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Abstract

We consider the Euler equations describing nonlinear waves on the free surface of a two-

dimensional inviscid, irrotational fluid layer of finite depth. For large surface tension, Bond

number larger than1/3, and Froude number close to 1, the system possesses a one-parameter

family of small-amplitude, traveling solitary wave solutions. We show that these solitary waves

are spectrally stable with respect to perturbations of finite wave-number. In particular, we

exclude possible unstable eigenvalues of the linearization at the soliton in the long-wavelength

regime, corresponding to small frequency, and unstable eigenvalues with finite but bounded

frequency, arising from non-adiabatic interaction of the infinite-wavelength soliton with finite-

wavelength perturbations.
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1 Introduction

In this article, we study stability of solitary waves traveling at constant velocity on the free surface

of a two-dimensional inviscid fluid layer of finite depth under the influence of gravity and surface

tension. The equations of motion are the Euler equations for nonlinear surface waves. Solitary

waves are among the most striking phenomena and appear to be stable in several parameter regimes.

Both for large surface tension and in the absence of surface tension, solitary waves are known to

exist as particular solutions. Together with the solitary waves, there exists a family of spatially

periodic waves, which are known as Stokes waves in the absence of surface tension.

Phenomenologically, solitary waves appear to be stable in both parameter regimes mentioned,

whereas Stokes waves are stable only for large enough wavelengths. At some critical finite wave-

length, the periodic waves destabilize, an instability mechanism first discovered in [BF67, Be67,

Wh67] and known as the Benjamin-Feir instability.

Mathematically, the water wave problem is an evolutionary partial differential equation and pos-

sesses a Hamiltonian structure [Za68]. Various symmetries and associated conservation laws are

known; see [BO80]. The initial-value problem to this partial differential equation is well posed

locally in time in the case of gravity waves [Na74, KN79, Yo82, Cr85, Wu97]. Both solitary waves

and spatially periodic Stokes waves are particular equilibria of the Hamiltonian system. Their

stability or instability is to first order determined by the spectrum of the linearization. Complete

stability proofs would however have to take into consideration the effects of nonlinearity, as well.

Throughout this paper, we focus on the spectrum of the linearization, the first and basic step towards

stability of solitary waves.

Existence of free surface waves in the full Euler equations has attracted a lot of interest in the late

80’s using bifurcation theory. For example, existence of solitary waves for large surface tension,

Bond number larger than1/3, was shown in [Ki88, AK89, Sa91].

Stability of surface waves in the full Euler equation is, from a mathematical point of view, a com-

pletely open problem, for both cases of gravity and capillary-gravity waves. Although a tremendous

amount of literature is devoted to stability and instability of surface waves, to our knowledge, the

present work represents the first rigorous attempt to show stability of solitary waves. Below, we

summarize part of the previous work on stability and instability.

Most detailed results are available for Stokes waves. In the absence of surface tension, a rigorous

proof of the Benjamin-Feir instability of small-amplitude Stokes waves has been given in [BM95].

Rigorous stability proofs, even for the linearized problem, do not seem to be available. On the

other hand, instability induced by critical eigenvalues leaving the imaginary axis of the linearized

equations about a periodic wave upon variations of parameters has been extensively studied, both
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numerically and analytically; see, for example, [Mc82, LH84, Sa85, MS86, LHT97] and the refer-

ences therein.

Solitary waves in shallow water in the absence of surface tension appear to be stable at small

amplitude. This is suggested by the numerical results on eigenvalues of the linearized operator

in the absence of surface tension in [Ta86]. An instability seems to occur at some critical, finite

amplitude, see again [Ta86]. The nature of this crest instability has also been investigated in direct

numerical simulations, in [LHT97].

As already mentioned, stability results for solitary waves in the full Euler equations are not known.

