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Abstract

We analyze spatial spreading in a population model with logistic growth and chemorepulsion.

In a parameter range of short-range chemo-diffusion, we use geometric singular perturbation

theory and functional-analytic farfield-core decompositions to identify spreading speeds with

marginally stable front profiles. In particular, we identify a sharp boundary between between

linearly determined, pulled propagation, and nonlinearly determined, pushed propagation, in-

duced by the chemorepulsion. The results are motivated by recent work on singular limits in

this regime using PDE methods [7].
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1 Introduction

We are interested in the Keller-Segel model for chemotactic motion with logistic population growth

ut = uxx + χ(uvx)x + u(1− u) (1.1)

0 = σvxx + u− v. (1.2)

Here, a population of agents with density u is modeled by a logistic growth term and spatial

diffusion, similar to the classical Fisher-KPP equation. In addition, agents in the population u

generate a diffusing and decaying chemical v. Changes in the density of v are assumed to happen

at a much faster scale than changes in the density u so that a term τvt in the second equation

is neglected. Crucially, the population u senses gradients of v which then induce a chemotactic

motion with sensitivity χ. We will assume throughout that the chemotactic motion is against the

gradient, χ > 0, so that the release of the chemical induces the population to avoid clustering, while

χ < 0 leads to the formation of clusters. The case χ > 0 in fact stabilizes a constant distribution

u ≡ 1 and the arguably most interesting effects of chemotactic motion arise during the growth

of populations. The question we attempt to address here is whether spatial-temporal growth is

enhanced by the chemotactic term, that is, if a population that is initially supported in a compact

region of x ∈ R will spread with speed c = 2, as is observed in the absence of chemotactic effects

χ = 0, or if the repulsion introduced by χ can accelerate spatial spreading and lead to c > 2.

The authors acknowledge support through grants NSF DMS-2205663 (A.S.), NSF-DMS-2202714 (M.A.), NSF-

DMS-2007759 (M.H.)
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To be more precise, observe that absence of agents and chemical, u = v = 0 is a linearly unstable

equilibrium state. Spatial growth and spreading of disturbances is well described by the propagation

of an invasion front which leaves behind a new, selected state in its wake, u = v = 1. We will focus

on the regime σ/χ≪ 1. This limit has recently been studied in [7], where estimates on the minimal

speed for which positive traveling waves exist are derived. Inspired by this analysis, we present here

a conceptual approach that relies on dynamical systems and functional analytic methods rather

than PDE tools to precisely characterize speeds in this limiting regime. Before proceeding, we

also note that results regarding invasion fronts and spreading speeds in the chemoattractive case

(χ < 0) have been studied by several authors; see for example [9, 13, 17].

We now define x̃ = 1√
χx and the rescaled unknowns ũ(x̃, t) = u(x, t), ṽ(x̃, t) = v(x, t). Dropping

the tildes, we find the rescaled equation

ut = d1uxx + (uvx)x + u(1− u)

0 = δ2vxx + u− v, (1.3)

where d1 =
1
χ > 0 and δ2 = σ

χ ≪ 1.

Front selection criteria. Fixing d1 and δ, the system (1.3) admits traveling front solutions

u(x, t) = U(x − ct), v(x, t) = V (x − ct) connecting the stable state (U, V ) = (1, 1) at −∞ to

the unstable state (U, V ) = (0, 0) at +∞ for many different speeds c. This is typical for fronts

connecting to unstable states, and the presence of a one-parameter family of invasion fronts (after

modding out the spatial translation symmetry) may be predicted by comparing the dimension

of the unstable manifold of (1, 1) with the stable manifold of (0, 0) in the resulting traveling wave

equation. To identify which of these fronts is observed when initial conditions are strongly localized,

that is, supported for instance on a half line, we therefore need an additional selection criterion.

A heuristic often used in the mathematics literature and supported by many results in order-

preserving systems is to predict propagation at the minimal speed for which (1.3) admits strictly

positive traveling front solutions. In the absence of a comparison principle, this “marginal positiv-

ity” is replaced by the marginal stability criterion [19, 4]:

Marginally stable fronts are selected by localized initial conditions.

Here, marginal stability may be encoded as marginal spectral stability — that is, the linearization

about the front has spectrum which touches the imaginary axis but is otherwise stable — in an

appropriately chosen weighted norm. The universal validity of this criterion, in particular beyond

equations with comparison principles, has recently been established rigorously in [4, 1]. Marginally

stable spectrum may be point or essential spectrum. The latter is determined by the linearization in

the leading edge, leading to “linearly determined” pulled fronts. The former depends on the precise

shape of the front interface, thus on the precise shape of the nonlinearity, and the associated fronts

are commonly referred to as pushed fronts.
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Main results. Traveling front solutions (u(x, t), v(x, t)) = (U(x − ct), V (x − ct)) to (1.3) solve

the traveling wave system

0 = d1Uxx + cUx + (UVx)x + U − U2,

0 = δ2Vxx + U − V. (1.4)

When δ = 0, we may substitute V = U into the first equation, and find the corresponding porous

medium limit,

0 = d1Uxx + cUx + (UUx)x + U − U2, (1.5)

where explicit fronts can be found through a transformation to a Nagumo equation; see [7] and

Appendix A. In fact, there exists a precise characterization of spreading speeds in this limit.

Lemma 1.1. [12] Selected fronts in (1.5) are positive and have speed c = cpm(d1), where

cpm(d1) =

 1√
2
+
√
2d1, d1 <

1
2 ,

2
√
d1, d1 ≥ 1

2 .
(1.6)

With d1 fixed and c = cpm(d1), (1.5) has a unique heteroclinic orbit ϕpm connecting U = 1 to U = 0.

When d1 <
1
2 , the heteroclinic corresponds to a marginally stable pushed front solution, while for

d1 >
1
2 , it corresponds to a marginally stable pulled front.

Our main results continues this pushed-pulled dichotomy to finite δ.

Theorem 1.2. Consider (1.3) with d1 > 0, d1 + 1/d1 ≤ C bounded and 0 < δ < δ̄(C) sufficiently

small. There exists a smooth function d∗1(δ), defined for 0 ≤ δ < δ, such that for δ ∈ [0, δ̄), we

have:

• pulled fronts when d1 > d∗1(δ), propagating with the linear spreading speed clin := 2
√
d1;

• pushed fronts when d1 < d∗1(δ), propagating with the pushed speed cps = cpm(d1) + cps,2δ
2 +

O(δ4), where

cps,2 = −
(6d1 + 3)

(
−18(d1 + 1)2d1+3d−2d1

1 + (2d1(71d1 + 134) + 149)d1 + 23
)

12
√
2(d1 + 1)(2d1 + 1)2

(1.7)

• a generic pushed-to-pulled transition in the sense of [3] at d1 = d∗1(δ) =
1
2 + d1,2δ

2 + O(δ4),

and

d1,2 =
1

16
(268− 243 log(3)) ≈ 0.0648259. (1.8)

• selected fronts, pushed or pulled, are continuous in C∞
loc as functions of d1 and δ ≥ 0.

The analysis in [3] implies that as a function of d1, the pushed speed exhibits a quadratic correction

to the linear speed near d∗1(δ) and the quadratic coefficient is continuous in δ.
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Remark 1.3. The fronts constructed in Theorem 1.2 are positive. Positivity of the front in the

leading edge, x ≫ 1, and in the wake, x ≪ −1, are established in the proof of Theorem 1.2.

Positivity in the intermediate regime can then be established using a maximum principle argument

as follows. Since the fronts are also positive at δ = 0 by Lemma 1.1, if U(x; δ) were to not

be strictly positive for some δ > 0, there would have to be an x0 > 0 and δ0 > 0 such that

U(x0; δ0) = U ′(x0; δ0) = 0 and U ′′(x0; δ0) > 0. The existence of such a point is not possible by

inspection of the first equation in (1.4). A similar argument holds for the V component.

Overview. Our approach follows the conceptual approach taken in [4, 3]:

(i) establish existence of fronts;

(ii) identify speeds c with linear marginal stability;

(iii) establish selection.

For steps (i) and (ii), a variety of techniques, using ODE, PDE, or topological tools are available.

Step (iii) relies on the validity of the marginal stability conjecture and has been established for

large classes of parabolic equations [4, 1]. Our result here covers steps (i) and (ii). We believe that

the methods in [4, 1] can be adapted to establish (iii) in the present situation.

In somewhat more detail, continuing pushed front solutions is typically amenable to classical per-

turbation theory approaches. Continuing pulled fronts is more difficult, since the linear spreading

speed is associated with a Jordan block for the linearization at the unstable state in the traveling

wave equation, and one must carefully study the convergence in this generalized eigenspace. Per-

sistence of pulled fronts may then be established using either geometric desingularization to split

up the double eigenvalue, or far-field/core decompositions which explicitly capture asymptotics in

the leading edge [2, 4, 3, 1].

The difficulty in proving Theorem 1.2 is that the perturbation from δ = 0 in (1.4) is singular. From

the point of view of PDE techniques for constructing traveling waves, for instance by compactness

arguments, this poses a substantial technical difficulty in obtaining uniform regularity estimates

on V ; see [7] for further discussion of associated technical difficulties with this approach. On the

other hand, when viewing the traveling wave system (2.1) as a dynamical system in the variable

x, Fenichel’s geometric singular perturbation theory [5] provides a powerful tool for analyzing

the singular perturbation. Indeed, using Fenichel’s methods we are able to reduce the singularly

perturbed traveling wave problem (1.4) to the regularized, scalar semilinear problem

0 = d1uxx + cux + f(u, ux; d1, δ), (1.9)

where f is Ck in all arguments for any fixed k <∞. We can then study persistence of invasion fronts,

step (i) above, using the tools developed in [4, 3] for regular perturbations. Marginal stability, step

(ii) above, again uses Fenichel’s reduction to regularize the eigenvalue problem, which we can then

study using methods of [4, 3], although the form of the reduced eigenvalue problem is not quite as

simple as (1.9).
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Outline. We use Fenichel’s reduction to regularize the singular perturbation in existence and

eigenvalue problem in Section 2. In Section 4, we study the resulting regularized traveling wave

problem using functional-analytic methods, using methods developed in [2, 4, 3] to find pulled

and pushed front profiles as well as the transition curve. Section 5 establishes marginal spectral

stability of these fronts thus justifying the pushed and pulled terminology. In Section 6, we briefly

compare the expansions obtained in Theorem 1.2 to those obtained using numerical continuation.

The appendix contains the construction and properties of traveling fronts at δ = 0.

