Kj . Finally, because any

face of
⋂
j∈τ Kj consists of subsets which are weakly separated from both r1

and r2 by hypothesis and also contains no singletons (because no singleton is
weakly separated from 1n), each subset in a face of

⋂
j∈τ Kj is weakly separated

from the subset r1r2. Therefore r1r2 is a cone point, as desired.
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– Subcase 2.2: For exactly one j ∈ τ we have that Kj is the star of a singleton.
Let r be the singleton in question. At least one of the subsets 1r or rn is
not frozen, without loss of generality let it be 1r. The subset 1r is weakly
separated from both 1n and 23 · · ·n−1, as well as from the singleton r and the
complement of any singleton that is not equal to r, and thus lies in their stars.
Because there are no free complementary pairs in the intersection

⋂
i∈σ ∆i,

the star st([n] r r) cannot also be involved in the intersection
⋂
j∈τ Kj , and

so the vertex 1r lies in the intersection
⋂
j∈τ Kj . Finally, because any face

of
⋂
j∈τ Kj consists of subsets which are weakly separated from r and also

contains no singletons, each subset in a face of
⋂
j∈τ Kj is weakly separated

from the subset 1r. Therefore 1r is a cone point, as desired.

– Subcase 2.3: For no j ∈ τ is Kj the star of a singleton.
Because the subset 1n is weakly separated from 23 · · ·n − 1 as well as every
complement of a singleton,

⋂
i∈σKj is the star of a face of

⋂
i∈σ ∆i, which has

a cone point.

• Case 3: For some j ∈ τ we have Kj = st(23 · · ·n− 1).

– Subcase 3.1: For at least two j ∈ τ we have that Kj is the star of a comple-
ment of a singleton.
An argument symmetric to subcase 2.1 above shows that

⋂
j∈τ Kj has a cone

point [n]r s1s2, where s1 and s2 are the two least singletons such that [n]r s1
and [n] r s2 are involved in

⋂
j∈τ Kj .

– Subcase 3.2: For exactly one j ∈ τ we have that Kj is the star of a comple-
ment of a singleton.
An argument symmetric to subcase 2.2 shows that

⋂
j∈τ Kj has a cone point

[n]r1s or [n]rsn, where s is the only singleton whose complement is involved
in
⋂
j∈τ Kj .

– Subcase 3.3: For no j ∈ τ is Kj the star of a complement of a singleton.
Because the subset 23 · · ·n − 1 is weakly separated from 1n as well as every
singleton,

⋂
i∈σKj is the star of a face of

⋂
i∈σ ∆i, which has a cone point.

We conclude that we may apply Lemma 2.5 to show that
⋂
i∈σ ∆i is Gσ-homotopy

equivalent to the nerve N ({Kj}), which is a simplex, and therefore contractible.
For the inductive step, let (k, [n] r k) be a free complementary pair of

⋂
i∈σ ∆i. If we

have Gσ = {e} or 〈α〉, then(⋂
i∈σ

∆i

)
∩ dl(k),

(⋂
i∈σ

∆i

)
∩ dl([n] r k)

is a Gσ-invariant cover of
⋂
i∈σ ∆i for the same reason that the ∆i cover ∆̂ws(n); if we have

Gσ = 〈w0〉, 〈αw0〉, or G, then(⋂
i∈σ

∆i

)
∩ dl(k),

(⋂
i∈σ

∆i

)
∩ dl([n] r k),
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i∈σ

∆i

)
∩ dl(n+ 1− k),

(⋂
i∈σ

∆i

)
∩ dl([n] r (n+ 1− k))

is a Gσ-invariant cover of
⋂
i∈σ ∆i. In either case, every intersection of the subcomplexes

in the cover has at least one fewer free complementary pair. Therefore, by induction, each
such intersection is nonempty and equivariantly contractible. �

4. Proof of Theorem 1.2

In this section, we again assume that n ≥ 4.
Recall that the group G = 〈α,w0〉 is also a group of symmetries of the simplicial complex

∆̂ss(n). We begin to prove Theorem 1.2 by defining the following subcomplex of ∆̂ss(n):

Definition 4.1. We let K ⊂ ∆̂ss(n) be the vertex-induced subcomplex whose vertices are
the singleton subsets of [n] and their complements.

