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Abstract. We provide an algebraic proof for the limit of the ratio of consecutive F -polynomials of the

2-Kronecker. We do this by expanding a proof by Reading [4] which involves cluster scattering diagrams.

Furthermore we use this result to recursively define the limit for general r-Kronecker.
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1. Introduction

This paper explores an infinite limit of ratios of F -polynomials obtained from the cluster algebra associated
with the r-Kronecker quiver, which we define as

rGQ1,Q2
(y1, y2) := lim

i→∞

FQi

i+1

F
Qi+1

i

,

where F denotes a F -polynomial and the Qi sequence satisfies Qn = rQn−1−Qn−2. F -polynomials are one
piece of data that encode information about the Laurent expansions of cluster variables [2]. As such, they
inherit the Laurent phenomenon and positivity.

For the cluster algebra associated to the 2-Kronecker quiver, it’s known that the limit limi→∞ Fi+1/Fi
converges. Reading obtained a functional equation for this limit using cluster scattering diagrams. In this
report, we develop a distinct functional equation through purely algebraic methods. We hope to further
generalize this technique to stable ratios of F -polynomials for other values of r. Our approach to finding the

limit of consecutive F -polynomials involves expressing limi→∞ FQi

i+1/F
Qi+1

i as an infinite product and then
using that product to develop a functional equation.

Following necessary background information, given in Section 2, this report proves a recurrence identity
for F-polynomials which is then used to demonstrate convergence of this limit. This recurrence, and other
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useful technical results, appear in Section 3. In Section 4, we then go on to express limi→∞
F

Qi
i+1

F
Qi+1
i

, for any

sequence Qi which satisfies the recurrence Qn = rQn−1 −Qn−2, as the following infinite product.

Proposition 4.4: The sequence
F

Qi
i+1

F
Qi+1
i

converges as a formal power series, namely

lim
i→∞

FQi

i+1

F
Qi+1

i

=

∞∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk

.

In Section 5 we then use this form to develop the following functional equation for rGQ1,Q2
(y1, y2).

Proposition 5.4: The function N (y1, y2) := 2G1,1 = lim
i→∞

Fi+1

Fi
satisfies the functional equation

N (y1, y2) = N
(

y21y2
(1 + y1)2

,
1

y1

)
· (1 + y1).

Finally, in Section 5.3, we generalize this functional equation and find a closed form for 2G0,1. Because a
closed form is already known for 2G1,1 and any sequence Qi which satisfies the recurrence Qn+2 = 2Qn+1−Qn
is a linear combination of those sequences, this completely solves the r = 2 case.
Theorem 5.7: We have

2G0,1(y1, y2) = lim
i→∞

F i−1i+1

F ii
=

(1 + y1 + y1y2)2 − 4y1y2 + (−1 + y1 + y1y2)
√

(1 + y1 + y1y2)2 − 4y1y2
2y1

.

2. Background

2.1. Cluster Algebras. Cluster algebras are a subclass of commutative algebras with distinguished gener-
ators, introduced by Fomin and Zelevinsky in 2000 [1]. They function as a concrete combinatorial framework
to investigate dual canonical bases and total positivity within semisimple groups.

Definition 2.1. Suppose F is a field of rational functions in n independent variables with coefficients in
QP, where (P,

⊕
, ·) is an arbitrary semifield. A cluster seed is a triple (~x, ~y,B) such that: ~x = (x1, ..., xn)

is a free generating set of F , ~y = (y1, ..., yn) is an n-tuple with elements in the semifield (P,⊕, ·), and B =
[bij ]

n
i,j=1 is a non skew-symmetrizable matrix with entries in Z. ~x is the cluster, x1, ..., xn are the cluster

variables, ~y is the coefficient tuple, y1, ..., yn are the coefficient variables, and B is the exchange
matrix.

In this paper, we use the tropical semifield, where a · b = a+ b and

yt11 y
t2
2 · · · ytnn ⊕ y

t′1
1 y

t′2
2 · · · y

t′n
n := y

min(t1,t
′
1)

1 y
min(t2,t

′
2)

2 · · · ymin(tn,t
′
n)

n .

Definition 2.2. The cluster algebra associated with initial seed (~x, ~y,B) is the subalgebra of F generated

by the cluster ~x = (x1, ...xn) and all clusters ~x′ = (x′1, ..., x
′
n) of seeds which are reachable from the initial

seed via a sequence of mutations. The set of reachable clusters could be finite or infinite. A cluster algebra
with principal coefficients comes from an extended exchange matrix.

Definition 2.3. A mutation in direction k, denoted µk, is defined by the relations

x′i =

{
1
xk

(
1

1⊕yk

)(
yk
∏n
j=1 x

[bjk]+
j

∏n
j=1 x

[−bjk]+
j

)
if i = k

xi otherwise

y′i =

{
1
yk

if i = k

yiy
[bki]+
k (1⊕ yk)bki otherwise

b′ij =

{
−bij if i = k or j = k

bij + ([−bik]+bkj + bik[bkj ]+) otherwise

where [·]+ = max(·, 0).
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Cluster algebras have the Laurent phenomenon, which means that any cluster variable can be written as
a Laurent polynomial in terms of any choice of cluster. We refer to this expression as the Laurent expansion.