2 Regularization via geometric singular perturbation theory

2.1 Reduction of existence problem

We express (1.4) as a dynamical system in the variable x by choosing coordinates U,W = U ′, H =
V−U
δ2

, Z = δH ′, obtaining

U ′ =W

W ′ = − 1

d1
Γ(U,W,H,Z)

δH ′ = Z

δZ ′ = H +
1

d1
Γ(U,W,H,Z), (2.1)

where

Γ(U,W,H,Z) = cW +W 2 + δWZ + UH + U(1− U). (2.2)

When δ = 0 the system (2.1) reduces to two algebraic equations coupled to two differential equa-

tions. One identifies the following reduced slow manifold comprised of solutions of the algebraic of

equations in the singular limit δ = 0,

M0 =

{
(U,W,H,Z) | Z = 0, H = −cW +W 2 + U − U2

d1 + U

}
.

The linearization of (2.1) at any such fixed point has two zero eigenvalues and two hyperbolic

eigenvalues ±
√
1 + U

d1
for U ≥ 0. The eigenspaces of the non-zero eigenvalues are traverse to M0

and therefore the reduced manifold is normally hyperbolic. Fenichel’s Persistence Theorem [5]

implies that M0 persists as an invariant manifold Mδ with the following properties.

Proposition 2.1 (Reduction for existence problem). Fix 0 < d < d, M > 1, and an integer

k ≥ 2. There exists a δ > 0 such that all trajectories of (2.1) with |δ| < δ, d < d1 < d satisfying

−d1
2 < U < M and |W | ≤M lie in a slow manifold Mδ, which is normally hyperbolic and invariant

under the flow of (2.1), and may be written as a graph Mδ = {(U,W,H,Z) : H = ψH(U,W ; δ), Z =

ψZ(U,W ; δ)}, where

H = ψH(U,W ; δ) = ψ0
H(U,W ) + δψ1

H(U,W ) + δ2ψ2
H(U,W ) + O(δ4),

Z = ψZ(U,W ; δ) = δψ1
Z(U,W ) + O(δ2), (2.3)
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and ψZ/H are Ck in all arguments. Hence, for all such trajectories, U and W solve the reduced

system

U ′ =W

W ′ = − 1

d1
Γ(U,W,ψH(U,W ; δ), ψZ(U,W ; δ)). (2.4)

Moreover, ψZ(0, 0; δ) = ψH(0, 0; δ) = ψH(1, 0; δ) = 0 for all |δ| < δ.

Note that ψZ/H also depend on d1, but we suppress this dependence in our notation for now.

Throughout the rest of the paper, k refers to the fixed k ≥ 2 in the statement of Proposition 2.1.

Setting u = U , we find from (2.4) the reduced scalar equation

0 = d1uxx + cux + f(u, ux; δ, d1), (2.5)

where

f(u, ux; δ, d1) = u2x + δuxψZ(u, ux; δ) + uψH(u, ux; δ) + u− u2 (2.6)

is Ck in all arguments.

Lemma 2.2. Let (U(x; δ),W (x; δ)) be a solution to the reduced system (2.4). We then have

ψ0
H(U(·; 0),W (·; 0)) = U ′′(·; 0), (2.7)

ψ1
H(U(·; 0),W (·; 0)) = 0, (2.8)

ψ1
Z(U(·; 0),W (·; 0)) = U ′′′(·; 0), (2.9)

ψ2
H(U(·; 0),W (·; 0)) =

U ′′′′(·; 0)− 1
d1
U ′(·; 0)U ′′′(·; 0)

1 + U(·;0)
d1

. (2.10)

Proof. Substituting Z = ψZ(U,W ; δ) and H = ψH(U,W ; δ) into the last equation of (2.1), we find

δ∂xψZ(U,W ; δ) = ψH(U,W ; δ) +
1

d1
Γ(U,W,ψH(U,W ; δ), ψZ(U,W ; δ)) (2.11)

Along trajectories of the reduced system (2.4), the last term is equal to −U ′′, from which we

conclude

ψH(U,W ; δ) = U ′′ + δ∂xψZ(U,W ; δ). (2.12)

Setting δ = 0, we find ψH(U(·; 0),W (·; 0); 0) = U ′′(·; 0). Expanding the third equation of (2.1) to

leading order, we find ψ1
Z(U(·; 0),W (·; 0); 0) = ∂xψH(U(·; 0),W (·; 0); 0) = U ′′′. We then find (2.8)

and (2.10) by expanding (2.12) up to order δ2.

Remark 2.3. Notice that the reduced equation (2.5) is semilinear, with f only depending on u

and ux. However, in Lemma 2.2 we express ψ0
H(U,W ; 0) as U ′′, which makes the resulting reduced
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equation appear quasilinear. However, since u solves a second order ODE, we can express U ′′ as a

function of U and W , obtaining for δ = 0

U ′′ = −cW + U − U2

d1 + U
= ψ0

H(U,W ; 0), (2.13)

so we can still express (2.1) at δ = 0 as a semilinear system. Expressing the equation in quasilinear

form is often more convenient for computations, but we keep in mind that we can always view it as

a semilinear equation since we are restricting to U > −d1.

2.2 Reduction of stability problem

We emphasize that the reduction of Proposition 2.1 only applies to the existence problem for

traveling waves, not to the full time-dependent problem. In particular, spectral stability of fronts

in the full problem (1.3) is not determined by the linearization of the scalar equation (2.5).

Instead, to study spectral stability of fronts, we formulate the eigenvalue problem for (1.3) as a

first order system in x, and couple it to the existence problem (2.1) to obtain an 8 dimensional,

autonomous system depending on the eigenvalue parameter λ, and then apply a reduction similar

to that of Proposition 2.1 to this extended system.

The eigenvalue problem for a traveling wave solution (U, V ) to (1.3) has the formλũ
0

 =

d1∂xx + c∂x 0

1 δ2∂xx − 1

ũ
ṽ

+ Θ̃(U,Ux, Vx, Vxx)

ũ
ṽ

 =: L(U, V )

ũ
ṽ

 (2.14)

where

Θ̃(U,Ux, Vx, Vxx) =

Vxx + Vx∂x + 1− 2U U∂xx + Ux∂x

0 0

 . (2.15)

Let

K =

1 0

0 0

 . (2.16)

We say λ is in the point spectrum of the generalized eigenvalue problem of L(U, V ) − λK if the

operator is Fredholm with index 0, but not invertible. If L(U, V )− λK is either not Fredholm, or

Fredholm with nonzero index, we say λ is in the essential spectrum of L(U, V ).

If (U, V ) is a traveling front with constant limits at ±∞, then the essential spectrum may be

computed from the limiting linearized equations at ±∞; see Section 3.2. To study point spectrum,
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we rewrite (2.14) as a first order system, with coordinates (ũ, w̃, h̃, z̃) = (ũ, ũx,
ṽ−ũ
δ2
, δh̃x), finding

ũ′ = w̃

w̃′ = − 1

d1
DΓ(U,W,H,Z)(ũ, w̃, h̃, z̃)T +

1

d1
λũ

δh̃′ = z̃

δz̃′ = h̃+
1

d1
DΓ(U,W,H,Z)(ũ, w̃, h̃, z̃)T − 1

d1
λũ.

To make the equation autonomous, we couple it to the existence problem (2.1), studying the 8-

dimensional system,

U ′ =W, ũ′ = w̃

W ′ = − 1

d1
Γ(U,W,H,Z), w̃′ = − 1

d1
DΓ(U,W,H,Z)(ũ, w̃, h̃, z̃)T +

1

d1
λũ,

δH ′ = Z, δh̃′ = z̃

δZ ′ = H +
1

d1
Γ(U,W,H,Z), δz̃′ = h̃+

1

d1
DΓ(U,W,H,Z)(ũ, w̃, h̃, z̃)T − 1

d1
λũ. (2.17)

Proposition 2.4 (Reduction for eigenvalue problem). Fix 0 < d < d, Λ > 0, and M > 1. Then

there is δ > 0, so that the following holds. All trajectories of (2.17) with |δ| < δ, d < d1 < d,

|λ| < Λ satisfying

−d1
2
< U < M, |W |+ |H|+ |Z|+ ≤M, (2.18)

lie in a slow manifold, which is normally hyperbolic and invariant under the flow of (2.17), and

may be written as a graph

Z = ψZ(U,W ; δ),

H = ψH(U,W ; δ),

z̃ = ψ̃z(U,W, λ; δ)(ũ, w̃)
T

h̃ = ψ̃h(U,W, λ; δ)(ũ, w̃)
T , (2.19)

where ψZ/H are given in Proposition 2.1, and ψ̃z/h(U,W, λ; δ) : C2 → C are linear operators which

are Ck in all arguments, with expansions

ψ̃h(U,W, λ; δ) = ψ̃0
h(U,W, λ) + O(δ), (2.20)

ψ̃z(U,W, λ; δ) = O(δ). (2.21)

As a consequence, in the bounded parameter regime considered here, we have a bounded solution to

the eigenvalue problem (2.17) if and only if we have a bounded solution to the reduced problem

ũ′ = w̃,

w̃′ = − 1

d1
DΓ(U,W,ψH(U,W ; δ), ψZ(U,W ; δ)) · (ũ, w̃, h̃, z̃)T +

1

d1
λũ, (2.22)

where h̃, z̃ are given by (2.19).
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Proof. The result is a straightforward application of Fenichel’s slow manifold reduction [5] with

two minor adaptations. First, Fenichel’s result perturbs compact manifolds of equilbria, while we

allow for unbounded, non-compact manifolds in the linear components. Second, we claim that the

slow manifold preserves the structure of the original system, namely the skew-product structure

where the nonlinear problem does not depend on components of the linear subsystem, and the

fact that the linear subsystem is linear. Inspecting the construction of slow manifolds via graph

transform, one quickly notices that noncompactness in the linear subsystem poses no difficulty

since hyperbolicity is naturally uniform in the linear equation. Secondly, one finds that the slow

manifold is linear in the linear subsystem simply by initializing the graph transform with linear

subspaces in this component, a property that is preserved by the flow and in the limit. Similarly,

the fact that the manifold associated with the nonlinear subsystem does not depend on the linear

components is preserved by the flow and therefore for graphs transported by the flow, and also in

the limit of infinite time.

Lemma 2.5. Along trajectories of the reduced problem (2.22) at δ = 0, we have

ψ̃0
h(U,W, λ) · (ũ, w̃)T = ũ′′. (2.23)

Proof. The proof is similar to the proof of Lemma 2.2 and omitted here.

