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1 Introduction and elementary properties

The cd-index @p(c,d) is a noncommutative polynomial in the variables c and d
which efficiently encodes the flag f-vector of an Eulerian poset P. The cd—-index
was first defined by Jonathan Fine (see [B-K, Prop. 2]). In this section we review the
relevant background material and give a new proof of the existence of the cd-index.
This proof follows from a simple recurrence (Theorem 1.1) satisfied by the cd-
index. When we specialize our recurrence to the case of a boolean algebra, we obtain
a new generating function for the noncommutative André polynomials of Foata—
Schiitzenberger (Corollary 1.4).

In Sect. 2 we show via a shelling argument that $p(c,d) > 0 (i.e., all coefficients
of ®p(c,d) are nonnegative) when P is the face poset of a shellable regular CW-
sphere. Our definition of “shellable” is slightly different from the usual one, but it
does include line shellings of convex polytopes. Hence polytopes have nonnegative
cd-index, proving a conjecture of Fine (see [B-K, Conj. 3]). We conjecture that
®p(c,d) > 0 for any Cohen-Macaulay Eulerian poset P (Conjecture 2.1), and we
show that this conjecture (if true) gives all linear inequalities satisfied by the flag
f-vector of a Cohen-Macaulay Eulerian poset (Theorem 2.1).

In Sect. 3 we obtain a formula for the cd—index of a simplicial Eulerian poset
P. (“Simplicial” means that if z < 1, then the interval [0, z] is a boolean algebra.)
Using a result in [S3], it follows that @ p(c, d) > 0 for any Cohen—Macaulay simplicial
Eulerian poset P. The two main results in Sects. 2 and 3 are both generalizations
of a theorem of M. Purtill [Pu, §8] that #p(c,d) > 0 when P is the face lattice of
a simplicial convex polytope (and of certain other polytopes). We conclude Sect. 3
with a conjectured refinement (Conjecture 3.1) of noncommutative André polynomials
related to our formula for the cd-index of a simplicial Eulerian poset.
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Tekniska Hogskolan), Stockholm, and by NSF grants #DMS-8401376 and #DMS-9206374
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Let us begin with the definition of the cd-index due to Fine. Our general termi-
nology concerning posets (partially ordered sets) is taken from [S,, Ch. 3]. Let P
be a finite graded poset of rank n + 1 with O and 1. (We always assume n > 0, so
0< 1.) Let p denote the rank function of P. Thus P = PyUPU---UP,, (disjoint
union), where x € P, if and only if p(z) = i. Every maximal chain of P has the form
0=20 <z < < @pp =1 with p(z;) = i. Let S C [n] = {1,2,...,n}, and let

Pgs denote the S-rank selected subposet of P (with 0 and 1), i.e.,
Ps={z e P: p(x)e S}u{0,1}.

Denote by a(S) = ap(S) the number of maximal chains of Pg. The function « :
2" — Z is called the flag f-vector of P. Define a function B=0p: 2M - Zby

BES) = D (=S D(T), (1)
TCS
or equivalently,
as) = > BD). @)
TCS

Then 3 is called the flag h—vector of P. It has many interesting properties, e.g.,
Bp(S) > 0 when P is a Cohen—Macaulay poset [B-G-S, Thm. 3.3].

We now define a noncommutative polynomial which encodes the flag f-vector (or
flag h—vector). If S C [n], then define a noncommutative monomial ug = uju, - - - uy,
in the variables a and b by

_ a, 1 ¢S
e = {b, ieS. )
For instance, if n=6 and S = {2, 6}, then ug = abaaab. Let
Tr(a,b)= ) ap(Sus “)
SCn]

Up(a,b)= ) Bp(S)us.

SCln]
It is an immediate consequence of (1) or (2) that
Up(a,b) =Tp(a — b,b) 5)
Tp(a,b) =Pp(a+b,b).
For instance, if P is the boolean algebra Bs, then

Yr(a,b) = a® + 3ba + 3ab + 6>

Up(a,b) = a®+2ba+2ab+ b2 (6)

Suppose now that P is Eulerian [S2, Ch. 3.14], i.e., for all z < y in P we have
w(z,y) = (= 1), where p denotes the Mobius function of P and where p(z,y) =
p(y) — p(z). Bayer and Billera [B-B] show that the flag f-vector o p then satisfies
certain linear relations. Fine [B-K, Thm. 4] observed that the Bayer-Billera relations
are equivalent to the following statement.
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Proposition 1.1 (Fine) Let P be a finite graded poset with 0 and 1. Then P satisfies
the Bayer—Billera relations if and only if Wp(a,b) can be written as a polynomial
dp(c,d)inc=a+band d=ab+ba. [

The polynomial @p(c,d) is called the cd—index of P. Thus in particular ®p(c, d)
exists if P is Eulerian. The cd—index, if it exists, is unique since a + b and ab + ba
are algebraically independent (as noncommutative polynomials) over any field K.
For instance, from (6) we see that &p,(c,d) = & + d. If we define deg(c) = 1 and
deg(d) = 2, then clearly @ p(c, d) is homogeneous of degree n with integer coefficients.
For any word w in the letters a, b,c,d we let £(w) denote the length (total degree) of
w, with £(a) = £(b) = €(c) =1, ¢d) =2.