For example, see the left side of Figure 2, in which K is the square formed by the vertices
2, 3, 124, and 134.

Proposition 4.1. The subcomplex K is simplicially isomorphic to the boundary of an
(n− 2)-dimensional cross polytope.

Proof. The boundary of an (n − 2)-dimensional cross polytope is the clique complex of
a graph of n − 2 pairs of antipodal vertices, each of which is connected to every vertex
except for its antipode. The subcomplex K has n − 2 pairs of complementary vertices
(the singleton k and its complement [n]r k), each of which is separated from every vertex
except for its complement. �

As a cross polytope is homeomorphic to a ball, its boundary is homeomorphic to a
sphere, so that K is homeomorphic to Sn−3. We note that G preserves K, and acts on it
as follows: α acts by set complementation, which passes to the antipodal map on Sn−3,
and w0 acts by exchanging each singleton k with n + 1 − k and each complement [n] r k
with [n] r (n+ 1− k), which, if Sn−3 is given the usual embedding in Rn−2 with the axes
labelled as x2 through xn+1−k, passes to permuting the axes by exchanging each xk with
xn+1−k.

To prove Theorem 1.2, we will define a G-map π : |∆̂ss(n)| → |K| that we will prove to
be a G-deformation retraction by a contractible carrier argument.

4.1. Defining a map π : |∆̂ss(n)| → |K|. The following lemma will allow us to indirectly
define a map π:

Lemma 4.1. Assume we have a function π′ : Sd(∆̂ss(n))→ Sd(K) defined on the vertices

of Sd(∆̂ss(n)) and with the following property: For each face τ = {σ1 ⊂ · · · ⊂ σm} of

Sd(∆̂ss(n)), where each σi is a face of ∆̂ss(n), we have that
⋃m
i=1 π

′(σi) is a face of K.

Then π′ induces a map π : |∆̂ss(n)| → |K|. If π′ is G-equivariant, then so is π.
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Proof. We recall that there are natural homeomorphisms between the geometric realizations
of a simplicial complex and its barycentric subdivision, |∆̂ss(n)| ∼= |Sd(∆̂ss(n))| and |K| ∼=
| Sd(K)|. Thus we may define a map |∆̂ss(n)| → |K| by defining first where the vertices of

Sd(∆̂ss(n)) are sent, and then sending any convex combination of some vertices that form
a face to the corresponding convex combination of their images in |K|. We need only check
that those convex combinations exist; that is, for any face τ = {σ1 ⊂ · · · ⊂ σm} that the
images of each vertex σi ∈ τ lie on the geometric realization of the same face ν ∈ K.

We have that the vertex of the barycentric subdivision ν ′ ∈ Sd(K) lies in the geometric
realization of a face of K, |ν| ⊂ |K|, if and only if the vertex set of ν ′ is contained in the
vertex set of ν. Thus if

⋃
σi∈τ π

′(σi) is a face of K, then all of the π′(σi) will lie on the

same face, so that we will have defined a map π : |∆̂ss(n)| → |K|, as desired.
Finally, we remark that if π′ respects the action of G, then so does the induced map π,

because taking corresponding convex combinations respects the action of G. �

We now define a map π′ : Sd(∆̂ss(n)) → Sd(K) on the vertices of the barycentric sub-

division to which we will be able to apply the preceding lemma. For σ a face of ∆̂ss(n)

and for v a vertex of K, we let v ∈ π′(σ) if and only if σ ∪ {v} is a face of ∆̂ss(n) but
σ ∪ {α(v)} is not. By design, π′(σ) will not contain any complementary pairs, so that as
long as it is nonempty it will in fact be a face of K, i.e. a vertex of Sd(K). We also note
that π′ respects the action of G.