Definition 2.4. The `-th F-polynomial is the Laurent expansion of the cluster variable x` in terms of
some fixed initial cluster (x1, . . . , xn) with all the xi specialized to 1.

The remainder of this paper deals specifically with the r-Kronecker, a rank 2 cluster algebra associated

with the initial seed: ~x = (x1, x2), ~y = (y1, y2), B0 =

(
0 r
−r 0

)
. We are going to be using the mutation

sequence consisting of alternating µ1 and µ2.

Definition 2.5. Let yk,s be the principal coefficient of position k (zero indexed), at mutation s, where
k ∈ {0, 1}, s ∈ Z≥0. Let (x1, x2, . . . ) be the sequence of cluster variables generated using the above mutation
sequence. Then, for k ≡ s+ 1 mod 2, mutation for the r-Kronecker gives

xs+2xs =

(
1

1⊕ yk,s−1

)yk,s−1 1∏
j=0

x
[bjk]+
s+j +

1∏
j=0

x
[−bjk]+
s+j


yk,s =

1

y1−k,s−1

y1−k,s = y1−k,s−1y
[bk(1−k)]+
k,s−1 (1⊕ yk,s−1)

−bk(1−k)

b′ij =

{
−bij if i = k or j = k

bij + ([−bik]+bkj + bik[bkj ]+) otherwise

Example 2.6. In the following table, we give a choice of initial seed for the 2-Kronecker and 3-Kronecker.
We also show several F -polynomials, calculated using Definition 2.3 and Definition 2.4 and the mutation
sequence µ2µ1.

2-Kronecker 3-Kronecker
~x (x1, x2) (x1, x2)
~y (y1, y2) (y1, y2)

exchange matrix

[
0 2
−2 0

] [
0 3
−3 0

]
F-polynomials

F1 = F2 = 1
F3 = 1 + y1

F4 = (1 + y1)2 + y21y2

F1 = F2 = 1
F3 = 1 + y1

F4 = (1 + y1)3 + y31y2

2.2. Reading and the 2-Kronecker. In Reading’s work [4] on the wall-crossing automorphism on the
limiting ray, he examines the ratio between consecutive F -polynomials of the 2-Kronecker. He uses the

notation N (y1, y2) := lim
i→∞

Fi+1

Fi
for this ratio, and derives the closed form of this function using an algebraic

geometry tool called scattering diagrams.

Definition 2.7. For i, j ≥ 0, the Narayana number Nar(i, j) is defined as

Nar(i, j) :=


1
i

(
i
j

)(
i

j−1
)

if i, j > 0

1 if i = j = 0

0 otherwise.

Theorem 2.8 (Reading, [4]). The limit of consecutive F -polynomials in the 2-Kronecker is

N (y1, y2) = 1 + y1
∑
i,j≥0

(−1)i+j Nar(i, j)yi1y
j
2.

The known generating function of the Narayana numbers (see [3] for further details) can then be used to
simplify N (y1, y2) into the following closed form function.
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Corollary 2.9 (Reading, Corollary 3.11).

N (y1, y2) =
1 + y1 + y1y2 +

√
(1 + y1 + y1y2)2 − 4y1y2

2
.

In section 5.2, we provide an alternate proof of the above theorem without the use of scattering diagrams.

3. F -polynomial Recurrence

Recall our notation for the limit of consecutive F -polynomials of the r-Kronecker, rGQ1,Q2
(y1, y2). We

now lay the groundwork for the infinite product form of rGQ1,Q2
. In particular, we prove Proposition 3.1

which is used in the inductive step of Lemma 4.1 and will allow us to recursively calculate F -polynomials.

Proposition 3.1. We have the following recurrence for F -polynomials:

Fs+1Fs−1 = F rs + yas1 y
as−1

2 .

Where {ai} is defined by a1 = 0, a2 = 1, an = ran−1 − an−2 for n ≥ 3.

Note that the {ai} sequence is nonnegative and increasing. This recurrence can be used to calculate the first
few F -polynomials:

F1 = 1

F2 = 1

F3 = 1 + y1

F4 = (1 + y1)r + yr1y2

F5 =
((1 + y1)r + yr1y2)r + yr

2−1
1 yr2

1 + y1

To prove Proposition 3.1, we require two intermediate lemmas.

Lemma 3.2. At mutation s, the exchange matrix is Bs = (−1)s
[

0 r
−r 0

]
.

Proof. Recall that the initial exchange matrix for the r-Kronecker is B0 =

[
0 r
−r 0

]
, where we use the

convention of zero indexing matrix entries. Using the mutation formula 2.3 for the matrix B, it is easy to

see that at mutation s, the exchange matrix is Bs = (−1)s
[

0 r
−r 0

]
. �

Lemma 3.3. On mutation s, where s ≡ k mod 2, for s > 0,

yk,s = y
as+2

1 y
as+1

2

yk,s+1 =
1

y
as+2

1 y
as+1

2

where ai is as in Proposition 3.1: a1 = 0, a2 = 1 and an = ran−1 − an−2 for n ≥ 3.