Note that if P has a cd—index, i.e., if ¥p(a, b) is a polynomial in a+b and ab+ba,
then Wp(a,b) = Up(b, a). In other words, Bp(S) = Bp(S), where S = [n] — S. This
symmetry condition is not enough to guarantee the existence of the cd—-index. Indeed,
a noncommutative polynomial ¥(a, b) satisfies ¥(a, b) = ¥(b, a) if and only if ¥(a,b)
is a polynomial (necessarily unique) in the variables a +b,a” +b%,a’ + b*,.... On the
other hand, ¥(a, b) = $(a + b, ab + ba) for some polynomial @ if and only if ¥(a,b)
is a polynomial just in the variables a +b and a® + b = (a + b)> — (ab + ba).

Given posets P and @ with 0 and 1, define the join P x Q to be the poset on the
set (P — {1} U@ — {0}) with z < y in P+ Q if either (i) z <y in P — {1}, (i)
r<yinQ—{0},orGi)zeP-{1},yeQ— {0}. Thus in the notation of [Sy, p.
100], P * Q is just the ordinal sum (P — {i}) ®Q - {O}). It is easy to see that if P
and Q are Eulerian, then so is P * Q.

When Q@ is the boolean algebra B, (with cd-index @, = ¢) and P is Eulerian
then we call the join P % B, the suspension of P, denoted X'P. There is another
construction related to the suspension which we will use. Let us say that a poset Pis
near—Eulerian if it is obtained from an Eulerian poset () by removing a single coatom
(element covered by 1) . Given P, we can uniquely recover Q) by adding a coatom
x which covers all y € P for which the interval [y, 1] is a three element chain. We
call Q the semisuspension of P, denoted Q = £'P.

Lemma 1.1 Suppose P and Q are Eulerian. Then
@P*Q(C, d) = QP(Cv d)qu((/a d)

In particular,
QSEP = @pc.

Proof This is an immediate consequence of the obvious fact that
TP*Q(av b) = Tp((l, b)TQ(a7 b)7
together with equation (5) and Proposition 1.1.

An alternative way to view the cd—index is the following. Let e = a — b. Clearly
¥p(a, b) can be written uniquely as a polynomial in ¢ and e, viz.,

¥p(a,b) Tp(52, 55°)

27"WUp(c+e,c—e).

Now 2 = ¢ — 2d, and it is easy to see that e>™*! is not a polynomial in ¢ and d for
any integer mm > 0. Hence for any graded poset P with 0 and 1, the cd-index exists
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if and only if the monomials c™' e’ c™e - - . which appear in ¥p(c+e,c — e) with
nonzero coefficient satisfy s; = 0 (mod 2) for all i. To compute Pp(c,d), simply
substitute (¢ — 2d)*i/2 for e in 2~"Wp(c+e,c — e). For instance, when P = B; we
get

(c+e)?+2c— e)cte)+2(c+e)c—e)+(c—e)
6c% — 2¢2

6c? — 2(c* — 2d)

4 +d)= 4P p(c, d).

Up(c+e,c—e)

We next give a recursive formula for ¥p = ¥Up(a,b) which shows immediately that
Pp(c, d) exists for Eulerian posets. Our result and proof are stated in terms of the
incidence algebra I(P) over the ring Q(a, b) of noncommutative rational polynomials
in @ and b. (Q denotes the field of rational numbers.) The value of a function f € I(P)
at an interval [z, y] is denoted by fzy. See [S,, Ch. 3] for background information
on incidence algebras. Normally I(P) is defined over a commutative ring, but the
definition and basic properties of I(P) make sense over noncommutative rings. In
particular, the convolution fg is still given by

(fg)zy: Z fzzgzy-

z<z<y
Theorem 1.1 Let P be Eulerian. Then

Wp=2Wy; = D PP —2dy!

o<a<i
p(x,1)=25—1

; 2(c¢* =2d)%=" if p(0, 1) =2k — 1
_ n 2 — J 9 Av .
Z Vo, (c” = 2d) + { 0, if p(0, 1) = 2k.
pm s

Hence ®p(c, d) exists (by induction on the rank of P).

Proof Let Q = X'P, the suspension of P. All our computations below take place in
the incidence algebra I(Q).

By considering the last element (excluding i) x =z}, of a chain 0 = Ty < -0 <
zx < 1in Q, it is clear that

T()i = Tm(a, b) = Z Tozbap(m,i)—l,

z<i
where we define Y400 = 1. Hence by (5)
Ui = ila,b)=> ¥, bla— =D, %)
;v<i

where ¥;3b = 1. Multiply by a — b on the right and add ¥;b to both sides to obtain
Uoia = Y Wy bla— b®D, (®)
x

If f,9,h € I(Q) are defined by
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fzy = Y¥YpyQ, Joy = !pq'yby hmy =(a— b)p(x,y)’

then (8) asserts (when applied to all intervals of Q) that f = gh in I(Q).
Since fizy = (—1)?®Y (because Q is Eulerian), it follows easily that

hy) = (1P (a — b,
Then from fh~! =g we get
Tyib = Y Ypa(~1)P" D — by, )
where Wysa = 1. Now add (8) and (9). We get

Bpic = Y Yy, (a(=)"D + b — by @D, (10)

The term indexed by = = 1 on the right-hand side of (10) is just ¥y;c and hence
cancels out the left—hand side. The terms for = = z; and x = 2, (the two elements of
Q of rank n + 1) are each given by —¥p(a — b)?. Hence

Wp = s (a(—1)PP @D 4 py(a — byPr@DL, (11)
zEP
z7 ip

where pp indicates the rank function of P, not Q.
If p(x,1) =25+ 1 and  #0 in (11), then

(a(=1)P@D=1 4 by(a — byP@ D=1 = (¢ — 2dY.
If p(z, 1) =2j and = #0 in (11), then
(a(=1)?@ D=1 4 b)(a — byP= D=1 = —(F — 2d)’.