By Lemma 2.5, at δ = 0 the reduced eigenvalue problem (2.22) may be written in the form

d1ũxx + Uũxx + (c+ 2Ux)ũx + (Uxx + 1− 2U)ũ = λũ, (2.24)

which is precisely the eigenvalue problem for the artificial time dependent reduction

ut = d1uxx + cux + f(u, ux; 0, d1). (2.25)

3 Preliminaries: spreading speed and the δ = 0 limit

Before studying persistence of selected fronts to δ > 0, we compute the linear spreading speed

associated to (1.3) and some useful properties of the fronts in the δ = 0 limit.

3.1 Linear spreading speed

First, we compute the linear spreading speed, at which the pulled fronts propagate. Linearizing (1.4)

about the unstable equilibrium u = v = 0 and making the Fourier Laplace ansatz u, v ∼ eνx+λt, we

find the dispersion relation

dc(λ, ν; δ, d1) = det

d1ν2 + cν + 1− λ 0

1 δ2ν2 − 1.

 = (d1ν
2 + cν + 1− λ)(δ2ν2 − 1). (3.1)
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The linear spreading speed, which characterizes marginal pointwise stability in the linearization

about the unstable equilibrium, is in turn characterized by pinched double roots of the dispersion

relation; see [10] for a thorough treatment of pointwise stability criteria, or [4, Section 1.2] for a

brief overview of linear spreading speeds and pinched double roots.

Lemma 3.1 (Linear spreading speed via simple pinched double root). Fix d1 > 0 and δ ≥ 0.

For c = clin := 2
√
d1, the dispersion relation dc(λ, ν; δ, d1) has a simple pinched double root at

(λlin, νlin) := (0,− 1√
d1
). That is, for λ, ν small the dispersion relation admits the expansions

dclin(λ, νlin + ν) = d10λ− d02ν
2 +O(ν3, λν), (3.2)

where d10 = 1− δ2ν2lin, d02 = d1(1− δ2ν2lin).

Proof. Focusing on the first factor in the dispersion relation d̃c(λ, ν; d1) = d1ν
2 + cν + 1, and

solving d̃c(λ, ν; d1) = ∂ν d̃c(λ, ν; d1) = 0, we readily find a double root at (0, νlin). Expanding the

full dispersion relation near this double root readily gives (3.2).

Actually, the expansion (3.2) only implies that (λ, ν) = (0, νlin) is a simple double root, that is,

simple in λ and double in ν. The pinching condition is then implied by the expansion (3.2) together

with Lemma 3.2, below.

In fact, the dispersion relation at the linear spreading speed has the explicit form

dclin(λ, νlin + ν) = (−λ+ d1ν
2)(δ2(ν + νlin)

2 − 1). (3.3)

3.2 Essential spectrum and exponential weights

Essential spectrum in the leading edge. The spectrum Σ+ of the linearization about u = v =

0, for instance in L2(R), is readily determined by the dispersion relation via the Fourier transform,

as

Σ+ = {λ ∈ C : dclin(λ, ik; δ, d1) = 0 for some k ∈ R}. (3.4)

Substituting for instance k = 0, one readily sees that the spectrum of u = v = 0 is unstable. We

can recover marginal spectral stability at the linear spreading speed, however, using exponential

weights. Indeed, let

A+ =

d1∂2x + clin∂x + 1 0

1 δ2∂2x − 1

 (3.5)

denote the linearization about u = v = 0, and let ηlin = −νlin = 1√
d1
. Then, defining the conjugate

operator L+u = eηlin·[A+[e
−ηlin·u(·)]], equivalent to considering A+ acting on a weighted space with

weight eηlinx, we find

L+ =

d1∂2x 0

1 δ2(∂2x − 2ηlin∂x + η2lin)− 1

 , (3.6)
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with associated spectrum

Σηlin+ = {λ ∈ C : dclin(λ, ik − ηlin; δ, d1) = 0 for some k ∈ R}. (3.7)

Inspecting the modified dispersion relation, we readily find marginal spectral stability in the leading

edge, summarized in the following lemma.

Lemma 3.2 (Marginal stability in the leading edge). We have

Σηlin+ = {−k2 ∈ C : k ∈ R}. (3.8)

Essential spectrum in the wake. Linearization (1.3) about u ≡ v ≡ 1, we find essential

spectrum

Σ− = {λ ∈ C : d−(λ, ik; δ, d1) = 0 for some k ∈ R}, (3.9)

where

d−(λ, ν) = det

d1ν2 + clinν − 1− λ 0

1 δ2ν2 − 1

 = (d1ν
2 + clinν − 1− λ)(δ2ν2 − 1). (3.10)

We readily find that the spectrum associated to this state is stable.

Lemma 3.3 (Stability in the wake). The spectrum Σ− of the linearization about u ≡ v ≡ 1 is

strictly contained in the open left half plane.

Two-sided exponential weights. Since we need an exponential weight to stabilize the essential

spectrum in the leading edge but not in the wake, we define modified weights with separate growth

rates on x > 0 and x < 0. Given η± ∈ R, we define a smooth positive weight function ωη−,η+(x)

satisfying

ωη−,η+(x) =

{
eη+x, x ≥ 1,

eη−x, x ≤ −1.
(3.11)

Given non-negative integers k and m, we then define the weighted Sobolev space Hk
η−,η+(R,C

m)

through the norm

∥g∥Hk
η−,η+

(R,Cm) = ∥ωη−,η+g∥Hk(R,Cm). (3.12)

When k = 0, we denote H0
η−,η+(R,C

m) = L2
η−,η+(R,C

m). When it is clear from context what

value of m we are considering, we will abbreviate Hk
η−,η+(R,C

m) = Hk
η−,η+ . We will use the

notation ω−1
η−,η+ to denote the reciprocal function x 7→ 1

ωη−,η+ (x) , rather than the inverse function

of x 7→ ωη−,η+(x).
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3.3 Refined properties of fronts in the porous medium limit

In order to establish persistence of invasion fronts for δ ̸= 0, we will need some finer properties of

the fronts in the porous medium limit δ = 0 than those captured in Lemma 1.1. We record these

properties here, and establish existence and spatial asymptotics for these fronts in Appendix A.

The essential spectrum and associated Fredholm properties may be computed from the asymptotic

dispersion relations by Palmer’s theorem [14] (see e.g. any of [11, 6, 18] for a review), and stability

of point spectrum can be established with Sturm-Liouville arguments, so we record only the results

here.

Lemma 3.4 (Marginal stability of pulled fronts in the porous medium limit). Fix d1 >
1
2 , and let u0pl

be the unique (up to translation) front solution with speed c = clin to (1.5) guaranteed by Lemma 1.1.

Let A0
pl denote the linearization of (1.5) about this front solution, and define L0

pl = ω0,ηlinA0
plω

−1
0,ηlin

.

Then:

• The pulled front u0pl has asymptotics

u0pl(x) ∼ (ax+ b)e−ηlinx, x→ ∞ (3.13)

with a > 0. Translating the front in space, we may assume b = 1.

• The essential spectrum of L0
pl is marginally stable, consisting of the union of Σηlin+ with the

subset of the complex plane which lies on and to the left of the parabola Σ−.

• L0
pl has no eigenvalues λ with Reλ ≥ 0, and there is no bounded solution to L0

plu = 0.

• If η = ηlin + η̃ with η̃ small, then A0
pl : H

2
0,η → L2

0,η is Fredholm with index -1 with trivial

kernel and one dimensional cokernel.

Lemma 3.5 (Marginal stability of pushed fronts in the porous medium limit). Fix d1 <
1
2 , and

let u0ps denote the unique (up to translation) front solution to (1.5) traveling with the pushed speed

cpm(d1) =
1√
2
+

√
2d1. Fix ηlin < η0 <

√
1

2d21
, let A0

ps denote the linearization of (1.5) about u0ps,

and define the weighted linearization L0
ps = ω0,η0A0

psω
−1
0,η0

. Then:

• The pushed front u0ps has asymptotics

u0ps(x) ∼ e−ηpsx, x→ ∞, (3.14)

where ηps = − 1√
2d21

, possibly after translating in space.

• The essential spectrum of L0
ps is strictly contained in the open left half plane.

• λ = 0 is a simple eigenvalue of L0
ps, with eigenfunction u = ω0,η0∂xu

0
ps arising from translation

invariance.

• In particular, the previous two results imply that operator A0
ps : H2

0,η0
→ L2

0,η0
is Fredholm

with index 0, one-dimensional kernel, and one-dimensional cokernel.
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• Apart from λ = 0, L0
ps has no other eigenvalues with Reλ ≥ 0.

Lemma 3.6 (Pushed-pulled transition in the porous medium limit). Let utr denote the unique (up

to translation) solution to (1.5) with d1 =
1
2 , traveling with the speed cpm(

1
2) =

√
2. Let A0

tr denote

the linearization of (1.5) about u0tr, and define the weighted linearization L0
tr = ω0,ηlinA0

trω
−1
0,ηlin

.

Then:

• The essential spectrum of L0
tr is marginally stable, consisting of the union of Σηlin+ with the

subset of the complex plane which lies on and to the left of the parabola Σ−.

• L0
tr has no eigenvalues with Reλ ≥ 0, and the function u = ω0,ηlin∂xu

0
tr is the unique bounded

solution to L0
tru = 0, up to a scalar multiple.

• For η > ηlin, the operator A0
tr : H2

0,η → L2
0,η is Fredholm with index -1, trivial kernel, and

one-dimensional cokernel. For η2 < ηlin, the operator A0
tr : H

2
0,η2

→ L2
0,η2

is Fredholm with

index 1, trivial cokernel, and one-dimensional kernel.

To analyze the perturbation to δ ̸= 0, we will need to project various quantities onto the cokernel

of the linearization about a given front, which we describe in the following lemma.

Lemma 3.7. For j ∈ {pl,ps, tr}, let uj denote the associated front described in Lemmas 3.4 through

3.6, with associated speed cj, and let A0
j denote the corresponding linearization, considered on one

of the weighted spaces described in Lemmas 3.4 through 3.6 such that A0
j has a one-dimesional

cokernel. This cokernel is spanned by

ϕj(x) :=
ρj(x)

2∂xuj(x)

d1 + uj(x)
, (3.15)

where

ρj(x) = exp(−mj(x)), mj(x) = −
∫ x

x0

2u′j(x) + cj

2(d1 + uj(x))
dx, (3.16)

where x0 is the unique point such that uj(x0) =
1
2 .