We now prove for any face σ ∈ ∆̂ss(n) that π′(σ) is in fact nonempty via the following
lemma:

Lemma 4.2. There is no face σ ∈ ∆̂ss(n) such that for each k ∈ {2, 3, . . . , n−1}, we have

that either both or neither of σ ∪ {k}, σ ∪ {[n] r k} is a face of ∆̂ss(n).

Proof. We argue by contradiction, assuming n is minimal such that a counterexample σ
exists.

Encode a vertex v of ∆̂ss(n) — which may also be viewed as a subset of [n] — as a
sequence of n 0s and 1s, with a 0 in the kth slot if k /∈ v and a 1 in the kth slot if k ∈ v.
For example, 001100111 corresponds to 34789 ⊂ [9]. Each segment of zeros or ones in the
sequence is either initial, final, or interior. We say that a slot is initial, final, or interior if it
lies in an initial, final, or interior segment of 0s or 1s, respectively. Note that two sequences
are not strongly separated from one another if and only if for some slots k1 < k2 < k3, one
sequence restricts to 101 and the other restricts to 010.

These sequences clearly indicate the singletons and complements of singletons from which
they are strongly separated:

• If a slot j is in an initial or final segment of 0s or 1s, then both the singleton {j}
corresponding to the slot and its complement [n]r {j} are strongly separated from
the vertex corresponding to the sequence.
• A singleton {j} corresponding to an interior 0 in slot j will not be strongly separated

from the vertex while its complement [n] r {j} will be.
• A singleton {j} corresponding to an interior 1 in slot j will be strongly separated

from the vertex while its complement [n] r {j} will not be.
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In the counterexample σ, each slot j falls into one of two categories: either both the
singleton {j} and its complement [n] r {j} are separated from every vertex in σ, i.e. j is
always in an initial or final segment, or else some vertex is not strongly separated from
the singleton {j} and some other vertex is not strongly separated from the complement
[n] r {j}, i.e. one vertex has an interior 1 in slot j and another has an interior 0. If there
were more than one slot that is always initial or more than one slot that were always final,
we could remove one of the extra slots and the collection would remain a counterexample,
so that n would not be minimal.

Thus there is only one slot that is always initial and one that is always final, so that for
each j in the interval [2, n− 1] there is a vertex with a noninitial, nonfinal 1 in slot j. Let
vj be such a vertex, with the segment of 1s containing slot j extending as far to the right
as possible. Let k1 = 2, and for ki−1 ∈ [2, n−1], let ki be the slot of the first zero after slot
ki−1 in vki−1

. The sequence of ki is a strictly increasing sequence of integers, and the fact
that the 1 in slot ki−1 of vki−1

is nonfinal means that for ki−1 ∈ [2, n − 1], we must have
that ki ∈ [2, n], with k1 ∈ [2, n− 1], so that we must for some m have k1 through km−1 all
in [2, n− 1], with km = n.

We also must have that vki has a zero in some slot in the interval [ki−1, ki−1]; otherwise,
vki would contain the segment [ki−1, ki] in a noninitial and nonfinal segment of 1s, which
ends further to the right than the ending point of slot ki− 1 of the corresponding segment
in vki−1

, contradicting the definition of vki−1
. We also need that vki ∩ [ki + 1, n] ⊃ vki−1

∩
[ki + 1, n]; otherwise, for some slot in [ki−1, ki − 1], for the slot ki, and for some slot
in [ki + 1, n], we have that vki−1

restricts to 101 and vki restricts to 010, meaning that
they are not strongly separated from one another, a contradiction of the assumption that
vki ∩ [ki + 1, n] 6⊃ vki−1

∩ [ki + 1, n].
We have that km = n, so that vkm−1 has a 0 in slot n. By induction, as each vki ∩{n} ⊃

vki−1
∩{n} we must have that vk1 = v2 has a 0 in slot n, so that v2 restricts to 101 in slots