If p(0, 1) = 2k, then since Wyea = Yypb = 1, we see that the term indexed by = = 0 in
(11) in 0. If p(0, 1) = 2k + 1 then this term is 2(a — b)** = 2(c? — 2d)*. Hence (11) is
equivalent to the desired recurrence.

By iterating Theorem 1.1 we obtain an expression for ®p(c,d) (or ¥p(a,b)) in
terms of the flag f—vector, as follows.

Corollary 1.1 For j > 1 define

w(2j—1)
w(27)

If P is Eulerian of rank n + 1 then

Le(c? —2dy~!
—3(? —2dy.

Bp(c,d) = Y (=2 Dwiay - anwlas — ap) - wln+ 1 = aap(S),
S

(12)

where S ranges over all subsets {a1,az,...,as} of [n] such that ay < ay <--- < as
and a; is odd. O
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The expression (12) of @p(c, d) in terms of the ap(S)’s is of course not unique,
since the ap(S)’s satisfy certain linear relations (which are equivalent to the existence
of &p(c,d)). We may regard (12) as a kind of canonical way to express @p in terms
of the flag f—vector. There may very well be other “canonical” formulas which are
advantageous to (12).

Let 7, be the set of all flag f-vectors ap : 2" —, R, where P ranges over all
Eulerian posets of rank n + 1, and let RF,, be the real vector space spanned by F,,.
Thus RF, is a subspace of the 2"—dimensional space consisting of all functions « :
2I"1 — R. Let C,, be the set of all words w of length 7 in the variables c and d (where
#(c) = 1, £(d) = 2), and let RC,, be the real vector space with basis C,,. The dimension
of RC,, is the (n + 1)-st Fibonacci number Fooy (Fi=F=1, Fooy = F, + F,_).
Since the definition of ®p depends linearly on ap, there is a linear transformation
p: RF, — RC, satisfying p(ap) = Dp. Clearly p is injective, since we can recover
ap from @p, via (4) and (5). The work of Bayer and Billera [B-B] shows that p is
also surjective, even if we restrict P to range over face lattices of polytopes (i.e., the
flag f-vectors ap, where P is the face lattice of an n~dimensional polytope, span
RF7). We wish to give a simpler proof than that of [B-B] that p is surjective (but
we are proving a weaker result, since we allow P to be any Eulerian poset).

Proposition 1.2 (a) The map p : RF, — RC,, defined above is surjective. In other
words, all homogeneous linear equalities satisfied by the components of flag f-vectors
of Eulerian posets of rank n + 1 are consequences of the existence of the cd—index.

(b) The affine subspace of RC,, spanned by p(Fy) is given by the condition that
the coefficient of ¢" is one. In other words, all linear equalities (homogeneous or
inhomogeneous) satisfied by the components of flag f-vectors of Eulerian posets of
rank n+ 1 are consequences of (a) and one additional equality, viz., ap(@) = 1.

Proof Let w = w(c,d) € C,. Let B, denote the boolean algebra of rank two, so B, is
Eulerian with &, (c, d) = c. For m > 0, let m denote the face poset of an (m + 2)-
gon. Thus @y, is Eulerian of rank 3, with $g,.(c,d)=c?+md. If w= wiwy - - Wy
with w; = ¢ or d, then define a poset Py m =T % Ty * - - - % T,., where

T = Bz, if w; =c¢
i Qum, ifw; =d.

By Lemma 1.1, we have

Pp, . (c,d) =w(c, + md).

w,m

Let s denote the number of d’s appearing in w, so r + s = n. Then, writing [u]4?2 for
the coefficient of u in a polynomial §2, we have [wi®p, . =m®, and if w # ¢" and
u # w then [u]®p, = m?, for some t < s. Thus for any w # ¢, we can make the
coefficient of-w in ®p,,, arbitrarily large compared to the other coefficients. From

this the proof is immediate.

For a stronger result using the posets Py m see Theorem 2.1.

Since the cd-index &p determines the flag f-vector ap and the flag h—vector
Bp, it is natural to ask for a formula expressing ap(S) and Gp(S) in terms of the
coefficients of $p. By Proposition 1.2, ap(S) and Bp(S) can be expressed uniquely
as a linear combination of coefficients of @p (valid for all Eulerian P of a fixed rank
n+1). By (2), we might as well consider only Bp. Given S C [n], let Wg be the set
of all words w = vv,--- v in ¢ and d of length n (with ¢(c) = 1, #(d) = 2) such that
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[ug]w(a + b, ab + ba) # 0 (where ug is given by (3)), i.e., all words w such that ug
appears in the expansion of w(a + b, ab+ ba). Equivalently, if v; = d then exactly one
of the integers £(vyvy - - -v;) — 1 and £(vjva - - - v5) is in S. For instance, if n =6 and
S ={1,3,5,6}, then

Wg = {c6, dc*, cdd, Pdc?, Pde, d* P, dede, cdzc}.

Proposition 1.3 Let P be an Eulerian poset of rank n + 1. Then for any S C [n] we
have

Bp(S)= Y [wlPp,

wEWg

where [w]®p denotes, as in the proof of Proposition 1.2, the coefficient of w in Pp.

Proof We have

1

> Br(Sus

SCln]

Pp(a+b, ab+ba)

z ((w]Pp)w(a+b, ab+ ba), (13)

where w ranges over all cd-words of length n.
By definition of Wy we have

w(a+b, ab+ba) = Z us,
s

wews
so the proof follows by equating coefficients of ug in (13).