Proof. This follows by first dividing the operator A0
j by d1+uj(x), which is strictly positive, to put

the second-order term in divergence form, and then verifying that the resulting operator becomes

self-adjoint after conjugation with the non-nonegative weight ρj , and recalling that A0
j (∂xu

0
j ) = 0

by translation invariance.

4 Persistence of selected fronts

4.1 Persistence of pulled fronts

With the reduction of Section 2 in hand and the detailed description of the δ = 0 limit from Section

3, we now establish persistence of pushed and pulled fronts for δ > 0.
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Proposition 4.1 (Persistence of pulled fronts away from the pushed-pulled transition). Fix d1 >
1
2 .

Then there exist δ1 = δ1(d1) > 0, depending continuously on d1, and an η > 0 such that if |δ| < δ1,

the reduced equation (2.5) with c = clin has a pulled front solution upl(x; δ) such that upl(x; δ)

converges to u0pl in C
k
loc as δ → 0 and has generic asymptotics

upl(x; δ) ∼ (a(δ)x+ b(δ))e−ηlinx, x→ ∞, (4.1)

upl(x; δ) ∼ 1 + O(eηx), x→ −∞. (4.2)

where a(δ), b(δ) are C1 in δ, and a(0) > 0.

Proof. Consider the reduced traveling wave equation and the associated (artifical) parabolic equa-

tion

ut = d1uxx + clinux + f(u, ux; δ, d1). (4.3)

By Lemma 3.4, the front u0pl is a generic pulled front in (4.3) in the sense of [4]: that is, it travels

with the linear spreading speed, has weak exponential decay in the leading edge, has marginally

stable essential spectrum in the weighted space with weight eηlinx, and has stable point spectrum.

Since (4.3) is a scalar, semilinear parabolic equation which depends continuously on δ, this pulled

front persists as a marginally stable pulled front in (4.3) for δ ̸= 0 by [4, Theorem 2]. Note that

this marginal stability holds only when we view the pulled front as a solution of the artificial

time dependent equation (4.3): we have not yet established marginal spectral stability for the

linearization about the associated front in the full problem (1.3). Although Theorem 2 of [4] is

stated only for f = f(u; δ), the proof carries over to the general semilinear case with straightforward

modifications to the notation.

4.2 Persistence of pushed fronts

Proposition 4.2 (Persistence of pushed fronts away from the pushed-pulled transition). Fix d1 <
1
2 . Then there exist δ1 = δ1(d1) > 0, depending continuously on d1, and η > 0 and a speed cps(δ),

C1 in δ for |δ| < δ0 such that for |δ| < δ0, the reduced equation (2.5) has a pushed front solution

ups(x; δ) such that ups(x; δ) converges to u0ps in C
k
loc as δ → 0, and has generic asymptotics

ups(x; δ) ∼ e−ηpsx, x→ ∞, (4.4)

ups(x; δ) ∼ 1 + O(eηx), x→ −∞. (4.5)

Proof. This is a simple bifurcation theory argument, but we repeat it in order to compute asymp-

totics for the pushed speed. We fix ηlin < η0 < ηps, and look for front solutions to (2.5) in the form

of the ansatz

ups(x) = χ−(x) + v(x), (4.6)
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where χ−(x) is a smooth positive cutoff function satisfying

χ−(x) =

{
1, x ≤ −3,

0, x ≥ −2,
(4.7)

and we require v ∈ H2
0,η0

(R,R). Inserting this ansatz into (2.5) leads to an equation F (v, c; δ) = 0,

where

Fps : U ⊂ H2
0,η0 × R× (−δ, δ) → L2

0,η0 (4.8)

is C1 in all arguments. Note that Fps(v0; cpm(d1), 0) = 0, with v0 = u0ps − χ−. Here, U is a

sufficiently small neighborhood of v0 such that

−d1
2
< χ− + v0 < M, |χ′

− + v′0| ≤M,

and hence ups = χ− + v0 remains in the region where the reduction of Proposition 2.1 is valid.

Linearizing about v0, we find DvFps(v0; cpm(d1), 0) = A0
ps : H

2
0,η0

⊂ L2
0,η0

→ L2
0,η0

which is Fredholm

with index 0 by Lemma 3.5. The linearization is not invertible in this space, however, since the

translation invariance gives rise to a kernel, A0
ps(∂xu

0
ps) = 0, and since η0 < ηps, the latter of which

is the decay rate of u0ps, we have ∂xu
0
ps ∈ H2

0,η0
.

To recover invertibility, we add an additional equation which fixes the spatial translation of solu-

tions, and add the speed c as an additional variable to compensate. That is, we define

Gps(v, c; δ) =

 Fps(v, c; δ)

⟨χ− + v, ∂xu
0
ps⟩ − ⟨u0ps, ∂xu0ps⟩

 . (4.9)

We still have a solution Gps(v0, cpm(d1); 0) = 0 with δ = 0. Linearizing in the joint variable (v, c)

at this solution, we find

D(v,c)Gps(v0, cpm(d1); 0) =

 A0
ps ∂xu

0
ps

⟨·, ∂xu0ps⟩ 0

 . (4.10)

By the Fredholm bordering lemma, D(v,c)Gps(v0, cpm(d1); 0) is Fredholm with index 0, and so is

invertible if and only if it has trivial kernel. A pair (ṽ, c̃) belongs to the kernel of this linearization

if and only if

A0
psṽ + c̃∂xu

0
ps = 0, (4.11)

⟨ṽ, ∂xu0ps⟩ = 0. (4.12)

By Lemma 4.3, below, ∂xu
0
ps is not in the range of A0

ps, and hence the first equation can only

be satisfied if c̃ = 0 and ṽ = α∂xu
0
ps for some α ∈ R. But then the second condition becomes

α∥∂xu0ps∥2L2 = 0, which can only hold if α = 0, so the kernel must be trivial. The desired result

then follows by applying the implicit function theorem.
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Lemma 4.3. Fix d1 <
1
2 and ηlin < η0 < ηps. The function ∂xu

0
ps is not in the range of A0

ps :

H2
0,η0

→ L2
0,η0

.

Proof. Recall from Lemmas 3.5 and 3.7 that A0
ps on H2

0,η0
is Fredholm with trivial kernel and

one-dimensional cokernel spanned by the function ϕps given in (3.15).

The desired condition is then equivalent to ⟨∂xu0ps, ϕps⟩L2 ̸= 0. We then conclude

⟨∂xu0ps, ϕps⟩ =
∫
R

ρ(x)2|∂xu0ps(x)|2

d1 + u0ps(x)
dx > 0, (4.13)

as desired.

Having established persistence of the pushed fronts, we now compute the leading order expansion

of the pushed front speed. From Proposition 4.2, we find in particular a solution (vps(δ), cps(δ)) to

F (vps(δ), cps(δ); δ) = 0, which we may write as vps(δ) = v0 + ṽ, cps(δ) = cpm(d1) + c̃, where ṽ and c̃

are both at least order δ. Expanding the equation F (v0 + ṽ, cpm(d1) + c̃; δ) = 0, and in particular

using Lemma 2.2 to express expansions of f(u, ux; δ) in terms of higher derivatives of u0ps, we find

0 = A0
psṽ + c̃∂xu

0
ps + δ2(∂xu

0
ps∂

3
xu

0
ps + u0ps∂

4
xu

0
ps) + O(|ṽ|2, δ2|ṽ|, c̃2, δ4) (4.14)

0 = A0
psṽ + c̃∂xu

0
ps + δ2∂x(u

0
ps∂

3
xu

0
ps) + O(|ṽ|2, δ2|ṽ|, c̃2, δ4). (4.15)

From this, we may infer that ṽ, c̃ are both actually order δ2. Projecting onto the cokernel eliminates

the first term, leaving only the scalar equation

c̃ = −
⟨∂x(u0ps∂3xu0ps), ϕps⟩

⟨∂xu0ps, ϕps⟩
δ2 +O(δ4), (4.16)

and hence

cps(δ) = cpm(d1)−
⟨∂x(u0ps∂3xu0ps), ϕps⟩

⟨∂xu0ps, ϕps⟩
δ2 +O(δ4). (4.17)

We now explicitly evaluate the integrals in the scalar products in (4.17). We will do this by re-

expressing integrals over x as integrals over u, which turn out to be integrals of rational functions

which may be computed explicitly. The key observation is that in the pushed front regime d1 ≤ 1
2 ,

one may explicitly solve for the inverse of x 7→ u0ps(x), finding ψ(u(x)) = x with

ψ(u) =
√
2((1 + d1) log(1− u)− d1 log(u));

see (A.6). Note that by choosing this expression for the inverse, we are fixing a particular spatial

translate of u0ps such that u0ps(x0) =
1
2 , where

x0 = ψ

(
1

2

)
= −

√
2 log 2.
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All x derivatives of u0ps in (4.17) may be expressed as functions of u, e.g.

∂xu
0
ps(x) =

1

ψ′(u0ps(x))
.

Evaluating the resulting integral of rational functions of u, we find

⟨∂xu0ps, ϕps⟩ =
4
√
2πd1(d1 + 1) csc(2πd1)

6d1 + 3
(4.18)

Similarly, expressing higher derivatives of u0ps as rational functions of u and evaluating the resulting

integral, we find

⟨∂x(u0ps∂3xu0ps), ϕps⟩ =
πd1

(
−18(d1 + 1)2d1+3d−2d1

1 + (2d1(71d1 + 134) + 149)d1 + 23
)
csc(2πd1)

3(2d1 + 1)2

Dividing these two expressions, we find

cps(δ) = cpm(d1) + cps,2δ
2 +O(δ4),

cps,2 = −
(6d1 + 3)

(
−18(d1 + 1)2d1+3d−2d1

1 + (2d1(71d1 + 134) + 149)d1 + 23
)

12
√
2(d1 + 1)(2d1 + 1)2

, (4.19)

which concludes the proof of the statement on pushed fronts in Theorem 1.2, up to the marginal

stability, which is established in Section 5.

4.3 Persistence of the pushed-pulled transition

By Lemma 3.6, the limiting porous medium equation undergoes a pushed-pulled transition at

d1 = 1
2 . To continue this transition point in δ, we look for solution to the reduced traveling wave

equation (2.5) in the form of the ansatz

u(x) = χ−(x) + w(x) + χ+(x)(ax+ b)e−ηlinx, (4.20)

where a, b ∈ R, χ+(x) = χ−(−x), and w ∈ H2
0,η(R,R) for η = ηlin+ η̃ with η̃ > 0 small. We will use

the implicit function theorem to solve for w, a, and b as functions of d1 and δ. The pushed-pulled

transition is then characterized by strong leading edge decay, a(d1, δ) = 0 [3].