Proof. We proceed by induction on s. Here, our base case is:

y0,0 = y1, y1,0 = y2

y0,1 =
1

y1
, y1,1 = yr1y2

y1,2 =
1

yr1y2
By induction, assume that Lemma 3.3 holds for s − 1. Then for 1 − k ≡ s + 1 mod 2, Definition 2.3 and
Lemma 3.2 give us
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y1−k,s+1 = y1−k,sy
[bk(1−k)]+
k,s (1⊕ yk,s)−bk(1−k)

= y1−k,sy
[bki]+
k,s

= y1−k,sy
r
k,s.

Note that because the {ai} sequence is nonnegative, 1 ⊕ yk,s = 1. Applying the inductive hypothesis, we
obtain

y1−k,s+1 =
1

y
as+1

1 yas2
· yras+2

1 y
ras+1

2

= y
ras+2−as+1

1 y
ras+1−as
2

= y
as+3

1 y
as+2

2 ,

as desired.
�

Lemma 3.4. For k ≡ s mod 2, 1⊕ yk,s = 1

Proof. From Lemma 3.3, we know that yyk,s
has nonnegative exponents, as the {ai} sequence is nonnegative.

�

Proof of Proposition 3.1. Recall that the recurrence for the next cluster variable is

xs+2xs =

(
1

1⊕ yk,s−1

)yk,s−1 n−1∏
j=0

x
[bjk]+
s+j +

n−1∏
j=0

x
[−bjk]+
s+j


where s − 1 ≡ k mod 2, and yi1y

j
2 ⊕ yi

′

1 y
j′

2 = y
min(i,i′)
1 y

min(j,j′)
2 . By Lemma 3.4, 1 ⊕ yk,s−1 = 1, and our

recurrence is reduced to

xs+2xs = yk,s−1

1∏
j=0

x
[bjk]+
s+j +

1∏
j=0

x
[−bjk]+
s+j .

By inspection of the exchange matrixBs at mutation s from Lemma 3.2,
∏1
j=0 x

[bjk]+
s+j = 1, and

∏1
j=0 x

[−bjk]+
s+j =

xrs+1. Thus, we are left with

xs+2xs = yk,s−1 + xrs+1 = xrs+1 + y
as+1

1 yas2

by Lemma 3.3, and it follows that the specialization x1 = x2 = 1 gives us

Fs+2Fs = F rs+1 + y
as+1

1 yas2 .

�

4. Rewriting rGQ1,Q2
as an Infinite Product

Before we begin studying rGQ1,Q2
= lim
i→∞

FQi

i+1

F
Qi+1

i

we will first find an expression for
F

Qi
i+1

F
Qi+1
i

in Lemma 4.1,

and then take a limit of this expression as a formal power series. In the following section, the infinite product
will be used to find a functional equation for rGQ1,Q2

.

Lemma 4.1. For all sequences Qi satisfying Qn = rQn−1 −Qn−2, we have the equality

FQi

i+1

F
Qi+1

i

=

i∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk

=

i∏
k=2

(
Fk+1Fk−1

F rk

)Qk

.

This proposition follows from of the identity Fk+1Fk−1 = F rk + yak1 y
ak−1

2 (Proposition 3.1). Each factor
in the product is simply the right side of proposition 3.1 divided by F rk , and can therefore be re-written
Fk+1Fk−1

F r
k

. This last expression appears after inductively breaking up
F

Qi
i+1

F
Qi+1
i

.
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Proof. The equality

FQ2

3

FQ3

2

= (1 + y1)Q2 =

2∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk

follows directly from our computations in section 3 and forms the base case of our induction. Then for i ≥ 3,
we can compute

FQi

i+1

F
Qi+1

i

=
FQi

i+1

F
rQi−Qi−1

i

= F
Qi−1

i

(
Fi+1

F ri

)Qi
(
FQi

i−1

FQi

i−1

)
=

(
Fi+1Fi−1

F ri

)Qi F
Qi−1

i

FQi

i−1

Finally, we conclude by applying the inductive hypothesis and Proposition 3.1:

FQi

i+1

F
Qi+1

i

=

(
Fi+1Fi−1

F ri

)Qi i−1∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk

=

i∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk

.

�

We now proceed to take the limit of
F

Qi
i+1

F
Qi+1
i

as a formal power series. Intuitively, the
y
ak
1 y

ak−1
2

F r
k

term in each

factor has larger and larger minimal degree, in the sense that for each pair (b1, b2) ∈ N, there is an i so that
y
ak
1 y

ak−1
2

F r
k

contains no terms yc11 y
c2
2 with c1 < b1 or c2 < b2. This degree eventually surpasses each (b1, b2),

which causes the coefficient of yb11 y
b2
2 to be equal to some finite product.

Before we prove that
F

Qi
i+1

FQi+1

i

converges as a formal power series, we require two technical lemmas.