Proposition 1.3 shows that each 3p(S) is a sum of certain coefficients (without
multiplicities) of ®p. In particular, we can interpret the sum &p(1,1) of all the
coefficients of @ p.

Corollary 1.2 Let Sy = {1,3,5,...} N[n] or Sp ={2,4,6,...} N[n]. Then

Pp(1, 1) = Bp(Sy).

Proof Note that Ws consists of all cd-words of length n if (and only if) S =
{1,3,5,...}N[n] or S ={2,4,6,...} N[n]. Now apply Proposition 1.3.

Corollary 1.2 suggests that if Sp(Sp) has a combinatorial interpretation, then the
coefficients of ¢p might also have a combinatorial interpretation which refines that
of Bp(Sp). Similarly if 8p(Sy) can be interpreted as the dimension of a certain vector
space V, then there might be a “natural” decomposition V' = ]_[w V. (where ]| denotes
direct sum and w ranges over all cd-words of length n) such that dimV,, = [w]®p.
Various examples of interpreting the coefficients of &p combinatorially are known
(due to Purtill [Pu]); see Sect. 3 for the case P = By. There is also a wide class of
posets P (viz., Cohen-Macaulay posets) for which there is a natural vector space V'
with dim V' = 3p(Sp) (see [B-G-S, Thm. 3.3 and §5]), but we have been unable to
find any means of describing a decomposition V' = ][ V,,. That such a decomposition
may exist is suggested by Conjecture 2.1.
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Let us now consider Theorem 1.1 in the special case when P is the boolean algebra
B,,. Foata and Schiitzenberger [F-Sc] defined combinatorially a certain noncommu-
tative polynomial U,,(c,d) in variables ¢ and d (Foata and Schiitzenberger used s
and ¢ instead of ¢ and d), called a (non—-commutative) André polynomial. Purtill [Pu,
Sect. 5] showed that

Un(c,d) = g, (c,d).

m

In particular, the combinatorial definition of U, (c,d) shows that Dp, (c,d) > 0. We

will discuss U,,,(c,d) in more detail in Sect. 3. For now we will be content with
obtaining a recurrence relation and generating function for U,,(c, d).

Corollary 1.3 The cd—index Uy, = Upl(e,d) = g, (a,b) of the boolean algebra B
satisfies the recurrence

m

W = D0 (MU =2ay~" = 3" (MU~ 2dy
0<i<m ()<1.<:"2r.;
- . 22 = 2%, m=2k— |
0, m = 2k.

Proof Immediate from Theorem 1.1, since B,, has (") elements x of rank i, all of
which satisfy [0, z] ¥ B;.

From Corollary 1.3 we can obtain a generating function for U,,,. Define formal
power series, whose coefficients are (noncommutative) polynomials in ¢ and d (but
whose variable x commutes with everything) as follows:

sinh(a — b)x AL
—_— = — b J
a—b ;m ) 25+ 1)!
= > (¢ -2dy 2L2M_'
= (25 + 1)!
h b by i
cosh(a —b)x = (a — .
( g !
JZ 2
= Y2y
> 2!

Moreover, if F(x) is any formal power series with noncommutative coefficients such
that F'(0) = 0, then (1 — F(x))~" denotes the unique series G(z) satisfying (1 —
F@)G(z) = G(x)] — F(x)) = 1. We also have the formula

G)=1+F@)+ F(x)*+---.
Corollary 1.4 With U,,(c,d) as above, we have

m : R AY Lo} Y —1
Z Unn(c, d)m = M [1 _ ¢-sinh(a — b)r + cosh(a — b):z:}
= m! a—b a—b

—1

sinh(a — b)z [l 1 <c - sinh(a — b)x

a—>b 2 a—b

5 — cosh(a — b)z + l)}

(141




Flag f-vectors and the cd-index 91

First proof. Multiply the recurrence of Corollary 1.3 by ™ /m! and sum on m > 1.
It is straightforward to obtain the desired generating function. [J
Second proof. From (7) there follows (writing ¥,,, for ¥, )

m—1

m ,
¥, = Z (j )&Djb(a e

j=1

Multiplying by ™ /m! and summing on m > 1 leads to

m '(ll—b).’L' -1 (a—b)xr __ 1 -1
Z Wm%‘_' = ‘ b ‘:1 —be b :\ s (15)
= m! a— a—
where by definition,
e(a——b)m 1 - iL“j
N

Jjzl

Although (15) is a generating function for ¥;,(a,b) = U,.(c,d) which looks simpler
than (14), it is not as satisfactory since it is unclear how to express the right-hand
side of (15) in terms of ¢ and d. The individual factors are not in fact functions of
c and d, unlike (14), which only involves even powers of a — b. However, it is not
difficult to show by a direct argument that the right-hand sides of (14) and (15) agree,
thereby giving another proof of (14). O

There is a recurrence known for U,, different from Corollary 1.3 (see [F-Sc,
Prop. 3.10][Pu, Cor. 6.6]. This other recurrence has the advantage of making it clear
that U,,, > 0. On the other hand, it seems difficult to use this recurrence to obtain a
generating function for U,, as we have done in Corollary 1.4.

As a final consequence of Theorem 1.1, let us note that it becomes much simpler
modulo 2 (though curiously it does not yield a recurrence relation for ¥; modulo 2).