1 < 2 < n. By a symmetric argument, σ must contain a vertex that restricts to 010 in
the same slots, but these two vertices cannot be strongly separated from one another — a
contradiction of the assumption that a counterexample exists. �

Thus we must have that each π′(σ) is nonempty, so that π′ is in fact a function from

the vertices of Sd(∆̂ss(n)) to the vertices of Sd(K). By Lemma 4.1, π′ will induce a map

π : |∆̂ss(n)| → |K| if for each face τ = {σ1 ⊂ · · · ⊂ σm} of Sd(∆̂ss(n)) we have that
⋃
i π(σi)

is a face of K.
If a vertex v of K is in π(σi), then we have that v is strongly separated from each vertex

of σi, so that for j < i, we have that v is strongly separated from each vertex of σj ⊂ σi, so
that α(v) is not in π(σj). Also, α(v) is not strongly separated from some vertex in σi, which
for j > i must also be a vertex of σj ⊃ σi, so that α(v) is not in π(σj). Thus

⋃
j π(σj)

does not contain any complementary pairs, and any set of vertices of K not containing
complementary pairs forms a face.

4.2. Proving that π is a G-deformation retraction. We let ι : |K| ↪→ |∆̂ss(n)| be the
inclusion map. Each face of K (i.e. each vertex of Sd(K)) is strongly separated from every
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vertex of K other than the complements of its vertices, so that π′ acts as the identity on
vertices of Sd(K) ⊂ Sd(∆̂ss(n)) and thus induces the identity on |K| ∼= |Sd(K)| ⊂ |∆̂ss(n)|.
Hence π ◦ ι is the identity on |K|. Thus to show that π is a deformation retraction, we

need only show that ι ◦ π is homotopic to the identity map on |∆̂ss(n)|.
By Lemma 2.4, it is enough to find a valid common contractible carrier for the identity

map on |Sd(∆̂ss(n))| ∼= |∆̂ss(n)| and for ι ◦ π. If τ = {σ1 ⊂ · · · ⊂ σm} is a face of

Sd(∆̂ss(n)), let C(τ) = st(σ1), taken here as the star of a face of ∆̂ss(n), rather than the

star of a vertex of Sd(∆̂ss(n)). For faces τ, τ ′ ∈ Sd(∆̂ss(n)), we have that τ ⊂ τ ′ implies
σ1 ⊃ σ′1, which implies st(σ1) ⊂ st(σ′1). Since st(σ1) is Gσ1-contractible by a straight line
homotopy to the center of σ1, with Gτ ⊂ Gσ1 , we have that C(τ) is Gτ -contractible, with
C(gτ) = gC(τ).

The identity is carried by C because the image of |τ | is contained in |σm| ⊂ st(σ1).

For each v ∈
⋃
i π(σi), there is some σi ∪ {v} that is a face of ∆̂ss(n). Thus σ1 ∪ {v} ⊂

σi ∪{v} is also a face of ∆̂ss(n). We know that ∆̂ss(n) is a clique complex in which σ1 and⋃
i π(σi) are both cliques, and σ1 ∪{v} a clique for each v ∈

⋃
i π(σi), so that σ1 ∪

⋃
i π(σi)

is a clique, and thus forms a face of ∆̂ss(n). Hence
⋃
i π(σi) is in the star of σ1, with the

image of |τ | contained in |
⋃
i π(σi)|, so that π(|τ |) ⊂ |

⋃
i π(σi)| ⊂ C(τ), as desired.

5. Remarks and Further Questions

5.1. Purity and the Pseudomanifold Property. In [5, Conjecture 1.5], Leclerc and
Zelevinsky conjecture that all maximal weakly separated collections and maximal strongly
separated collections of subsets of [n] have the same cardinality

(
n+1
2

)
+ 1. The conjecture

in the strongly separated case was settled by Leclerc and Zelevinsky in [5, Theorem 1.6],
and in the weakly separated case by Danilov, Karzanov, and Koshevoy in [3, Theorem B].