Lemma 4.2. All of the Fi polynomials have constant term 1 and include only terms ci,jy
i
1y
j
2 such that i > j

(condition A). Let Hi = 1− Fi. Then Hi has only terms involving yi1y
j
2 such that i > j (condition B).

Proof. We can easily compute the first few F -polynomials using the recurrence relation for the r-Kronecker
(see Proposition 3.1), Fi+1Fi−1 = F ri + yai1 y

ai−1

2 .

F1 = F2 = 1, F3 = 1 + ya21 ya12 , F4 = (1 + ya21 ya12 )r + ya31 ya22 .

Note that the sequence (an) is strictly increasing. We then proceed by induction on i. By assumption,

we know Fi−1 has constant term 1, so 1
Fi−1

= 1
1−Hi−1

=
∑∞
j=0H

j
i−1. Using the recurrence relation for

F -polynomials, we can now write

Fi+1 =
(
F ri + yai1 y

ai−1

2

)( 1

Fi−1

)
=
(
F ri + yai1 y

ai−1

2

) ∞∑
j=0

Hj
i−1

 .

By our inductive hypothesis, Fi and Hi−1 satisfy conditions A and B respectively. Since both conditions

are preserved under multiplication and addition,
∑∞
j=1H

j
i−1 also satisfies condition B, and so

∑∞
j=0H

j
i−1

satisfies condition A. Thus, Fi+1 is a product of two polynomials satisfying condition A, and so also satisfies
condition A. It follows that Hi+1 satisfies condition B.

�

Lemma 4.3. lim
i→∞

F
Qi
i+1

F
Qi+1
i

has constant term 1 and its other terms are of the form ci,jy
i
1y
j
2 where i > j

(condition A).

Proof. Recall from Proposition 4.4 that,

lim
i→∞

FQi

i+1

F
Qi+1

i

=

∞∏
i=2

(
1 +

yai1 y
ai−1

2

F ri

)Qi

.
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Consider a single factor in this infinite product. Using the notation from the previous section Fi = 1−Hi.
Thus, the factor expands into

1 +
yai1 y

ai−1

2

F ri
= 1 + yai1 y

ai−1

2

(
1

1−Hi

)r
= 1 + yai1 y

ai−1

2

 ∞∑
j=0

Hj
i

r

.

This satisfies condition A, since Lemma 4.2 asserts Hi contains only terms involving yi1y
j
2, where i > j and

the sequence ai is increasing. Thus, every term in the infinite product satisfies condition A, which is closed
under polynomial multiplication. So, the limit also satisfies condition A.

�

Proposition 4.4. The sequence
F

Qi
i+1

F
Qi+1
i

converges as a formal power series, namely

lim
i→∞

FQi

i+1

F
Qi+1

i

=

∞∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk

.

Proof. As in lemma 4.2, let Hk := 1− Fk. Then Hk has no constant term and we can write

1 +
yak1 y

ak−1

2

F rk
= 1 + yak1 y

ak−1

2

1

(1−Hk)r

= 1 + yak1 y
ak−1

2

∑
j

Hj
k

r

Every term in yak1 y
ak−1

2

(∑
j H

j
k

)r
has degree at least (ak, ak−1). Take (b1, b2) ∈ N2. We will show that

the coefficient of yb11 y
b2
2 in

F
Qi
i+1

F
Qi+1
i

eventually (as i→∞) stabilizes to the corresponding coefficient in

∞∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk

,

thereby proving the lemma. Since r ≥ 2, there exists some M such that aM−2 > b1 and aM−3 > b2. Because

i∏
k=M+1

(
1 +

yak1 y
ak−1

2

F rk

)Qk

=

i∏
k=M+1

1 + yak1 y
ak−1

2

∑
j≥0

Hj
k

rQi

and the expression yak1 y
ak−1

2

(∑
j H

j
k

)r
has only terms with degree strictly larger than (b1, b2), we can rewrite

the above product as
i∏

k=M+1

(
1 +

yak1 y
ak−1

2

F rk

)Qk

= 1 + I(y1, y2)

where I(y1, y2) has only terms with degree larger than (b1, b2).
Let i ≥M . By Lemma 4.1, we know that

FQi

i+1

F
Qi+1

i

=

i∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk

=

(
M∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk
)

(1 + I(y1, y2))

=

M∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk

+ I(y1, y2)

(
M∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk
)
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The second summand in the above expression has only terms of degree larger than (b1, b2). Then the coef-

ficient of yb11 y
b2
2 in

F
Qi
i+1

F
Qi+1
i

is exactly the coefficient of yb11 y
b2
2 in

M∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk

, which is independent

of i. This is true for all (b1, b2), so

lim
i→∞

FQi

i+1

F
Qi+1

i

=

∞∏
k=2

(
1 +

yak1 y
ak−1

2

F rk

)Qk

as desired.
�

5. A Functional Equation for rGQ1,Q2

5.1. General r. We find a functional equation for rGQ1,Q2
. This functional equation arises from the sub-

stitution given in the following proposition.