Corollary 1.5 Let P be Eulerian. Then modulo 2 we have

3 gV =0 O

<z<i

2 Nonnegativity of the cd—index

Fine [B-K, Conj. 3] conjectured that the cd-index of a convex polytope (i.e., of its
face lattice) is nonnegative. Purtill [Pu] proved Fine’s conjecture for certain classes
of polytopes including simplicial polytopes (and hence also simple polytopes, since
if P* is the dual of P then & p~ is obtained from @p by reversing all words [Ba, end
of §3]). Bayer and Klapper [B-K, Conj. 5] gave a generalization of Fine’s conjecture,
viz., the cd-index of a regular CW-sphere is nonnegative. We wish to state an even
more general conjecture than that of Bayer and Klapper. Let us call a poset P with 0
and 1 a Gorenstein* poset (over a fixed field K) if the order complex A(P — {0,1})
of P— {0, 1} (i.e., the set of chains of P — {0, 1}, regarded as a simplicial complex)
is nonacyclic and Gorenstein, as defined in [S;, Ch. II, §5]. By [Si, Ch. II, Thm. 5.1],
it follows that P is Gorenstein* if and only if P is Cohen-Macaulay (over K) and
Eulerian.
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Conjecture 2.1 If P is Gorenstein* then @ p(c,d) > 0, i.e., the coefficients of Dp(c,d)
are nonnegative. [J

Later in this section we will prove a special case of Conjecture 2.1 which includes
Fine’s conjecture (but only a special case of the conjecture of Bayer and Klapper).
First we state a converse to Conjecture 2.1.

Theorem 2.1 Conjecture 2.1, if true, gives all possible linear inequalities satisfied by
flag f-vectors of Gorenstein* posets. More precisely, let C,, be as in Sect. 1. Suppose
that there are real numbers k,, for v € C,, such that

Z ko[v]®p > 0 (16)

veC,

for all Gorenstein* posets P of rank n + 1, where [v]®p denotes the coefficient of v
in @p. Then k,, > 0 for all v € C,,.

Proof Suppose (16) is valid for all Gorenstein* posets P of rank n+1 and that k,, < 0
for some w = w(c, d) = wyw, - - ‘wr € W, where w; = c or d. Let P, m be the poset
constructed in the proof of Proposition 1.2. If w # ", then for m sufficiently large
the left-hand side of (16) is dominated by the term indexed by v = w and hence is
negative since k,, < 0, a contradiction.

There remains only the case w = ¢". But @pcnvm = c" (for any m), so the left-hand
side of (16) is just k... Hence k.n > 0, as desired.

Note 2.1 Equation (16) is a homogeneous linear inequality, and one may wonder
whether there are inhomogeneous linear inequalities not implied by (16). But since
[c"]®p = 1, any inhomogeneous inequality can be converted to a homogeneous one,
so we gain nothing new by considering the inhomogeneous case.

Our next goal is to prove Conjecture 2.1 for a wide class of Gorenstein* posets
P, viz., face posets (with 1 adjoined) of shellable regular CW-spheres. (All terms
will be discussed below. In particular, our notion of shellability is slightly different
from the standard one but still includes face lattices of convex polytopes, confirming
the conjecture of Fine mentioned earlier.)

We begin with a lemma concerning the cd—index of subdivisions of regular Eule-
rian CW—comElexes. Following Bj()‘mgr [Bj], define a (finite) CW—poser to be a finite
poset P with 0, such that for all z > 0 in P, the geometric realization |(0, z)| of the
open interval (0, z) is homeomorphic to a sphere. By [Bj], a CW-poset is the same
as the face poset P({2) of a regular CW-complex 2. We will be concerned with the
case when Py(2) is Eulerian of rank n+ 1, where Pi(2) = P(2)U{ i} (the face poset
of 2 with a 1 adjoined). Thus P;(£2) has a cd—index Ppn) i=Pg.

Let o be a facet (n—cell) of 2. (All cells 7 of {2 are taken to be open. The closure
of 7 is denoted 7, so d7 = 7 — 7.) Let 2’ be obtained from 2 by subdividing & into
a regular CW-complex with two facets o, and 07, such that do is unchanged and
01Mo7 is a regular (n— 1)~dimensional CW-ball I". Thus 9o NI = Or'. Let I be the
regular CW—complex obtained from I" by adjoining a single new facet ((n — 1)—cell)
7 attached to OI', so O = TI".

We have that |£2| ~ |2'| so P,(£2') is Eulerian of rank n + 1 and has a cd—index
Pqy. If Ais a regular CW—complex and || is a sphere or ball, then by slight abuse
of terminology we also say that A is a sphere or ball. Thus I” is an (n — 1)—sphere
and OI is an (n —2)-sphere, so P, (I'"") and P;(OI") have cd—indices @ and Psr. In
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terms of the face posets P = P(I") and P’ = P\(I"’), we have that P is near-Eulerian
and that P’ is the semisuspension £ P. We also call I" the semisuspension of I" and
write I/ = X'I". In a similar fashion, if A is a regular CW-sphere, then define the
suspension XA to be the regular CW—sphere obtained from A by adjoining two facets
o, and o, attached to all of A. Thus Pj(X'A) = Y P(A).

With §2 and {2’ as above, define

é((:) d) = @_Q!(C, d) - @Q(Cv d)a

the change in the cd-index when we subdivide {2 to get £2’. The next lemma expresses
® in terms of @, and Pyr.