However, for large-wavelength initial data, the evolution of the free surface is governed on large

time scales by certain model equations. For example, both for zero and for large surface tension,

a formal expansion of the solution in the large wavelength exhibits at leading order a Korteweg-de

Vries equation [KdV, Bou]. In other parameter regimes, the fifth order Kawahara equation [Ka72],

or nonlinear Schr̈odinger equations can be derived. Together with these model equations, there

come two mathematical problems:

(i) What are the wave dynamics in the model equations?

(ii) What can we conclude from the dynamics in the model equations for the dynamics of the full

equations?

For the particular question of stability of solitary waves, we are interested in, these two prob-

lems reduce to first, the question of stability of solitary waves in the Korteweg-de Vries equa-

tion, and second, the question of validity of the approximation. Stability of solitary waves in the

Korteweg-de Vries equation is fairly well understood. Orbital stability of the two-parameter fam-

ily of solitary waves in this infinite-dimensional, integrable Hamiltonian system has been shown

in [Be72, BSS87]. More towards the spirit of the present work, asymptotic stability of solitary

waves has been shown in [PW96]. The proof there relies on a very careful understanding of the

linearized problem using a scattering-type analysis. Convergence then is, necessarily, established

in an exponentially weighted function space, where the Korteweg-de Vries equation is not Hamil-

tonian. Deviating from the primary objective of this work, we also mention stability results for the

Kawahara equation [Ka72]. This fifth order partial differential equation describes the dynamics of

surface waves in critical case of moderate surface tension, that is, for Bond numbers close to1/3.

For Bond numbers slightly larger than1/3, the Kawahara equation supports solitary wave solutions

just like the Korteweg-de Vries equation. Again, existence and orbital stability of these waves have

been proved; see [IS92].

These stability results for the model equations let us believe that the solitary waves of the full Euler

equations are stable at low amplitudes. However, the question to which extent solutions of the full
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system are well approximated by solutions of the model equations has not received a satisfactory

answer that would allow us to conclude the stability of the solitary waves of the full system from

only the stability of the corresponding waves of the model equation. Moreover, results on the

validity of the model equations exist only in the case of gravity waves [KN79, KN86, Cr85, SW00].

In the presence of surface tension, the reduction method in [Ha96] permits to derive, in a rigorous

and systematic manner, reduced systems that are nonlocal in the unbounded space variable and

local in time, for different regions in the parameter plane(λ, b). The model equations, such as

the Korteweg-de Vries and Kawahara equations, appear as the lowest order part in these reduced

systems, but the connection between the solutions of the model equations and those of the reduced

systems is still not clear.

If we want to infer stability of solitary waves in the full Euler equations from stability of the soliton

in the Korteweg-de Vries equation, two major problems arise. First, the Korteweg-de Vries equa-

tions are valid on large, but finite time scales. Instabilities beyond these time scales are invisible

in this leading order approximations. The second difficulty are non-adiabatic interactions between

the infinite-wavelength solitary wave and finite-wavelength perturbations. In the long-wavelength

approximation of the Korteweg-de Vries equation, these perturbations are ignored. However, even

at the linear level, these types of interaction may produce unstable eigenvalues, as has been shown,

in a different context, in [KS98].

We give an outline of our results. In the case of large surface tension, we use bifurcation theory

to deduce spectral stability of small-amplitude solitary waves for eigenvalues of finite frequencies,

corresponding to finite wave numbers of the perturbations; see Theorem 2. As a first step, we re-

formulate the Euler equations as an abstract, first-order differential equation in the spatial variable

x; Section 2. The existence of solitary waves, Section 3, is described by a four-dimensional dif-

ferential equation, which, due to symmetries reduces at leading order to a one-degree of freedom