These results imply that both ∆̂ss(n) and ∆̂ws(n) are pure of dimension
(
n−1
2

)
− 1.

Also in [5], Leclerc and Zelevinsky consider operations which they call “strong rais-
ing/lowering flips” and “weak raising/lowering flips” on maximal strongly and weakly sep-
arated collections, respectively. These operations provide a way of starting with a maximal
strongly or weakly separated collection and modifying a single subset in that collection to
produce another maximal strongly or weakly separated collection, respectively. Oh, Post-
nikov, and Speyer [7, Corollary 30] have settled a conjecture of Leclerc and Zelevinsky
which states that any two maximal weakly/strongly separated collections are connected by
a sequence of flips.

The presence of the flip operations on ∆̂ss(n) and ∆̂ws(n) suggest something about their
topology. We say that a pure simplicial complex is a pseudomanifold with boundary if it
has the following two properties:

(i) Every codimension one face is contained in one or two facets.
(ii) For any pair of facets σ and σ′ there is a sequence of facets σ = σ0, σ1, . . . , σk = σ′

such that σi−1 ∩ σi is a codimension one face for all i.

Conjecture 5.1. The simplicial complexes ∆̂ss(n) and ∆̂ws(n) are pseudomanifolds with
boundary.
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Figure 3. The link lk({15, 234}) within ∂∆̂ws(5).

The connectivity result of Oh, Postnikov, and Speyer implies that both ∆̂ss(n) and

∆̂ws(n) have property (ii). Since both ∆̂ss(n) and ∆̂ws(n) are pure, it suffices to show that
they also have property (i).

5.2. Homeomorphism Types. In addition to homotopy types, we may also consider the
homeomorphism types of ∆̂ss(n) and ∆̂ws(n). Here, homology calculations have disproved

speculations based on the purity results mentioned in §5.1 that ∆̂ss(n) ∼= Sn−3×B(n−2
2 ) and

∆̂ws(n) ∼= B(n−1
2 )−1. In particular, the boundary of ∆̂ss(5) (expected to be homeomorphic

to S2 × S2) was found to have nontrivial reduced homology groups

H̃2(∂∆̂ss(5)) ∼= Z, H̃3(∂∆̂ss(5)) ∼= Z9, H̃4(∂∆̂ss(5)) ∼= Z,

and the boundary of ∆̂ws(5) (expected to be homeomorphic to S4) was found to have
nontrivial reduced homology groups

H̃2(∂∆̂ws(5)) ∼= Z, H̃4(∂∆̂ws(5)) ∼= Z.

The task of formulating a new conjecture on the homeomorphism types of ∆̂ss(n) and

∆̂ws(n) is made more difficult by virtue of the fact that ∂∆̂ss(n) and ∂∆̂ws(n) are not,
in general, manifolds. Using the software package polymake, we were able to determine
that neither are manifolds even in the n = 5 case. If they were, then the link of every
d-dimensional face would have the homology of a (3 − d)-sphere; however, in the case of

∂∆̂ws(5), the links of the vertices 15 and 234 were found to have reduced homology groups

H̃1 and H̃3 isomorphic to Z. Further computations showed that lk({15, 234}), the only
link of an edge in the boundary without the homology of a 2-sphere, is the disjoint union
of two boundaries of octahedra, as pictured in Figure 3. In the case of ∂∆̂ss(5), the link of

the face {2, 23, 234} within ∂∆̂ss(5), which is expected to have the homology of a 1-sphere,
is homeomorphic to two disjoint circles, as pictured in Figure 4.

We note that the homology of ∂∆̂ws(5) in particular indicates that we may have a

homeomorphism ∂∆̂ws(5) ∼= S2 ∨ S4, which is also not a manifold. Hence there may be



14 DANIEL HESS, BENJAMIN HIRSCH
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Figure 4. The link lk({2, 23, 234}) within ∂∆̂ss(5).

some hope that, in general, ∂∆̂ws(n) is a wedge of spheres. Computing the homology of

∂∆̂ws(6) already becomes too time-consuming, however, and therefore no conjecture on

the homeomorphism type of ∂∆̂ws(n) has been posed.