Lemma 2.1 With notation as above, we have

v

& = Pric— Dyt —d). (17

Proof The new flags of faces obtained in adjoining 7 to I" to get I'"” are just flags in
P(0I') with 7 adjoined at the top. Hence

Yr = Yr+Tyrb. (18)

Now consider the flags in 2’ which are not flags in (2. There are two kinds: (i)
Flags containing a face in I" — 9I'. Since either o, or o5 (or neither) can be at the top
of such a flag, these new flags contribute Tr(a+2b) — Yora(a+2b) to Yoy — Y. (ii)
Flags containing o or o7, but no face of I' — OI'. Let ) < 2, < --- < z; < 0 be
such a flag @. If x; & OI then ¢ simply replaces the flag x; < 2, < -+ < @; <o of
P(£2) and hence makes no contribution to T» — ;. If however z; € I, then both
<z < <z <orand x < < --- < a3 < 0y are flags in P(£2') which
replace the flag z; < x2 < --- < z; < o of P({2). Hence the total contribution of
such flags to Yo — Yo is Yorab.

It follows that

Yor— Yo =Qr —Ysra)a+2b)+ Tyrab.
Substituting 7+ — Yy b for T (which we can do by (18)) yields
Yo — T = Tr(a+2b) — Yor(a® + ab+ba + 2b°).
Substituting a — b for a yields by (5)

Vo —¥q Wri(a+b) — Yar(a® +b)

Uric — Uyp(c? — d),

and the proof follows.

Corollary 2.1 With notation as above, we have

[wde]d = [wd]lPr (19)
(wdld = [wlPsr (20)
(wtld = [wel(@r — Psor) 1)

where 3(0I") denotes the suspension of OI'.
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Proof The first two formulas are immediate from (17). Also immediate is the formula
[we?]d = [weldr — [w]Par.
Now by Lemma 1.1 we have Dsor) = Pore, and the proof follows.

We now give the inductive definition of shellability which we need here. Our
definition will be given only for regular CW-—complexes 2 which are Eulerian (i.e.,
Py(f2) is Eulerian), since we need all complexes under consideration to have a cd—
index.

Definition 2.1 Let (2 be an Eulerian regular C W-complex of dimension n. We say
that §2 or P\(§2) is S—shellable (short for “spherically shellable”) if either 2 = {0}
(so Pi(£2) is a two—element chain with cd—index 1 ), or else we can linearly order the
Jacets (open n—cells) of 2, say oy, 05, . .. , O, SUch that forall 1 <i <r the following
conditions hold (where both ~ and cl denote closure).

(a) 057 is S—shellable (of dimension n — 1),

(b) For2 <i<r—1,let

I = cldo; — (@1 V- Ugiop) Noy)l. (22)

Thus I is the subcomplex of 96; generated by all (n — 1)—cells of 0a; which are not
contained in the complex o7 U - -- U ;27 generated by the previous cells. Then we
require that I'; is near-Eulerian (i.e., P\(I}) is near—Eulerian) of dimension n — 1,
and that the semisuspension T is S—shellable, with the first facet of the shelling
being the facet T = 7; adjoined to I; to obtain 5 T,.

Note the following consequence of the previous definition. The complex I is
near—Eulerian for 2 < ¢ < r — 1| and thus has an (n — 2)-dimensional Eulerian
boundary OI’; (where by definition 91 is generated by all (n — 2)—cells contained in
the closure of exactly one (n — 1)—cell of I’ i). Moreover, 0I'; = O7;. Since by (a) and
(b) we have that d7; is S—shellable, there follows:

OI; is S—shellable for 2 < i <r — 1. (23)

The essential difference between S—shellability and the usual definition [Bj, Def.
4.1] of shellability (which we call here C=shellability) of a regular CW—complex is the
following: In C-shellability, it is required that 95; is C—-shellable, with the shelling
beginning with the facets of 95; contained in o1 U---Uog;_1. For S-shellability, we
are in essence “merging” all the facets of §5; contained in o1U---Ug;_7 into a single
facet 7; before commencing with the shelling of 07; (beginning with 7;). One can
give an example of an S-shelling which is not a C—shelling, based on the existence of
nonshellable balls whose boundaries are shellable spheres (e.g., [Ne][R]). Similarly we
can find a C-shelling which is not an S—shelling, based on the existence of shellable
balls whose boundaries are nonshellable spheres [Pa]. However, a Bruggesser—Mani
line shelling of the boundary complex of a convex polytope [B-M] is an S—shelling (as
well as a C—shelling), because in such a shelling the complex OI7; is itself polytopal.
Thus Theorem 2.2 applies to this situation. Let us also mention that it is easy to see
(analogous to [D-K, p. 35, (1)]) that an S-shellable Eulerian regular CW-complex
§2 is in fact a sphere (and that the subcomplexes I of equation (22) are balls), so
from now on we might as well assume that {2 is a sphere.
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Theorem 2.2 Let 2 be an S—shellable regular CW-sphere of dimension n, so that
the augmented face poset Py(§2) is Eulerian. Then

Do(c,d) =Pp,a)(c,d) > 0.

Proof Let 0y,02,...,0, be an S—shelling of 2. For 1 < i < r — 1, let 2, =
2@V -UT;). Thus 2,_; = 2. We prove by induction on n = dim {2 and on i that
&, =g, — P, , > 0, whence P, > 0 so in particular b, = g > 0. When
n=—1 we have 2 = {¢} and §, = 1. Hence assume n > 0. By Definition 2.1(a),
we have that 057 is S—shellable of dimension 7 — 1, so by induction @g5; > 0. Now
£, = X(0a7), so by Lemma 1.1 we have @, = Pyz;c > 0. This establishes the base
1 =1 of the induction.