Proposition 5.1. For y◦1 = ( y1
1+y1

)ry2, y
◦
2 = 1

y1
, we have

(y◦1)ak(y◦2)ak−1

Fk(y◦1 , y
◦
2)r

=
y
ak+1

1 yak2
Fk+1(y1, y2)r

.

Proof. We use induction on k, with base cases k = 2, 3. Notice F2(y1, y2) = 1, F3(y1, y2) = y1 + 1, and
F4(y1, y2) = (y1 + 1)r + yr1y2. Then one easily sees that

(y◦1)a2(y◦2)a1

F2(y◦1 , y
◦
2)r

= y◦1 =
yr1y2

(1 + y1)r
=

ya31 ya22
F3(y1, y2)r

,

and also, with some additional effort,

(y◦1)a3(y◦2)a2

F3(y◦1 , y
◦
2)r

=
(y◦1)ry◦2

(1 + y◦1)r
=

yr
2−1

1 yr2
((1 + y1)r + yr1y2)r

=
ya41 ya32

F4(y1, y2)r
.

Thus, we have established the base case for our inductive argument. Assuming that the equality holds for
k − 1 and k − 2, and using Proposition 3.1, we get

Fk(y◦1 , y
◦
2)r =

(
Fk−1(y◦1 , y

◦
2)r + (y◦1)ak−1(y◦2)ak−2

Fk−2(y◦1 , y
◦
2)

)r
=

(
(y◦1)ak−1(y◦2)ak−2

Fk−2(y◦1 , y
◦
2)

)r
·
(

1 +
Fk(y1, y2)r

yak1 y
ak−1

2

)r
=

(
(y◦1)ak−1(y◦2)ak−2

Fk−2(y◦1 , y
◦
2)

)r
·
(
Fk−1(y1, y2)Fk+1(y1, y2)

yak1 y
ak−1

2

)r
=

((y◦1)ak−1(y◦2)ak−2)r

(y◦1)ak−2(y◦2)ak−3
· y

ak−1

1 y
ak−2

2

Fk−1(y1, y2)r
·
(
Fk−1(y1, y2)Fk+1(y1, y2)

yak1 y
ak−1

2

)r
=(y◦1)ak(y◦2)ak−1 · Fk+1(y1, y2)r

y
ak+1

1 yak2
,

as desired.
�

Note that the ◦ operation “shifts the factors” of the infinite product, producing the following immediate
corollary.

Corollary 5.2. With y◦1 , y
◦
2 as above, we have

∞∏
k=2

(
1 +

(y◦1)ak(y◦2)ak−1

Fk(y◦1 , y
◦
2)r

)Qk

=

∞∏
k=3

(
1 +

yak1 y
ak−1

2

F rk

)Qk−1

.
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Using the recurrence Qk = rQk−1 −Qk−2 for k ≥ 3, we obtain the following additional corollary.

Corollary 5.3. With y◦1 , y
◦
2 as above and y◦◦1 = (

y◦1
1+y◦1

)ry◦2 , y
◦◦
2 = 1

y◦1
, we have

rGQ1,Q2
(y1, y2) =

rGQ1,Q2
(y◦1 , y

◦
2)r

rGQ1,Q2
(y◦◦1 , y◦◦2 )

· (1 + y1)Q2 ·
(

1 +
yr1y2

(1 + y1)r

)Q3−rQ2

.

Using the substitution y1 7→ 1
y2

, y2 7→ (y2 + 1)ry1, we obtain the following alternative form:

rGQ1,Q2
(y1, y2)r

(
1 +

1

y2

)Q2

(1 + y1)Q3−rQ2

= rGQ1,Q2

(
1

y2
, (y2 + 1)ry1

)
· rGQ1,Q2

(
yr1y2

(1 + y1)r
,

1

y1

)
.

Although it may not be immediately obvious, the latter form is often a simplification. For example, in the
r = 3 case with Q2 = 1, Q3 = 4 the equation from Corollary 5.2 is

G(y1, y2) =
G
(

y31y2
(1+y1)3

, 1
y1

)3
G
(

y81y
3
2

(y31y2+(1+y1)3)3
, (1+y1)

3

y31y2

) · (1 + y1) ·
(

1 +
y31y2

(1 + y1)3

)
.

Using the alternative form, the above equation is equivalent to

G(y1, y2)3
(

1 +
1

y2

)
(1 + y1) = G

(
1

y2
, (y2 + 1)3y1

)
·G
(

y31y2
(1 + y1)3

,
1

y1

)
.

This procedure works for r = 2 as well. In fact, because in the r = 2 we have Qi = 1 for all i, we don’t need
to do the above “2-deep” substitution and only need to substitute once. Then (using Reading’s notation for
N as the limit of ratio of F -polynomials) we get the following simpler form of our functional equation.

Proposition 5.4. The function N (y1, y2) := 2G1,1 = lim
i→∞

Fi+1

Fi
satisfies the functional equation

N (y1, y2) = N
(

y21y2
(1 + y1)2

,
1

y1

)
· (1 + y1).