Inserting the ansatz (4.20) into (2.5), we arrive at an equation

Fpl(w, b, a; d1, δ) = 0. (4.21)

The form of the ansatz, capturing explicitly leading order behavior in the wake and leading edge,

guarantees that Fpl preserves exponential localization of w, as follows.

Lemma 4.4. Fix η̃ > 0 small, and set η = ηlin+ η̃. There exists ε > 0 and a neighborhood U ⊂ H2
0,η

of the function w0 = u0tr − χ− − χ+e
ηlinx such that

Fpl : U × R2 ×
(
1

2
− ε,

1

2
+ ε

)
× (−ε, ε) → L2

0,η (4.22)

is well-defined and Ck in all arguments.
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Restricting to a neighborhood U of w0 again ensures that the reduction of Proposition 2.1 remains

valid for the solutions considered here.

When δ = 0, by Lemma 3.6, we have a solution Fpl(w0, 1, 0;
1
2 , 0). The linearization in w about

this solution is DwFpl(w0, 1, 0;
1
2 , 0) = A0

tr, which is Fredholm with index -1 by Lemma 3.6. By the

Fredholm bordering lemma, the joint linearization D(w,a,b)Fpl(w0, 1, 0;
1
2 , 0) is then Fredholm with

index 1. To recover invertibility, we therefore need to add an extra condition which fixes the spatial

translate of the solutions, so we define

Gpl(w, b, a; d1, δ) =

 Fpl(w, b, a; d1, δ)

⟨w + (ax+ b)χ+e
−ηlinx, ∂xu

0
tr⟩ − ⟨u0tr, ∂xu0tr⟩

 (4.23)

and solve Gpl(w, b, a, d1, δ) = 0. Note that we still have Gpl(w0, 1, 0;
1
2 , 0) = 0.

Lemma 4.5. The joint linearization

D(w,a,b)Gpl(w0, 1, 0;
1

2
, 0) : H2

0,η × R2 → L2
0,η (4.24)

is invertible.

Proof. By the Fredholm bordering lemma, this joint linearization is Fredholm with index 0, so to

prove that it is invertible we need to check that the kernel is trivial. From a short computation,

we find

D(w,a,b)G(w0, 1, 0;
1

2
, 0) =

 A0
tr A0

tr(xχ+e
−ηlinx) A0

tr(χ+e
−ηlinx)

⟨·, ∂xu0tr⟩ ⟨xχ+e
−ηlinx, ∂xu

0
tr⟩ ⟨χ+e

−ηlinx, ∂xu
0
tr⟩

 , (4.25)

hence an element (w̃, ã, b̃) of the kernel satisfies

A0
tr[w̃ + (ãx+ b̃)χ+e

−ηlinx] = 0, (4.26)

⟨w̃ + (ãx+ b̃)χ+e
−ηlinx, ∂xu

0
tr⟩ = 0. (4.27)

It follows from Lemma 3.6 that the only solution toA0
tru = 0 for which eηlin·u is at most polynomially

growing in x is ∂xu
0
tr, up to a constant multiple. Since ∂xu

0
tr(x) ∼ −ηline−ηlinx as x→ ∞, we must

have ã = 0, and w̃ + b̃χ+e
−ηlinx = α∂xu

0
tr for some constant α ∈ R. The second equation then

becomes

α⟨∂xu0tr, ∂xu0tr⟩ = 0, (4.28)

which implies we must have α = 0, so the kernel is trivial, as desired.

Using the implicit function theorem, we readily obtain the following result.
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Corollary 4.6 (Persistence of pulled fronts near the pushed-pulled transition). There exists ε > 0

such that for all d1, δ such that |d1− 1
2 | < ε, |δ| < ε, the equation (2.5) admits pulled front solutions

qpl, with the form

qpl(·; d1, δ) = χ− + w(d1, δ) + (a(d1, δ)x+ b(d1, δ))χ+e
−ηlinx, (4.29)

where w(d1, δ) ∈ H2
0,η and a(d1, δ), b(d1, δ) ∈ R are Ck in both parameters, with a(12 , 0) = 0 and

b(12 , 0) = 1.

Proposition 4.7 (Persistence of pushed-pulled transition). There exists a Ck function d∗1(δ) such

that a(d1, δ) = 0 in a neighborhood of (d1, δ) = (12 , 0) if and only if d1 = d∗1(δ). Moreover, ∂d1a
(
1
2 , δ

)
is negative for δ small, and d∗1(δ) has the expansion

d∗1(δ) =
1

2
+ d1,2δ

2 +O(δ4), d1,2 =
1

16
(268− 243 log (3)) ≈ 0.0648259. (4.30)

We denote the associated front solutions with d1 = d∗1(δ), c = clin(d
∗
1(δ)) by utr(·; δ).

Proof. Since a
(
1
2 , 0

)
= 0, we can solve a(d1, δ) = 0 nearby with the implicit function theorem

provided ∂d1a(
1
2 , 0) ̸= 0. Expanding the equation Fpl(w(d1, δ), a(d1, δ), b(d1, δ); d1, δ) = 0 as in [3,

Section 4.2], we find

∂d1a

(
1

2
, 0

)
=

⟨∂2xu0tr + c′lin(
1
2)∂xu

0
tr + ν ′lin(

1
2)A

0
tr(xχ+e

νlin(
1
2
)x), ϕtr⟩

⟨A0
tr(xχ+e

−ηlin( 12 )x), ϕtr⟩
. (4.31)

It follows by Lemma 3.6 and [3, Lemma 2.3] that the denominator is nonzero; we will compute this

quantity explicitly below in order to compute the expansion of d∗1(δ).

Expanding in δ as well, we find ∂δa
(
1
2 , 0

)
= 0, but

1

2
∂2δa

(
1

2
, 0

)
=

⟨∂x(u0tr∂3xu0tr), ϕtr⟩
⟨A0

tr(xχ+e
−ηlin( 12 )x), ϕtr⟩

, (4.32)

and so, combining with (4.31), we conclude

d∗1(δ) =
1

2
− ⟨∂x(u0tr∂3xu0tr), ϕtr⟩

⟨∂2xu0tr + c′lin(
1
2)∂xu

0
tr + ν ′lin(

1
2)A

0
tr(xχ+e

νlin(
1
2
)x), ϕtr⟩

δ2 +O(δ4). (4.33)

Using the explicit inverse ψ(u) from (A.6) and re-expressing all integrals except for the far-field

contribution ⟨A0
tr(xχ+e

−ηlin( 12 )x, ϕtr⟩ as integrals over rational functions of u as in Section 4.2, we

find

⟨∂x(u0tr∂3xu0tr), ϕtr⟩ =
1

12

(
−201

2
− 729

8

(
− log

(
3

2

)
− log(2)

))
≈ −.0324129, (4.34)

and

⟨∂2xu0tr + c′lin(
1

2
)∂xu

0
tr, ϕtr⟩ = 1. (4.35)
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It remains only to compute the far-field contribution ν ′lin(
1
2)⟨A

0
tr(xχ+e

−ηlin( 12 )x, ϕtr⟩. We use the

fact that ω0,ηlin = eηlinx on the support of χ+ to write

⟨A0
tr(xχ+e

−ηlin( 12 )x, ϕtr⟩ = ⟨L0
tr(xχ+), ϕ̃tr⟩, (4.36)

where ϕ̃tr(x) = e−ηlin(
1
2
)xϕtr(x), and L0

tr = ω0,ηlinAtrω
−1
0,ηlin

satisfies

L0
tr =

1

2
∂2x + (a2(x)∂

2
x + a1(x)∂x + a0(x)),

with aj(x) → 0 exponentially as x → ∞; this is a consequence of the fact that νlin(
1
2) is a double

root of the dispersion relation. Since ϕ̃tr is in the cokernel of L0
tr, it follows that the only terms

which can contribute to (4.36) are boundary terms from integration by parts, which may arise

due to the fact that xχ+ is not spatially localized. Since the coefficients aj(x) are exponentially

localized and ϕ̃tr(x) is bounded, only the leading term 1
2∂

2
x in L0

tr may contribute boundary terms.

Hence, we find after integrating by parts

⟨L0
tr(xχ+), ϕ̃tr⟩ =

1

2
lim
x→∞

ϕ̃tr(x) = − 1

2
√
2
. (4.37)

We compute this limit in Lemma 4.8, below. Using the fact that ν ′lin(
1
2) =

√
2, we find for the

far-field contribution

ν ′lin(
1

2
)⟨A0

tr(xχ+e
−ηlin( 12 )x, ϕtr⟩ = −1

2
.

Combining with (4.34), (4.35), and (4.33) we finally obtain

d∗1(δ) =
1

2
+ d1,2δ

2 +O(δ4), (4.38)

with

d1,2 =
1

16
(268− 243 log(3)) ≈ 0.0648259. (4.39)

Note also that ∂d1a
(
1
2 , 0

)
< 0.

Lemma 4.8. We have

lim
x→∞

ϕ̃tr(x) = − 1√
2
.

Proof. Recall that ψ(u0tr(x)) = x, where ψ is given by (A.6). We may use this to write

ϕ̃tr(x) = Φ̃(u0tr(x)),

where

Φ̃(u) = e−
√
2ψ(u) e−2m̃(u)

ψ′(u)(u+ 1
2)
.
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Here,

m̃(u) = −1

2
log(2− 2u) +

1

2
log(2u) +

1

2
log

(
− u

u− 1

)
− log

(
u+

1

2

)
may be found by converting the integral for mj(ψ(u)) to an integral of rational functions of u and

evaluating. In particular, we find

lim
x→∞

ϕ̃tr(x) = lim
u→0+

Φ̃(u) = − 1√
2
.

Corollary 4.9. Since ∂d1a
(
1
2 , δ

)
< 0, it follows from [3, Theorem 2] that the pulled fronts con-

structed near the pushed-pulled transition in Corollary 4.6 are marginally spectrally stable for

d1 ≤ d∗1(δ), and are unstable for d1 > d∗1(δ).

Similarly, by following the analysis of [3, Section 4] as in the proof of Corollary 4.6, we may continue

pushed fronts from the pushed-pulled transition.

Proposition 4.10 (Persistence of pushed fronts near the pushed-pulled transition). There exists

ε > 0, a speed c = c̃ps(d1, δ), and a decay rate η̃ps(d1, δ) such that for all d1, δ with |d1− 1
2 | < ε, |δ| <

ε, the equation (2.5) admits pushed front solutions qps traveling with speed c̃ps(d1, δ), with the form

qps(·; d1, δ) = χ− + wps(d1, δ) + χ+e
−η̃ps(d1,δ)x, (4.40)

where wps(d1, δ), c̃ps(d1, δ), and η̃ps(d1, δ) are Ck in both parameters. Moreover, these fronts are

marginally stable if d1 ≥ d∗1(δ), and strictly stable for d1 < d∗1(δ).