Now assume that ¢ > 1 and that ¢, _, > 0. Let I;; be as in equation (22). Let ¢
be the facet of (2;,_; which was adjoined to ;U ---UT;_ to obtain £2;,_,. Thus {2;
is obtained from f2;_; by subdividing o into two facets o, and o,, with 7N 5; = I;.
We are precisely in the situation of Lemma 2.1, so setting & = &, — b, ['=1T;
and I" =T = ET;, we know that (19), (20), and (21) hold. By Definition 2.1(b), we
have that I is S—shellable of dimension n — 1, so by induction and (19) we have
[wdeld > 0. Similarly equation (23) implies that 0I" is S—shellable of dimension
n — 2, so by induction and (20) we have [wd)d > 0.

Now consider equation (21). By Definition 2.1 there is an S—shelling (;, (3, ...
of I such that the first facet ¢; has boundary 9¢; = OI". Thus ¢, = £(0I'), so by
induction @ — x5 > 0. Hence by (21) we have [wc*]d > 0, and the proof is
complete.

Since as mentioned above boundary complexes of convex polytopes are S—
shellable, we obtain the conjecture of Fine mentioned in the introduction:

Corollary 2.2 Let P be the face lattice of a convex polytope. Then ®p > 0. U

Let us note that since the posets P, ,,, used to prove Theorem 2.1 are face posets
of S—shellable Eulerian regular CW—-complexes, there follows from Theorem 2.2 the
following corollary.

Corollary 2.3 The inequalities &, > 0 yield all linear inequalities satisfied by flag
f-vectors of face posets of S—shellable Eulerian regular CW-complexes {2. [

As an interesting special case of Conjecture 2.1 and Theorem 2.2, we can ask for
which pairs (S, T) of subsets of [n] do we have Bp(S) > Bp(T") for all Gorenstein*
posets P of rank n + 1. For this end, given S C [n] define w(S) C [n — 1] by
the condition ¢ € w(S) if and only if exactly one of ¢ and ¢ + 1 belongs to S. For
instance if n = 8 and S = {2,4,5, 8}, then w(S) = {1,2,3,5,7}. Thus by definition
of Wg, we see that a cd—word w = v1v; - - -v; € C,, satisfies w € Wy if and only if
Uy ---v;) + 1 € w(S) whenever v;,; = d. There follows:

Conjecture 2.2 The following two conditions on subsets S, T of [n] are equivalent:
(i) For every Gorenstein* poset P of rank n + 1, we have Gp(S) > Bp(T).
(ii) w(S) D w(T). O

Theorem 2.3 (a) Conjecture 2.2 follows from Conjecture 2.1 (and Theorem 2.1).
(b) Conjecture 2.2 is true if the phrase “Gorenstein® poset P” in (i) is replaced
with “face poset P of an S—shellable Eulerian regular CW—complex.” [
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In particular, for a fixed Gorenstein* poset P, we have that 8p(S) is conjecturally
maximized for S = {1,3,5,...} and S = {2,4,6, .. .}. This conjecture is true for face
posets of S—shellable Eulerian regular CW-complexes.

Let us consider Theorem 2.3(b) in the case when P is the boolean algebra B,,.
It is well-known [S,, Cor. 3.12.2] that BB,,(S) is the number of permutations 7 =
Ty Ty Of 1,2,... . m whose descent set D(r) := {1<i<m-1:m> sl }
is equal to S. The inequalities on BB, (S) given by Theorem 2.3(b) are equivalent to
a result of Niven [Ni], later given a simpler proof by de Bruijn [dB]. Of course the
fact that &5 > 0 imposes further inequalities on the &g _(S)’s, though not of the
form (3(S) > B(T). As mentioned in Sect. 1, the inequality 5 > 0 follows from
the theory of André polynomials and does not require Theorem 2.2.

An interesting application of Theorem 2.2 appears in [C-D, §7], where it is used
to prove a special case of an intriguing conjecture (Conjecture D) concerning the
h-vector of certain triangulated spheres.

3 Eulerian simplicial posets

In this section we obtain a formula for the cd—index of a (very) special class of
posets. A finite poset P is simplicial if P has a 0 and every interval [0, z] is a
boolean algebra. Thus a simplicial meet—semilattice is just the face poset of a (finite)
simplicial complex. By slight abuse of terminology, we say that an Eulerian poset
P is simplicial if P — { i} is a simplicial poset. Let f;_, denote the number of
elements x in a simplicial poset P for which [0, 2] = B;. In particular, f_; = 1.
Let n — 1 =max{i: f;_| #0}. Thus for an Eulerian simplicial poset P, we have
rank(P) = n + 1. The vector f(P) = (fy,..., frn—1) is called the f-vector of P. Let
S ={ay,a,...,a5} C {1,2,...,n}, with a) < a3 < -+ < a, = J. Since f;_,
elements = of P satisfy [0, x] = Bj, there follows

fi-1ap;(S — {J'})'
fj_l( 7 ) (24)

1,82 — Q1y. .., — Gg_|

ap(S)

Hence ap(S) (and thus also 5p(S9)) is completely determined by f(P) and .
If P is a simplicial poset with f—vector f(P)=(fo,..., fa—1), then write

n—1 n
Z f1(.’L‘ _ l)n—z' - Z hixn—i_
=0

=0

The vector h(P) = (hg, hi, ..., hy) is called the h—vector of P and is often easier to
work with than the f-vector. In particular, we have the following two results.