5.3. The simplicial complex ∆̂ws(n, k). In [9], Scott investigates weakly separated col-
lections of subsets of [n] in which the subsets have the same cardinality k. It is remarked in
[9] that such weakly separated collections have an action of the dihedral group D2n, which

acts on [n] in the usual way. Thus, in the same manner as ∆̂ss(n) and ∆̂ws(n), we may

define a clique complex
ˆ̂
∆ws(n, k) with an action of D2n (the extra hat is present due to

the fact that the subsets in the D2n-orbit of the subset 12 · · · k are now also considered to
be frozen), and consider its topology.

Oh, Postnikov, and Speyer [7, Corollary 28] have settled a conjecture posed in [9] which
states that every weakly separated collection consisting of subsets of the same cardinality
k have equal size k(n−k)+1, as well as another conjecture in [9] which states that any two
such weakly separated collections are connected by a sequence of “(2,4)-moves”. These are
analogues of the strong and weak raising/lowering flips discussed in [5]. The first result

implies that
ˆ̂
∆ws(n, k) is pure of dimension k(n − k) − n. As in the cases of ∆̂ss(n) and

∆̂ws(n), the connectivity result suggests the following:

Conjecture 5.2. The simplicial complex
ˆ̂
∆ws(n, k) is a pseudomanifold with boundary.

5.4. The simplicial complexes
ˆ̂
∆ws(n, k, `) and ∆̂ss(n, k, `). More generally, we may

consider weakly separated collections of subsets of [n] in which the subsets lie in a range

of cardinalities [k, `] with 1 ≤ k < ` ≤ n− 1, and consider the clique complex
ˆ̂
∆ws(n, k, `).

It is implied by [5, Lemma 3.9] that the frozen sets in this case (other than the initial
and final intervals) are the intervals in [n] of size ` and the subsets of size k which are
complements of intervals of size n − k. A result of Leclerc and Zelevinsky is that the
maximal possible size of such a weakly separated collection is

(
n+1
2

)
−
(
n+1−`

2

)
−
(
k+1
2

)
+ 1

[5, Theorem 1.3]. After removing frozen sets, this implies that
ˆ̂
∆ws(n, k, `) has dimension(

n+1
2

)
−
(
n+1−`

2

)
−
(
k+1
2

)
− (n + 1 − `) − (n + 1 − k). Calculations carried out in sage

show that each of the complexes
ˆ̂
∆ws(n, k, `), where n = 5, 6, or 7 (and where k, ` range
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over all possibilities for each value of n) is pure; however, it is not known whether or not
ˆ̂
∆ws(n, k, `) is pure in general.

In an analogous way to
ˆ̂
∆ws(n, k, `), we may define a simplicial complex ∆̂ss(n, k, `).

(Only one hat is present as, unlike in the weakly separated case, in general there are no
additional frozen subsets that are removed in the strongly separated case after restricting
the cardinality. The only exceptions are the cases k = ` = 1 and k = ` = n − 1, wherein
all subsets are frozen.) One may see that the complex ∆̂ss(n, k, `) is not pure in general

by considering the easily-visualized ∆̂ss(4, 1, 2) (see Figure 2), which has both 1 and 2-
dimensional facets. We also note that if n is even and the closed interval [k, `] contains n

2

or if n is odd and [k, `] contains both n−1
2 and n+1

2 , that the group Z/2Z×Z/2Z generated

by α and w0 (as defined in §1) acts on ∆̂ss(n, k, `).

As with ∆̂ss(n) and ∆̂ws(n), one may consider the homotopy types of ∆̂ss(n, k, `) and
ˆ̂
∆ws(n, k, `).