5 Marginal spectral stability — proof of Theorem 1.2

We now establish marginal spectral stability of the fronts constructed in the previous section,

justifying the use of the pushed/pulled terminology and completing the proof of Theorem 1.2. Our

strategy is to apply Proposition 2.4 to reduce to a regularized problem on a slow manifold, and then

use a far-field/core decomposition to track eigenvalues near the essential spectrum. One challenge

is that Proposition 2.4 only applies to λ in a large ball with radius Λ, and the allowable range of

δ then depends on Λ. We therefore must also exclude any unstable eigenvalues with sufficiently

large, uniformly in δ, which we do in the following proposition. First, let K be the matrix

K =

1 0

0 0

 . (5.1)

Proposition 5.1. Let A denote the linearization of (1.4) about any one of the pulled, pushed, or

transition fronts constructed in Section 4. There exist constants Λ0, δ0 > 0 and π
2 < θ0 < π such

that the equation (A− λK)u = 0 has no bounded solutions provided |δ| < δ0 and λ satisfies

λ ∈ Ω0 := {λ ∈ C : |λ| ≥ Λ0, |Arg λ| ≤ θ0}. (5.2)
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In particular, Proposition 5.1 excludes any unstable eigenvalues with |λ| sufficiently large, uniformly

in δ. Here this issue is not trivial due to the parabolic-elliptic and singularly perturbed structure

of (1.3). We give a proof via dynamical systems techniques in Appendix B.

5.1 Stability of pushed fronts away from transition

Fix d1 <
1
2 , and let ups(·; δ) denote the associated pushed front solution to the reduced problem,

constructed in Proposition 4.2. The corresponding solution to the original traveling wave problem,

(2.1), is given by

U = ups(·; δ), V := vps(·; δ) = ups(·; δ) + δ2ψH(ups(·; δ), ∂xups(·; δ); δ). (5.3)

Let Bps(δ) denote the linearization of (2.1) about this solution.

Proposition 5.2 (Marginal spectral stability of pushed fronts away from pushed-pulled transition).

Fix d1 <
1
2 and ηlin < η0 < ηps. There exists δ1(d1) > 0 such that for all 0 < |δ| < δ1(d1), the

equation

(Bps(δ)− λK)u = 0 (5.4)

has no solutions u ∈ H2
0,η0

(R,C2) if Reλ ≥ 0, except for a simple eigenvalue at λ = 0, with

eigenfunction u = (∂xups(δ), ∂xvps(δ)).

Proof. The candidate eigenfunctions considered here are inH2
0,η0

(R,C2), so in particular are bounded.

By Proposition 2.4, all bounded solutions to (Bps(δ) − λ)u = 0 may be recovered from solutions

of the reduced problem (2.22). At δ = 0, it follows from Lemma 3.5 that (2.22) has no solutions

in H2
0,η0

with Reλ ≥ 0 except for at λ = 0, using (2.24) to relate solutions to those of the scalar

problem. It follows from robustness of bounded invertibility that (2.22) has no solutions in H2
0,η0

for

λ away from the origin but bounded. Large eigenvalues have already been excluded by Proposition

5.1, uniformly in δ small. In a neighborhood of the origin, the isolated simple eigenvalue at λ = 0

persists as an isolated, simple eigenvalue by standard arguments, and remains at the origin since

we know the eigenfunction explicitly due to translation invariance.

5.2 Stability of pulled fronts away from transition

Fix d1 >
1
2 , and let upl(·; δ) denote the associated pulled front solution to the reduced problem,

constructed in Proposition 4.1. The corresponding solution to the original traveling wave problem,

(2.1), is given by

U = upl(·; δ), V := vpl(·; δ) + δ2ψH(upl(·; δ), ∂xupl(·; δ), δ). (5.5)

Let Bpl(δ) denote the linearization of (2.1), with c = clin, about this solution, and let K be given

by (5.1).
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Proposition 5.3 (Marginal spectral stability of pulled fronts away from pushed-pulled transition).

Fix d1 >
1
2 and ηlin < η0 < ηps. There exists δ2(d1) > 0 such that for all 0 < |δ| < δ2(d1), the

equation

(Bpl(δ)− λK)u = 0 (5.6)

has no solutions u ∈ H2
0,ηlin

(R,C2) if Reλ ≥ 0. Moreover, there is no solution at λ = 0 which

belongs to L∞
0,ηlin

(R,C2).

The proof of Proposition 5.3 is more difficult than that of Proposition 5.2 since the essential spec-

trum of Bpl(δ) touches the origin, so we cannot apply a classical argument to rule out eigenvalues

in a neighborhood of the origin.

Nonetheless, we may still reduce our consideration to the reduced eigenvalue problem (2.22), which

we write as the scalar equation

d1ũxx + L2(upl, ∂xupl, λ; δ)ũx + L1(upl, ∂xupl, λ; δ)ũ = λũ, (5.7)

where

L1ũ+ L2ũx = DΓ(upl, ∂xupl, ψH(upl, ∂xupl; δ), ψZ(upl, ∂xupl; δ))


ũ

ũx

ψ̃h(upl, ∂xupl, λ; δ)(ũ, ũx)
T

ψ̃z(upl, ∂xupl, λ; δ)(ũ, ũx)
T

 .

(5.8)

Lemma 5.4. We have L1(0, 0, λ; δ) = 1 and L2(0, 0, λ; δ) = clin.

Proof. Recall from Proposition 2.1 that ψZ(0, 0; δ) = ψH(0, 0; δ) = 0. Hence

L1(0, 0, λ; δ)ũ+ L2(0, 0, λ; δ)ũx = DΓ(0, 0, 0, 0)


ũ

ũx

ψ̃h(upl, ∂xupl, λ; δ)(ũ, ũx)
T

ψ̃z(upl, ∂xupl, λ; δ)(ũ, ũx)
T

 . (5.9)

From (2.2), with c = clin, we find DΓ(0, 0, 0, 0) = (1, clin, 0, 0), from which the desired result

follows.

Corollary 5.5. The equation

ũxx + L2(0, 0, λ; δ)ũx + L1(0, 0, λ; δ)ũ = λũ (5.10)

admits a solution

e+(x; γ) = eν−(γ)x, (5.11)

23



where

ν−(γ) = νlin −
γ

d1
, (5.12)

and γ =
√
λ, with Re γ ≥ 0.

Proof. This follows from the expression (3.3) for the asymptotic dispersion relation together with

Lemma 5.4.

We fix η̃ > 0 small and look for solutions to (5.7) via the far-field/core ansatz

ũ(x) = w(x) + βχ+(x)e+(x; γ), (5.13)

requiring w ∈ H2
0,η(R,C) with η = ηlin + η̃, so that if |γ| is small, w decays faster than e+(x; γ) as

x→ ∞. Inserting this ansatz into (5.7) leads to the equation

0 = Fstab(w, β; γ, δ), (5.14)

where

Fstab(w, β; γ, δ) := [d1∂
2
x + L2(upl, ∂xupl, γ

2; δ)∂x + L1(upl, ∂xupl, γ
2; δ)− γ2][w + β + χ+e+(x; γ)].

(5.15)

Lemma 5.6. Fix η̃ > 0 small, and set η = ηlin + η̃. There exists γ0 > 0 so that the map

Fstab : H2
0,η × C×B(0, γ0)× (−δ2(d1), δ2(d1)) → L2

0,η (5.16)

is well defined, linear in w and β, and Ck in γ and δ. Moreover, Bpl(δ) : H2
0,ηlin

(R,C2) →
L2
0,ηlin

(R,C2) has an eigenvalue λ = γ2 to the right of its essential spectrum if and only if (5.14)

has a solution with Re γ = 0.

Proof. That Fstab preserves exponential localization follows from exponential convergence of upl(x)

to 0 as x → ∞ together with the fact that e+(x; γ
2) solves the eigenvalue problem in the leading

edge by Corollary 5.5. Regularity in γ and δ follows from Proposition 2.4. Equivalence to the

original eigenvalue problem follows as in [15, Section 5].

Proposition 5.7. Let γ0 be as in Lemma 5.6. There exists a function E : B(0, γ0)×(−δ0, δ0) → C,
which is Ck in both arguments, such that:

• Bpl(δ) : H
2
0,ηlin

(R,C2) → L2
0,ηlin

(R,C2) has an eigenvalue λ = γ2 to the right of its essential

spectrum if and only if E(γ, δ) = 0 with Re γ > 0.

• The equation Bpl(δ)u = 0 has a solution with ω0,ηlinu bounded if and only if E(0, δ) = 0.
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Proof. It follows from (2.24) that DwFstab(0, 0; 0, 0) = A0
pl, and recall from Lemma 3.4 that A0

pl :

H2
0,η → L2

0,η is Fredholm with index -1, trivial kernel, and one-dimensional co-kernel spanned by ϕpl.

Let P0 denote the L2-orthogonal projection onto the range of A0
pl : H

2
0,η → L2

0,η, and decompose

the equation 0 = Fstab(w, β; γ, δ) as{
P0[d1∂

2
x + L2(upl, ∂xupl, γ

2; δ)∂x + L1(upl, ∂xupl, γ
2; δ)− γ2][w + βχ+e+(·; γ)] = 0

⟨[d1∂2x + L2(upl, ∂xupl, γ
2; δ)∂x + L1(upl, ∂xupl, γ

2; δ)− γ2][w + βχ+e+(·; γ)], ϕpl⟩ = 0.
(5.17)

The system (5.17) has a trivial solution (w, β; γ, δ) = (0, 0; 0, 0). The linearization of the first

equation with respect to w is P0A0
pl, which is invertible by construction, since the operator A0

pl has

no kernel on this space, and P0 projects onto its range. Hence, we may solve the first equation for

w(β; γ, δ) as a function of the other parameters via the implicit function theorem. In fact, since the

equation is also linear in β, this solution must by linear in β, so we write w(β; γ, δ) = βw̃(γ, δ) for

some w̃(γ, δ) ∈ H2
0,η. Inserting this into the second equation, we find the desired reduced equation

E(γ, δ) = 0,

where

E(γ, δ) := ⟨[d1∂2x + L2(upl, ∂xupl, γ
2; δ)∂x + L1(upl, ∂xupl, γ

2; δ)− γ2][w̃(γ, δ) + χ+e+(·; γ)], ϕpl⟩.