Proof. Using Corollary 5.2, we get

N
(

y21y2
(1 + y1)2

,
1

y1

)
=

∞∏
k=2

(
1 +

(y◦1)ak(y◦2)ak−1

Fk(y◦1 , y
◦
2)2

)1

=

∞∏
k=3

(
1 +

yak1 y
ak−1

2

F 2
k

)1

=
N (y1, y2)

1 + y1
.

�

5.2. Power Series for N (y1, y2). As mentioned in Section 5.2, Reading provides a proof of the closed form
limit of F -polynomial ratios in the 2-Kronecker. To do so, he utilizes a functional equation derived from
properties of scattering diagrams. In this section, we use our own functional equation (Proposition 5.4) to
provide an alternate proof of Reading’s Theorem 3.10 without scattering diagrams.

Theorem 5.5.

N (y1, y2) = 1 + y1
∑
i,j≥0

(−1)i+j Nar(i, j)yi1y
j
2



10 NOAH CAPLINGER, ARIANA CHIN, NYAH DAVIS, SWAPNIL GARG

Proof. We first write N (y1, y2) as a power series with unknown coefficients,

N (y1, y2) =
∑
i,j≥0

nijy
i
1y
j
2,

and rewrite the functional equation of Proposition 5.4 in terms of this power series expansion:

N (y1, y2) = N
(

y21y2
(1 + y1)2

,
1

y1

)
· (1 + y1)

∑
i,j≥0

nijy
i
1y
j
2 = (1 + y1)

∑
i,j≥0

nij

(
y21y2

(1 + y1)2

)i(
1

y1

)j
∑
`,m≥0

n`my
`
1y
m
2 =

∑
i,j≥0

nijy
2i−j
1 yi2(1 + y1)−2i+1.

Now, we can extract the coefficient of y`1y
m
2 from both sides of our functional equation to get an explicit

form for each n`m:

(1) n`m =

2m∑
k=2m−`

nmk

(
−2m+ 1

`− 2m+ k

)
=

m∑
k=0

nmk

(
−2m+ 1

`− 2m+ k

)
.

The second equality changes the limits of summation but does not change the sum in any substantial way.
The lower index can be written as k = 0 because nmk = 0 for all k < 0, and

( −2m+1
`−2m+k

)
= 0 for all k < 2m− `,

so the only terms either added or removed are zeroes. For the upper limit we use Lemma 4.3, which asserts
that nmk = 0 for all k > m.

Notice that whenever both n`m and nmk are nonzero, then either ` = 0 or ` > 0 and ` > m ≥ k, so we
must have ` > k. Thus, Equation (1) may be read as an expression for nij in terms of n00 and other nonzero
ni′j′ such that j′ < j.

We claim that the power series coefficients can be written as

nij = (−1)(i−1)+j Nar(i− 1, j).

Recall the definition of the rising factorial: (x)j−1 := (x)(x+1) · · · (x+j−2) for any real x and positive
integer j; for j ≤ 0 we write (x)j−1 = 0. Using this notation, for all i > j ≥ 1, we can rewrite our claimed
formula for the power series coefficients as

nij = (−1)(i−1)+j Nar(i− 1, j)

= (−1)i+j+1

(
1

i− 1

)(
i− 1

j

)(
i− 1

j − 1

)
= (−1)i+j+1 (2− i)j−1(1− i)j−1

(2)j−1(j − 1)!
.

We prove this formula via induction on j. For the base cases j = 0 and j = 1, note that n00 = 1 follows
from Proposition 4.3. Combining Equation (1) with Proposition 4.3 yields that ni0 = n00

(
1
i

)
, and that

ni1 =

1∑
k=0

n1k

(
−1

i+ k − 2

)
= n10

(
−1

i− 2

)
+ n11

(
−1

i− 1

)
= n10(−1)i−2 = n10

(
−1

i

)
.

This completes the base case. We now prove the claimed formula for n`m with m ≥ 2, given that it holds
for all nij with j < m. In other words, we want to show that

n`m = (−1)`+m+1 (2− `)m−1(1− `)m−1
(2)m−1(m− 1)!

.
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First, apply Equation (1) and the inductive hypothesis:

n`m =

m∑
k=2m−`

nmk

(
−2m+ 1

`− 2m+ k

)

=

m∑
k=2m−`

(−1)m+k+1 (2−m)k−1(1−m)k−1
(2)k−1(k − 1)!

(
−2m+ 1

`− 2m+ k

)
.

Now observe the following rewriting of the binomial coefficient
( −2m+1
`−2m+k

)
:(

−2m+ 1

`− 2m+ k

)
= (−1)k−1

(
−2m+ 1

`− 2m+ 1

)
(`)k−1

(`− 2m+ 2)k−1
.

Using this, we manipulate the series for n`m into a standard hypergeometric form.

n`m =

m∑
k=2m−`

(−1)m+k+1 (2−m)k−1(1−m)k−1
(2)k−1(k − 1)!

(
−2m+ 1

`− 2m+ k

)

=

m∑
k=2m−`

(−1)m+k+1(−1)k−1
(
−2m+ 1

`− 2m+ 1

)
(2−m)k−1(1−m)k−1(`)k−1

(2)k−1(`− 2m+ 2)k−1(k − 1)!