Conjecture 5.3. For k, ` ∈ {1, 2, . . . , n− 1}, the simplicial complex ∆̂ss(n, k, `) is

• empty if k = ` = 1 or k = ` = n− 1,
• homotopy equivalent to Sn−3 if n is even and the closed interval [k, `] contains n

2 ,

or if n is odd and [k, `] contains both n−1
2 and n+1

2 ,
• contractible otherwise.

Moreover, the (Z/2Z×Z/2Z)-equivariant homotopy type in the case that [k, `] is symmetric
about n

2 if n is odd or about n−1
2 and n+1

2 if n is even depends only on n.

As in the case of ∆̂ss(n), the element α ∈ Z/2Z× Z/2Z acts on Sn−3 as the antipodal
map and the element w0 acts by permuting the axes.

Conjecture 5.4. For k, ` ∈ {1, 2, . . . , n− 1}, the simplicial complex
ˆ̂
∆ws(n, k, `) is

• empty if k = ` = 1 or k = ` = n− 1,
• homotopy equivalent to Sn−4 if k, ` ∈ {2, 3, . . . , n− 2} and k = `,
• homotopy equivalent to Sn−3 if k, ` ∈ {1, 2, . . . , n− 1} and ` = k + 1,
• contractible otherwise.

Moreover, the D2n-equivariant homotopy type in the case k = ` depends only on n.

In the k = ` case of Conjecture 5.4 (i.e., the case of
ˆ̂
∆ws(n, k)), we have the following

proposition concerning the action of the generators r and s of the dihedral group D2n on
the sphere Sn−4, whose proof the authors owe to Vic Reiner:

Proposition 5.1. The rotation r ∈ D2n acts on Sn−4 by an orientation-preserving map if
n is odd and by an orientation-reversing map if n is even. The reflection s ∈ D2n acts on
Sn−4 by an orientation-preserving map if n ≡ 0, 3 mod 4 and by an orientation-reversing
map if n ≡ 1, 2 mod 4.

Before the proof, we introduce the following lemma:
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Lemma 5.1. A linear symmetry g of a d-dimensional polytope Q embedded in Rd acts on
the top homology group of the boundary of Q by a scalar ±1 equal to the determinant of g
as a linear map.

Proof. First, note that g has finite order: it permutes the vertices of Q, so some power
of it acts as the identity on the vertices of Q. Because the vertices of a d-polytope in Rd

contain a basis, and because g was assumed to be linear, this implies that some power of
g acts as the identity linear map.

Choose an inner product on Rd so that g acts orthogonally, by averaging an arbitrary
inner product over the cyclic group 〈g〉 generated by g, to get a g-invariant inner product.
The linear symmetry g now preserves the unit (d − 1)-sphere, and acts on this sphere’s
top homology group by the determinant of g: this is true for reflections, which have de-
terminant −1, and because reflections generate the orthogonal group it is true for g. Now
a straight-line projection from the unit sphere to the boundary of the polytope Q gives a
〈g〉-equivariant homeomorphism Q ∼= Sd−1, so g must act by the same scalar on the top
homology group of the boundary of Q. �

Proof of Proposition 5.1. In [9], it is remarked that weakly separated collections of 2-
subsets of [n] may be viewed as collections of noncrossing interior diagonals of a labeled
n-gon. Hence maximal weakly separated collections of 2-subsets of [n] may be viewed as

triangulations of an n-gon. This implies that the simplicial complex
ˆ̂
∆ws(n, 2) is isomor-

phic to the boundary complex of the (n−3)-dimensional simplicial polytope which is polar
dual to the simple polytope called the associahedron An [6, Theorem 1].

Starting with a regular n-sided polygon Pn having the origin 0 ∈ R2 as its center, the
embedding of the associahedron An as a secondary polytope due to Gelfand, Kapranov,
and Zelevinsky [4, Ch. 3] allows one to embed An inside a copy of Rn−3 in such a way
that the dihedral group D2n that acts linearly on R2 and preserves Pn will simultaneously
act linearly on Rn−3 and preserve An. This is due to the fact that the embedding of An as
a secondary polytope is the fiber polytope for the affine projection π of an (n− 1)-simplex
∆n−1 with n vertices onto the n vertices of the polygon Pn [1, Theorem 2.5].