Proof of Proposition 5.3. It follows from Lemma 3.4 and Proposition 5.7 that E(0, 0) ̸= 0. Since E

is continuous in both arguments, E(γ, δ) ̸= 0 for γ, δ sufficiently small, so there are no eigenvalues

in a neighborhood of the origin. Large eigenvalues are excluded by Proposition 5.1, and eigenvalues

away from the origin in a bounded region may be handled by regular perturbation arguments, as

in Proposition 5.2.

5.3 Proof of Theorem 1.2

Proof. By Corollaries 4.6 and 4.9, there exists ε > 0 and δ0 > 0, such that for |δ| < δ0 and

d1 ∈ (d∗1(δ) − ε, d∗1(δ), we find marginally stable pulled fronts bifurcating from the pushed-pulled

transition at d∗1(δ). Now we can apply Proposition 4.1 to find pulled fronts, marginally stable

by Proposition 5.3, for d1 ∈ [d, d∗1(δ) − ε] for all |δ| < δ̃1, where δ̃1 can be chosen independent

of d1, since we are focused on a compact region which is uniformly away from the pushed-pulled

transition. Similarly, by Proposition 4.10 we find marginally stable pushed fronts bifurcating from

the pushed-pulled transition for all |δ| < δ0 and d1 ∈ (d∗1(δ), d
∗
1(δ) + ε). Then, by Propositions 4.2

and 5.2, we find marginally stable pushed fronts for d1 ∈ [d∗1(δ) + ε, d] for all |δ| < δ̃2, where δ̃2
can be chosen independent of d1. By Proposition 4.7, the pushed-pulled transition is generic in the

sense of [3], as desired.
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6 Numerical Continuation Results

We obtained expansions for the speed of pushed fronts and the location of the pushed-to-pulled

transition as one perturbs away from the the porous medium limit in Theorem 1.2. In this sec-

tion, we compare these estimates to values obtained via a numerical approximation. We employ a

numerical continuation routine recently proposed by the authors in [3]. The method approximates

traveling front solutions by solving a boundary value problem making use of a far-field core decom-

position. The far-field portion encodes the exact decay rate of the front in the linearization near

the unstable state while the core is a localized portion with stronger decay rates that captures the

nonlinear corrections to the front profile. As explained in [3], the method can approximate pulled

fronts, pushed fronts, and the transition with errors that decrease exponentially in the domain size

(as opposed to the algebraic errors for pulled fronts that arise if one were to solve a boundary value

problem with, for example, Dirichlet boundary conditions on either side of the interval). Since the

asymptotic decay rates are explicitly included in the decomposition, the transition between pushed

and pulled fronts can be located by finding parameters values for which this decay rate is purely

exponential, i.e. when the parameter a = 0 in (4.20). For more details see [3].

Theorem 1.2 obtains first order corrections to the pushed front speed and the pushed-to-pulled

transition point as δ is perturbed from zero. In Figure 1 we compare these predictions to quantities

obtained from numerical continuation as described above. The numerical continuations are per-

formed using fourth-order discretizations of the Laplacian on a discretized spatial domain [−L,L]
with L = 20 and dx = 0.1. The chemotactic term in the first equation of (1.3) is expanded and we

use the second equation to replace the term χuvxx with χu(v − u)/σ.

Pushed front speeds. For pushed fronts, we find good approximations to the speeds for d1 near

the critical point at d1 = 0.5. The predictions are less accurate for smaller values of d1. It turns out

that the coefficient cps,2 is quite small and so one explanation of this deviation is that the O(δ4) in

(1.7) could have a non-trivial influence for δ2 on the order of 0.01 to 0.1. One interesting feature

that is observed is the non-uniform effect of increasing δ on the speed of the traveling front. For d1
close to 0.5, increasing δ leads to faster invasion speeds as compared to the porous medium limit

while smaller values of d1 lead to a decrease in the relative invasion speed.

Pushed-to-pulled transition. Expansions for the pushed-to-pulled transition point are given

in (1.8). We compute the location of the pushed-to-pulled transition using numerical continuation

techniques and compare them to the linear approximation d1 =
1
2 + d1,2δ

2. This linear approxima-

tion provides are remarkably good fit for δ2 less than approximately 0.53. At this value of δ2 the

linearization of (1.3) has a spatial eigenvalue with algebraic multiplicity three and our numerical

continuation routine is unable to continue through this resonance. For δ2 greater than this critical

value the transition point is no longer approximately linear.

A quadratic fit to the computed values of d1(δ) in the range 0 < δ < 6·10−3 gives the approximation

d1(δ) ∼ 0.49999976 + 0.064829368124163δ2 + 0.0077592δ4. (6.1)
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numerically observed transition
linear approximation

Figure 1: On the left, we compare pushed front speeds with δ2 = 0.1 with the expansion obtained in (1.7).

Specifically, we plot the deviation of the pushed speed from the porous medium limit speed cpm(d1) determined

by numerical continuation using the approach described in [3] and via the expansion (1.7). On the right

we show the location in δ2-d1 parameter space of the pushed to pulled transition determined by the same

continuation method. A linear prediction for the location of the expansion curve provided by (1.8) is shown

in black and appears to be a reliable estimate for the actual transition value beyond the limit of small δ. We

remark that the gap in the data appearing near 0.53 is due to a resonance in the eigenvalues that prevents

our algorithm from continuing through that point.

Comparing with the prediction, we find an error in the constant term of order 10−7 and a relative

error in the linear term of order 5 · 10−5, consistent with discretization accuracy.

The numerically computed pushed-pulled transition curve d∗1(δ), shown in blue in the right panel

of Figure 1, appears strikingly close to linear in δ2 for δ2 ≤ 0.5. To investigate whether the curve

is truly linear, we computed the local slope of the curve as δ2 ranges from 0.1 to 0.4, and found

that the slope changed by approximately three percent from δ2 = 0.1 to δ2 = 0.4. This change was

robust to decreasing dx and increasing L, suggesting that the curve d∗1(δ) is genuinely nonlinear in

δ2, but with a very small leading order nonlinear term. Note that the coefficient of the correction

δ4 in (6.1) is small but does not vanish, also indicating that the apparent linear dependence of d1
on δ2 is a good approximation yet not exact according to the numerical data.

A Front solutions in the porous medium limit

Proof of Lemma 1.1 We follow the approach presented in [12]. Write (1.5) as a system of

first-order equations yielding

U ′ = W

W ′ = −cW +W 2 + U(1− U)

d1 + U
. (A.1)

Then change coordinates via

W̃ = (d1 + U)W, Ũ = U, x̃ =

∫ x

0

1

d1 + U(τ)
dτ.
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This transforms (A.1) to the system

dŨ

dx̃
= W̃

dW̃

dx̃
= −cW̃ − Ũ(1− Ũ)(d1 + Ũ). (A.2)

This is Nagumo’s equation – studied in [8] – for which the selected speed has been established to

be

cpm(d1) =

 1√
2
+
√
2d1 d1 <

1
2

2
√
d1 d1 ≥ 1

2

. (A.3)

Thus we have established Lemma 1.1

Front asymptotics for (1.5) Lemma 3.4 and Lemma 3.5 require asymptotics for the front

profile near the unstable zero state.

Pushed front asymptotics Equation (A.2) has a family of exact solutions lying on the quadratic

curve W̃ = −αŨ
(
1− Ũ

)
. To compute for α and c, one can substitute and obtain the invariance

condition

α2 − 2αc+ d1 − 2α2Ũ + Ũ = 0 (A.4)

from which α =
√

1
2 and c satisfying α2 − cα + d1 = 0; or c = 1√

2
+

√
2d1. These heteroclinics

correspond to traveling front solutions of (A.2) which have the explicit form,

Ũ(x̃) =
e
− x̃√

2

1 + e
− x̃√

2

. (A.5)

Remark A.1. Alternatively, we notice that for these solutions

U ′ =W =
W̃

d1 + U
= − U(1− U)√

2(d1 + U)
,

which gives the explicit expression for the inverse ψ(y)

ψ(y) =
√
2((1 + d1) log(1− y)− d1 log(y)), ψ(U(x)) = x. (A.6)

It is important to note that only when d1 <
1
2 is this front a selected, pushed front. For d1 >

1
2

the front has weak exponential decay and belongs to the class of super-critical fronts which are not

selected by compactly supported initial data. When d1 <
1
2 the selected pushed front has decay

rate

Ũ(x̃) ∼ Ce
− x̃√

2 . (A.7)

Note that x̃ ∼ x
d1

as x→ ∞ from which the decay rate in Lemma 3.5 is obtained.
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Pulled front asymptotics When d1 ≥ 1
2 the invasion fronts are pulled. Our primary goal in

this section is to verify the expansion of the front in the leading edge stated in (3.13) where it is

claimed that the coefficient a is positive. Validation of this will be accomplished using a comparison

argument after two changes of coordinates to simplify the analysis. The first change of coordinates

transforms (A.2) to projective coordinates. These coordinates will be employed to distinguish pure

exponential decay (with a = 0) from weak exponential decay due to the algebraic pre-factor (with

a ̸= 0).

To begin, let η = W̃
Ũ

after which (A.2) is transformed to (with c = clin = 2
√
d1)

dŨ

dx̃
= ηŨ

dη

dx̃
= −clinη − η2 − (1− Ũ)

(
d1 + Ũ

)
(A.8)

This system of equations has a fixed point at (Ũ , η) = (0,−
√
d1). This fixed point is non-hyperbolic

with one zero eigenvalue and one negative eigenvalue −
√
d1. The center manifold can be taken to

be the η axis and there exists a one dimensional stable manifold tangent to the stable eigenvector

(
√
d1, 1− d1).

It is more convenient to re-scale (A.8) so that η =
√
d1z. Also rescaling the independent variable

by a factor of
√
d1, and recalling that clin = 2

√
d1, we obtain the system

Ũ ′ = zŨ

z′ = −(z + 1)2 + Ũ − 1

d1
Ũ(1− Ũ). (A.9)

This system has fixed points at (0,−1) and (1, 0) for all d1 > 0. Due to the explicit front solution

(A.5) we know that the stable manifold of (0,−1) intersects the unstable manifold of (1, 0) at d1 =
1
2 .

The fixed point (0,−1) has stable eigenvalue −1 with eigenvector
(
1, 1

d1
− 1

)
. The fixed point at

(1, 0) is hyperbolic with eigenvalues −1 ±
√

2 + 1
d1
. The unstable eigenvector is proportional to(

−1, 1−
√
2 + 1

d1

)
.