Proposition 3.1 (S;, Thm. 3.10) Let P be a Cohen—Macaulay simplicial poset. Then
h; >0 foralli. O

Proposition 3.2 (equivalent to [S,, Ch. 3, (40)]). Let P be an Eulerian simplicial
poset of rank n+ 1. Then h; = h,,_; for all i. 0O

Thus for Eulerian simplicial posets, the flag f-vector (and hence the cd—index)
is determined entirely by the numbers hj, Biy..oshins |- Hence the space spanned
by flag f-vectors of Eulerian simplicial posets of rank n + 1 has dimension at most
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(in fact, exactly) 1+ |n/2]. This is much smaller than the dimension Fi,, of the
space spanned by flag f-vectors of all Eulerian posets of rank n + 1 (see Proposition
1.2 and the discussion preceding it). Thus simplicial Eulerian posets are an extremely
special (though nonetheless interesting) class of Eulerian posets. We will give an
explicit formula for the cd-index of a simplicial Eulerian poset P which, together
with Proposition 3.1, will make it obvious that #p > 0 when P is Cohen-Macaulay,
thereby proving Conjecture 2.1 in the simplicial case.

Let A" denote the boundary complex of an n—dimensional simplex. Thus P;(A™) &
B+, and @ 4» is the polynomial Uy, of Corollary 1.3. Any ordering of the facets
of A™ is an S—shelling, and all such shellings are equivalent via an automorphism
of A™. Fix an S—shelling 09,01, ...,0,. Let AT = Z(@U---UTy), so A7_| = A",
Define &; = 43? = 45/1? — @Ain_l (with &y = 45/1;})- Hence

So+ &+ + Dy =Una,
and by the proof of Theorem 2.2 we have
&; >0, 0<i<n-1. (25)

Theorem 3.1 Let P be a simplicial Eulerian poset of rank n+1, with h-vector h(P) =
(ho, hyy ..., hy). Then

n—1
Dp=Y hd}. (26)
i=0

Proof If the simplicial poset @ is the face poset of a regular CW-—complex I', then
we write

Q) = () = (ho(I), (D), - . . s hn(I)).-
Suppose first that P is the face poset of an S-shellable Eulerian regular CW-

complex, say with shelling oy, ..., 0,. If the simplex o intersects g3 U---UG;—1 in
a union of ¢ faces of o, then

~ _ ~ — 61”7 .>0,
hi(X(@EU---UG;) — hi(X(@U--- Ua;-1) = { 51.0.4.61»31 g =0
while
HE@G U UF)) —dEG U UF-) =],

where 4;; denotes the Kronecker delta. Hence (26) is true for such P. It is easily
seen that we can find such P whose h-vectors span the linear span of all h-vectors
of simplicial Eulerian posets of rank n + 1. Since ho(P) = hp(P) = 1 and since Pp
depends linearly on h(P) (by (24)), the proof follows.

Corollary 3.1 Let P be a Gorenstein* simplicial poset. Then ®p > 0.

Proof Combine Proposition 3.1, equation (25), and Theorem 3.1.
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Corollary 3.1 establishes Conjecture 2.1 when P is simplicial. A special case of
Corollary 3.1 was proved earlier by M. Purtill [Pu, Cor. 8.4].

We conclude with a conjecture (which we suspect will not be too hard to prove)
concerning a combinatorial interpretation of the polynomials é;’. We assume famil-
iarity with the theory of André permutations [F-Sc][F-St][Pu]. Let A,Il denote the
set of augmented André permutations in the symmetric group S,,. Let Al denote
the set of André permutations of the second kind in Sy Finally we consider a class
of permutations related to those in A% suggested by S. Sundaram. An augmented
Sundaram permutation (or André permutation of the third kind) in S,, is a permutation
T =mmy-- T € S, such that (a) 1, = n, and (b) if for any j > 0 the elements
n—1,n-2,... n—j are removed from the word 7 = 7, - - - ,,, then the resulting
word pyp; - - Pn—; has no double descents, ie,nop,_; > p; > Pi+1. (In particular,
the case j = 0 says that w itself has no double descents.) Let AT denote the set of all
Sundaram permutations in S,,. For instance, AT = {1234,1324,2134, 2314, 3124},

Given a permutation 7 € S,, with no double descents, let U,; = U, (c, d) denote the
reduced variation of 7. (U, is a noncommutative monomial in ¢ and d of length n—1,
with d(c) = 1, 4(d) =2.) Using the theory of André permutations developed by Foata
and Schiitzenberger [F-Sc], Purtill [Pu, Thm. 7.1] gave the following combinatorial
interpretation of U,, = Dp,:

Un = Y U, 27)

TeEAX

n-—1

where X = I or I1. By similar reasoning one can establish (27) for X = J]J.
Conjecture 3.1 below gives a refinement of this result. Define

AXs = {meAX: muy=n—1—4}, if X=1orIII
ALL {re All: 7, =n—i).

Conjecture 3.1 We have

where X =1, II,or II]. O

Some values of the polynomials 43? are:




Flag f-vectors and the cd-index 499

n=1: ¢0=c

n=2: &=c
b =d

n=3 é()=c3+dc
é, =de+cd
d\sz:Cd

n=4: &y=c*+2dc*+2cde

&, =dc? + 2cde + Ad + d?
&, = cde + c*d + 2d?
&y = Ad+ d2.
n=5: ®y=c +3dc +5cdc? +3ctde + 4d%c
@, = dcd +3cdc? + 3cide + Ad + 4dPc + 2ded + 2ed?
&, = cd® + 2cde + Ad + 3dc + 3dced + ded?
&5 = Ade + Ad+ de + 3ded + ded?
&4 = Ad +2ded + 2cd?.
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