= (−1)m
(
−2m+ 1

`− 2m+ 1

) ∞∑
k=1

(2−m)k−1(1−m)k−1(`)k−1
(2)k−1(`− 2m+ 2)k−1(k − 1)!

,

where the last equality holds because the terms in the summation equal zero outside of the interval [2m−`,m].
We can see that this infinite summation is the following hypergeometric series:

(−1)m
(
−2m+ 1

`− 2m+ 1

)
3F2

(
2−m ` 1−m

2 `− 2m+ 2
; 1

)
.

This 3F2 is suitable for transformation under Saalschütz’s Theorem for hypergeometric series, and then we
obtain the desired formula after routine manipulations:

n`m = (−1)m
(
−2m+ 1

`− 2m+ 1

)
(m)m−1(2− `)m−1
(2)m−1(m− `)m−1

=

(
(−1)m

(2− `)m−1
(2)m−1

)
(−1)`−2m+1

(
`− 1

`− 2m+ 1

)
(m)m−1

(m− `)m−1

=

(
(−1)m

(2− `)m−1
(2)m−1

)
(−1)`+1(−1)m−1

(`− 1)(`− 2) · · · (`−m+ 1)

(m− 1)!

= (−1)`+m+1 (2− `)m−1(1− `)m−1
(2)m−1(m− 1)!

.

�

5.3. Power series for generalized F -polynomial ratios in the 2-Kronecker. It turns out that we
can find a closed form for 2GQ1,Q2

in general. Notice that an arbitrary Q sequence satisfying Qn+2 =
2Qn+1 −Qn is a linear combination of the sequences (1, 1, 1, . . . ) and (0, 1, 2, 3, . . . ) (since it is specified by
two parameters), and also that

2GQ1,Q2 = 2G
Q1

1,1 · 2G
Q2−Q1

0,1 .

Since we have already determined 2G1,1, it suffices to determine 2G0,1. In this case, Qi = i− 1 and so

2G0,1(y1, y2) = lim
i→∞

F i−1i+1

F ii
=

(
1 +

y1
F 2
2

)(
1 +

y21y2
F 2
3

)2(
1 +

y31y
2
2

F 2
4

)3

· · · .

Making the substitution y◦1 =
y21y2

(1+y1)2
, y◦2 = 1

y1
yields the following proposition.
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Proposition 5.6. We have the functional equation

2G0,1

(
y21y2

(1 + y1)2
,

1

y1

)
=

(
1 +

y21y2
F 2
3

)(
1 +

y31y
2
2

F 2
4

)2(
1 +

y41y
3
2

F 2
5

)3

· · · = 2G0,1(y1, y2)

N (y1, y2)
.

Solving this functional equation yields the following theorem.

Theorem 5.7. We have

2G0,1(y1, y2) = lim
i→∞

F i−1i+1

F ii
=

(1 + y1 + y1y2)2 − 4y1y2 + (−1 + y1 + y1y2)
√

(1 + y1 + y1y2)2 − 4y1y2
2y1

.

Proof. Note that we can rearrange our functional equation, Proposition 5.6, to

2G0,1(y1, y2) = 2G0,1

(
y21y2

(1 + y1)2
,

1

y1

)
N (y1, y2).

We first write the left hand side, 2G0,1, as a power series with unknown coefficients:

2G0,1(y1, y2) =
∑
i,j≥0

gijy
i
1y
j
2.

Then, the right hand side can be written in terms of these coefficients as follows:

2G0,1

(
y21y2

(1 + y1)2
,

1

y1

)
N (y1, y2) =

∑
i,j≥0

gij

(
y21y2

(1 + y1)2

)i(
1

y1

)j
N (y1, y2)

=
∑
i,j≥0

gijy
2i−j
1 yi2(1 + y1)−2iN (y1, y2).

By Proposition 4.3, we know that g00 = 1, and that in order for other gij to be non-zero, we must have
i > j or equivalently i < 2i − j. In each term on the right hand side, the factors (1 + y1)−2iN (y1, y2)
only increase the degree of the y1 and y2 relative to the indices of the coefficients, as we can write both
(1 + yi)

−2i and N (y1, y2) as power series. Then comparing coefficients of each yi1y
j
2 between 2G0,1(y1, y2)

and
∑
i,j≥0 gijy

i
1y
j
2, we get gij on the right side and a linear combination of gcd on the right side for c < a

and d < b (except in the y01y
0
2 case, where we already know g00 = 1). Then our functional equation uniquely

specifies the coefficients of 2G0,1: we can recursively construct the gij from the bottom up.
Therefore there is a unique power series solution to the functional equation satisfying condition A. Since

the formula given satisfies the functional equation, we are done. �

An arbitrary Q sequence satisfying Qn+2 = 2Qn+1 − Qn is a linear combination of the sequences
(1, 1, 1, . . . ) and (0, 1, 2, 3, . . . ), so using the above theorem completely solves the r = 2 case, as we have

2GQ1,Q2
= 2G

Q1

1,1 · 2G
Q2−Q1

0,1 .