If one embeds Pn into R2 as above and embeds the (n − 1)-simplex ∆n−1 as a regular
(n−1)-simplex in the hyperplane H : x1 +x2 + · · ·+xn = 1 inside Rn, with the symmetric
group acting as linear symmetries by permuting coordinates that stabilize the hyperplane
H and permute the vertices of this (n − 1)-simplex, then D2n acts linearly on R2 and on
Pn in a way that commutes with its linear action on Rn, on H, and on ∆n−1.

In general, the fiber polytope lies in the kernel ker(π) of the projection map π, which is
a linear subspace of H of dimension n−3. Furthermore, since the action of D2n commutes
with π, one also has an action of D2n on ker(π). An element g ∈ D2n will have the following
relation between the determinants of its actions on R2, on H, and on ker(π):

det(g on R2) det(g on ker(π)) = det(g on H).

This is due to the fact that the hyperplane H has a direct sum decomposition into ker(π)
and any 2-dimensional subspace U complementary to ker(π) within H. Since the subspace
U will map isomorphically onto R2 and since g commutes with π, the action of g on U
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is isomorphic to its action on R2. Note that det(g on H) is the same as the sign of g as
a permutation of {1, 2, . . . , n}, since the latter sign is det(g on Rn), and Rn has a direct
sum decomposition into H and the line spanned by the vector (1, 1, . . . , 1), on which g acts
by +1.

Thus the determinant of g acting on ker(π) = Rn−3 is the quotient

sgn(g)

det(g on R2)
.

Since Rn−3 is the space in which the associahedron is embedded, with g acting on it
linearly, this determinant is the same as the scalar by which g acts on the top homology
group of the boundary of the associahedron by Lemma 5.1. If g = r, then g acts on Pn
(with vertices labeled 1, 2, . . . , n clockwise) by the n-cycle (1 2 . . . n) and we have

sgn((1 2 . . . n))

1
= (−1)n−1.

If g = s, then g acts on Pn by the permutation (1)(2 n)(3 n− 1) · · · (n+1
2

n+1
2 + 1) if n is

odd and by the permutation (1)(n2 + 1)(2 n)(3 n− 1) · · · (n2
n
2 + 2) if n is even. This gives

sgn((1)(2 n)(3 n− 1) · · · (n+1
2

n+1
2 + 1))

−1
= (−1)(n−3)/2

if n is odd, and

sgn((1)(n2 + 1)(2 n)(3 n− 1) · · · (n2
n
2 + 2))

−1
= (−1)(n−4)/2

if n is even, as desired. �

Finally, we note that Conjectures 5.3 and 5.4 are supported by homology calculations

which have been carried out to n = 8 in the k = ` cases of ∆̂ss(n, k, `) and
ˆ̂
∆ws(n, k, `) and

to n = 6 in all other cases. We also note that these conjectures are consistent with all cases

∆̂ss(n, 1, n − 1) = ∆̂ss(n) and
ˆ̂
∆ws(n, 1, n − 1) = ∆̂ws(n) including the case ∆̂ws(3) ' S0

(pictured in §1, Figure 1).
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Loväsz, (eds), North-Holland, Amsterdam (1990).
[3] V. Danilov, A. Karzanov, and G. Koshevoy, On maximal weakly separated set-systems. J. Algebr.

Comb. 32 (2010), 497-531.
[4] I. Gelfand, M. Kapranov, and A. Zelevinsky, Discriminants, resultants, and multidimensional determi-

nants. Birkhuser Boston, Inc., Boston, MA, 1994.
[5] B. Leclerc and A. Zelevinsky, Quasicommuting families of quantum Plücker coordinates. American
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