Let hs(Ũ , d1) be the graph of the stable manifold of (0,−1) and let hu(Ũ , d1) be the graph of the

unstable manifold of (1, 0). Based upon the eigenvectors, we know that for 0 < U and sufficiently

small that hs(Ũ , d1) is a monotone decreasing function of d1. Similarly, for 0 < U < 1 sufficiently

close to 1 it holds that hu(Ũ , d1) is monotone increasing in d1.

Let ϕ(Ũ) be the graph of the heteroclinic orbit connecting (0,−1) and (1, 0) with d1 =
1
2 . Suppose

for the sake of contradiction we assume the existence of a heteroclinic connection for d1 ̸= 1
2 . Let

ψ(Ũ , d1) be the graph of this heteroclinic. Fix d1 >
1
2 . Then it follows from the properties of the

stable and unstable manifolds of these fixed points that there exists a Ũ1 sufficiently small so that

ϕ(Ũ1) > ψ(Ũ1, d1),

and a Ũ2 close to 1 such that

ϕ(Ũ2) < ψ(Ũ2, d1).
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Then, in order for there to exist a heteroclinic orbit for d1 it must be that there exists a Ũ1 < Ũ∗ < Ũ2

such that

ϕ(Ũ∗) = ψ(Ũ∗, d1) = z∗, ϕ′(Ũ∗) < ψ′(Ũ∗, d1). (A.10)

Compute the derivative
dz

dU
= −(z + 1)2

zU
+

1

z
− 1

d1

1− U

z
. (A.11)

Then the derivative condition in (A.10) requires

− 1

d1z∗
(1− U∗) > − 2

z∗
(1− U∗),

which, after recalling that z∗ < 0, only holds if d1 <
1
2 .

As a consequence there can exist no heteroclinic connection for d1 >
1
2 . Tracking the unstable

manifold of (1, 0) forward in x̃ we see that it can not cross the curve ϕ(Ũ). This means that

z(x̃) > −1 and after untangling the changes of coordinates we have that

Ũ ′

Ũ
∼ −

√
d1 +

√
d1

x̃+ κ
,

for some κ > 0 from which we obtain that Ũ(x̃) ∼ (ax̃+ b)e−
√
d1x̃ with a > 0 as claimed.

B Spectral stability for large |λ|

Recall the formulation (2.17) of the eigenvalue problem as a first-order system,

ũx = w̃

w̃x = − 1

d1
DΓ(U,W,H,Z)(ũ, w̃, h̃, z̃)T +

1

d1
λũ

δh̃x = z̃

δz̃x = h̃+
1

d1
DΓ(U,W,H,Z)(ũ, w̃, h̃, z̃)T − 1

d1
λũ, (B.1)

where (U(x),W (x), H(x), Z(x)) denotes any heteroclinic solution to (2.1) satisfying 0 < U < 1.

Defining the rescaled (spatial) time y = x
δ , we find the fast system,

ũy = δw̃

w̃y = − δ

d1
D(U(δy),W (δy), H(δy), Z(δy)) +

δ

d1
λũ

h̃y = z̃

z̃y = h̃+
1

d1
DΓ(U,W,H,Z)(ũ, w̃, h̃, z̃)T − 1

d1
λũ, (B.2)
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which is equivalent to (B.1) for δ > 0. To recognize the leading order dynamics for large |λ|, we
set λ = 1

γ2
, rescale time to ξ = y

|γ| , and set ŵ = |γ|w̃, finding the equivalent system

ũξ = δŵ

ŵξ =
δ

d1

|γ|2

γ2
ũ− δ

|γ|2

d1
DΓ(U2,W2, H2, Z2) ·

(
ũ,

ŵ

|γ|
, h̃, z̃

)T
h̃ξ = |γ|z̃

z̃ξ = |γ|h̃− |γ|
γ2

1

d1
ũ+

|γ|
d1
DΓ(U2,W2, H2, Z2)

(
ũ,

ŵ

|γ|
, h̃, z̃

)T
, (B.3)

where (U2(ξ),W2(ξ), H2(ξ), Z2(ξ)) = (U(δ|γ|ξ),W (δ|γ|ξ), H(δ|γ|ξ), Z(δ|γ|ξ)) are slowly varying if

|δγ| is small. Explicitly evaluating DΓ and rescaling (h̃, z̃) = 1
|γ|

(
ĥ, ẑ

)
, we find

ũξ = δŵ

w̃ξ =
δ

d1

|γ|2

γ2
ũ− δ|γ|2

d1

[
ũ(H2 + 1− 2U2) +

ŵ

|γ|
(c+ 2W2 + δZ2) + U2

ĥ

|γ|
+ δW2

ẑ

|γ|

]
ĥξ = |γ|ẑ

ẑξ = |γ|ĥ− |γ|2

γ2
1

d1
ũ+

|γ|2

d1

[
ũ(H2 + 1− 2U2) +

ŵ

|γ|
(c+ 2W2 + δZ2) + U2

ĥ

|γ|
+ δW2

ẑ

|γ|

]
. (B.4)

We make one more rescaling, defining (ȟ, ž) = |γδ|1/2(ĥ, ẑ), so that the system becomes

ũξ = δŵ,

ŵξ =
δ

d1

|γ|2

γ2
ũ− |δγ|1/2

d1
U2ȟ+ Γ̃1(U2,W2, H2, Z2; γ, δ) · (ũ, ŵ, ȟ, ž),

ȟξ = |γ|ž

žξ = |γ|
(
1 +

U2

d1

)
ȟ− |γ|2

γ2
|γδ|1/2

d1
ũ+ Γ̃2(U2,W2, H2, Z2; γ, δ) · (ũ, ŵ, ȟ, ž), (B.5)

where

Γ̃1(U2,W2, H2, Z2; γ, δ) =
(
− δ|γ|2

d1
(H2 + 1− 2U2) − |δγ|

d1
(c+ 2W2 + δZ2) 0 −δ|δγ|1/2W2

)
,

Γ̃2(U2,W2, H2, Z2; γ, δ) =
(
|γ|2|δγ|1/2

d1
(H2 + 1− 2U2)

|γ||δγ|1/2
d1

(c+ 2W2 + δZ2) 0 δ|γ|
d1
W2

)
.

Note that the principal terms, written explicitly in (B.5), all have coefficients on the order O(|γ|, |δ|, |δγ|1/2),
while all terms in Γ̃1/2 are higher order. Our goal is now to show that there exists r1 > 0 and

ϕ0 ∈ (π4 ,
π
2 ) such that (B.5) admits no bounded solutions provided

|δ| < r1, |γ| < r1, |Arg γ| < ϕ0. (B.6)
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We set |γ|2
γ2

= eiθ, and first consider the coordinate chart δ = δ1|γ| on the (δ, |γ|)-plane, in which

we find

ũξ = δ1|γ|ŵ

ŵξ =
δ1
d1

|γ|eiθũ− |δ1|1/2

d1
|γ|U2ȟ+O(|γ|2) · (ũ, ŵ, ȟ, ž)T

ȟξ = |γ|ž

žξ = |γ|
(
1 +

U2

d1

)
ȟ− eiθ|δ1|1/2

|γ|
d1
ũ+O(|γ|2) · (ũ, ŵ, ȟ, ž)T . (B.7)

Rescaling time to remove the Euler multiplier |γ|, we find that the eigenvalues of the resulting

leading order system are given as roots of the characteristic polynomial

0 = det

 δ21
d1
eiθ − ν2 − |δ1|3/2

d1
U2

−eiθ |δ1|
1/2

d1
1 + U2

d1
− ν2

 =: det(M − ν2I). (B.8)

Lemma B.1. Fix d1 > 0. For any δ1 > 0, 0 ≤ U2 ≤ 1, and θ with |θ| < 3π
4 , (B.8) has no roots ν

which are purely imaginary.

Proof. Suppose we have a root ν = ik of (B.8) which is purely imaginary. After some rearranging,

we find

eiθ =
−k2

(
1 + U2

d1
+ k2

)
δ21
d21
(1 + k2)

, (B.9)

which implies in particular that we must have θ = π.

Corollary B.2. Fix d1 > 0. For any δ∗1 > 0, there exists γ∗1 > 0 such that the system (B.7) has

no bounded solutions with δ = δ1|γ|, δ∗1 ≤ δ1 ≤ 1
δ∗1
, |γ| ≤ γ∗1 , and |Arg γ| ≤ 3π

8 .

Proof. Since the linear system (B.7) has slowly varying coefficients, the hyperbolicity captured in

Lemma B.1 implies that (B.7) admits exponential dichotomies in the desired parameter regime

[16, Lemma 2.3], and the existence of exponential dichotomies rules out the possibility of bounded

solutions.

Lemma B.3. Fix d1 > 0. There exist δ†1, γ
†
1 > 0 such that (B.7) admits no bounded solutions with

δ = δ1|γ|, |δ1| < δ†1, |γ| ≤ γ†1, and |Arg γ| ≤ 3π
8 .

Proof. After removing the Euler multiplier |γ| and by coupling to the corresponding rescaled version

of the existence problem, as in Section 2, we find that for δ1, γ1 small all bounded solutions of (B.7)

lie on a normally hyperbolic slow manifold, with leading order expansion

ȟ = eiθ
|δ1|1/2

d1

ũ

1 + U2
d1

, ž = O(|δ1|1/2)
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Using (B.7), we therefore find the reduced flow on the slow manifold is governed to leading order

by by

ũξξ +
1

d1
eiθ

(
U2

d1 + U2
− 1

)
ũ = 0. (B.10)

For fixed 0 ≤ U2 ≤ 1 and |θ| ≤ 3π
4 , the corresponding first-order system is hyperbolic. Since the

coefficients are again slowly varying, we conclude the existence of exponential dichotomies, and

hence non-existence of bounded solutions, again by [16, Lemma 2.3].

Combining Corollary B.2 and B.3, we have excluded bounded solutions to (B.5) with δ = δ1|γ|, |γ| ≤
max(γ∗1 , γ

†
1), and |Argγ| ≤ 3π

8 . It only remains to exclude the regime |γ| = γ1δ, with γ1 > 0 small.

This argument is completely analogous to the proof of Lemma B.3, and so we conclude that there

exists r1 > 0 such that (B.5) admits no bounded solutions satisfying (B.6) with ϕ0 = 3π
8 . For δ, γ

nonzero, the existence of bounded solutions to (B.5) is equivalent to existence of bounded solutions

of the original eigenvalue problem B.1, so we have proved Proposition 5.1.
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