5.4. Power Series Coefficients for the r-Kronecker. For r ≥ 3, the polynomial equation x2 = rx − 1
has two distinct roots, which we have denoted λ+ and λ−. Then the sequence (Q1, Q2, . . . ) is a linear
combination of the sequences (r−λ+, 1, λ+, λ2+, . . . ) and (r−λ−, 1, λ−, λ2−, . . . ). For α ∈ {λ+, λ−}, we have
a simpler functional equation for rG1,α.

Proposition 5.8. For y◦1 = ( y1
1+y1

)ry2, y
◦
2 = 1

y1
, the functional equation

rG1,α(y1, y2) = rG1,α(y◦1 , y
◦
2)α · (1 + y1)

holds.
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Proof. It is easy to see by induction that Qk = αk−1. Then using Corollary 5.2, we get

rG1,α (y◦1 , y
◦
2) =

∞∏
k=2

(
1 +

(y◦1)ak(y◦2)ak−1

Fk(y◦1 , y
◦
2)2

)αk−1

=

∞∏
k=3

(
1 +

yak1 y
ak−1

2

F 2
k

)αk−2

=

(
rG1,α(y1, y2)

1 + y1

)1/α

.

�

Definition 5.9. Note that taking a power series with constant term 1 to the power α is a well-defined notion
in the ring of power series, due to the equality

(1 + x)α =
∑

xi
(
α

i

)
.

Solving the above functional equation for α = λ+, λ− yields a solution for general rGQ1,Q2
.

6. Another Functional Equation for rGQ1,Q2

Inspired by Reading, we demonstrate a functional equation for rGQ1,Q2
that does not require writing it

as an infinite product, though it presupposes the existence of rGQ1,Q2 as a limit.

Theorem 6.1. We have the functional equation

xgiQi−1−gi−1Qi
rGQ1,Q2

(x−22 , x21) = (
xr1 + 1

x2
, x1)gi+1Qi−1−giQi

rGQ0,Q1

(
x−21 ,

(
xr1 + 1

x2

)2
)
.

Proof. We have

lim
i→∞

x
Qi−1

i

xQi

i−1
= xgiQi−1−gi−1Qi lim

i→∞

Fi(ŷ)Qi−1

Fi−1(ŷ)Qi
= xgiQi−1−gi−1Qi

rGQ1,Q2(ŷ).

Writing x̃i = xi−1, we have that x̃1, x̃2, . . . forms a cluster algebra (without principal coefficients). If we
set y1 = y2 = 1, then the cluster algebra with cluster variables x̃1, x̃2, . . . has the same relations as the cluster
algebra with cluster variables x1, x2, . . . . Under the condition y1 = y2 = 1, we have ŷ1 = x−22 , ŷ2 = x21, so

lim
i→∞

x
Qi−1

i

xQi

i−1
= xgiQi−1−gi−1Qi

rGQ1,Q2
(x−22 , x21).

By translating from x to x̃, we get

lim
i→∞

x
Qi−1

i

xQi

i−1
= lim
i→∞

x̃
Qi−1

i+1

x̃Qi

i

= x̃gi+1Qi−1−giQi lim
i→∞

Fi+1(x̃−22 , x̃21)Qi−1

Fi(x̃
−2
2 , x̃21)Qi

= x̃gi+1Qi−1−giQi
rGQ0,Q1(x̃−22 , x̃21).

Using x̃2 = x1, x̃1 = x0 =
1+xr

1

x2
, we get the result. �

7. Conjectures

A natural direction for future work would be to investigate a closed form for the coefficients of rG1,α

5.5, and eventually for the power series as a whole. Currently, we can recursively calculate these coefficients
through a method similar to 5.5.

Additionally, we hope to expand our proof of infinite product convergence to literal convergence of infinite
products for positive y1, y2.
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Somewhat tangentially, it appears that the coefficients of unspecialized F -polynomials of the 3-Kronecker
follow a pattern related to rows of the arithmetic triangle, briefly discussed below.
F1 = F2 = 1, F3 = 1 + y1, F4 = 1 + 3y1 + 3y21 + y31 + y31y2. Notice that the first four coefficients of F4 are

the third row of the arithmetic triangle.
F5 = 1 + 8y1 + 28y21 + 56y31 + 70y41 + 56y51 + 28y61 + 8y71 + y81 + 3y31y2 + 15y41y2 + 30y51y2 + 30y61y2 + 15y71y2 +

3y81y2 + 3y61y
2
2 + 6y71y

2
2 + 3y81y

2
2 + y81y

3
2 . Notice that the coefficients are rows of the arithmetic triangle scaled

by a row of the arithmetic triangle. Particularly, 1(row 8), 3(row 5), 3(row 2), 1(row −1).

For i = 4 and i = 5, we can more specifically write this observation as

Fi =
∑
k

(
deg1 Fi−1

k

)
(1 + y1)deg1 Fi−3k(y31y2)k,

where dega Fi denotes the highest degree of ya present in Fi. It appears that the pattern of the coefficients
of F6 initially follows the above summation before becoming exceedingly more complicated. This tangent
has been abandoned.
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