Hamiltonian system. The homoclinic orbit of this Hamiltonian system represents the solitary wave

solution. This part of the analysis is similar to [Ki88]. The formulation of the Euler equations as

a dynamical system in the spatial variablex in [Ki88] is slightly simpler, but does not generalize

to the time-dependent case. We then linearize the Euler equations about this solitary wave solution

and look for eigenfunctions with temporal growtheσt. We obtain a generalized eigenvalue problem

for the linearized operatorL(σ), depending on the spectral parameterσ. We formulate the stability

problem in terms of the spectrum of this generalized eigenvalue problem and state our main results

in Section 4. Stability of the continuous spectrum then follows from general perturbation argu-

ments together with an explicit computation of the dispersion relation; Section 5. The main body

of the proof is contained in Section 6, where point spectrum off the imaginary axis is excluded. It

is here, that we crucially rely on the dynamical systems formulation of the problem. We define a

complex analytic function, depending on the spectral parameterσ, which we call the Evans func-
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tion of the full water-wave problem. Its zeroesσ coincide with the point spectrum. Stability of the

solitary wave decomposes into stability in three different regimes, depending on the magnitude of

the frequency of the eigenvalue, given by imaginary part of the spectral parameterσ:

(I) the long-wavelength,

(II) the intermediate-wavelength, and

(III) the short-wavelength regime.

Our main result claims stability in (I) and (II). Stability in the short-wavelength regime (III) remains

open.

In the intermediate-wavelength regime (II), we exclude eigenvalues popping out of the essential

spectrum by analytically continuing the Evans function into the essential spectrum and explicitly

computing its value from the linear dispersion relation about the flat surface.

The long-wavelength regime (I) requires a more subtle analysis. In appropriate scalings, we find the

Korteweg-de Vries equation and the Evans function associated to the Korteweg-de Vries soliton,

already computed explicitly in [PW92]. The major difficulty then is associated to the fact that the

linear dispersion relation about the trivial surface in the long-wavelength limit is the dispersion

relation of the wave equation and not the dispersion relation of the Korteweg-de Vries equation.

Technically, the problem appears when we formulate the Euler equations for the potential of the

velocity field, whereas we derive the Korteweg-de Vries equation for the derivative of the potential.

In particular, at bifurcation, we have four critical modes with zero group velocity. Only three

are represented in the third order Korteweg-de Vries equation. The central argument relies on

the symmetry of the dispersion relation induced by reflection in physical space. The symmetry

is exploited in Section 6.2.4, where we show that the additional critical mode does not couple to

the three other modes. More precisely, we show that we can continue the Evans function for the

full water-wave problem problem analytically in the KdV-scaled spectral parameterσ. At leading

order, we are able to compute the Evans function explicitly and find the Evans function of the KdV-

soliton, multiplied byσ. The additional factorσ precisely accounts for the fourth critical mode

induced by translation of the velocity potential by constants. The stability proof is concluded by a

perturbation argument, which shows that all roots of the Evans function are located in the origin,

even for higher order perturbations, since they are induced by symmetries of the full water-wave

problem.

The method developped here for the case of large surface tension can be applied to the case of zero

surface tension, as well. Although, the formulation of the problem, Section 2, has to be adapted,

most of the consequent analysis is very similar. In particular, Theorem 2 on spectral stability holds

in absence of surface tension, as well. An important difference arises when proving absence of
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unstable point spectrum with small frequency. The fourth critical mode, which appears in addition

to the KdV-spectrum, carries a group velocity with the opposite sign when compared with the

case of large surface tension. This actually simplifies the stability proof substantially in allowing

for a continuation of the Evans function across the essential spectrum by means of exponentially

weighted spaces, just like in the Korteweg-deVries approximation; see [PW97] and [HS01] for

solitary waves in different contexts, where a similar situation arises.

Acknowledgements The authors gratefully acknowledge financial support by DAAD/Procope,

Nr. D/0031082 and F/03132UD.

2 The Euler equations and spatial dynamics

Consider nonlinear waves propagating at a constant speedc on the free surface of an inviscid fluid

layer of mean depthh and constant densityρ. Assume that both gravity and surface tension are

present, and denote byg the acceleration due to gravity and byT the coefficient of surface tension.

In a coordinate system(X,Y ) moving with the waves the bottom lies atY = 0 and the free surface

is described byY = Z(X, t), wheret is the time variable. The flow is supposed to be irrotational,

so the velocity field has a potentialΦ = Φ(X,Y, t). Introduce dimensionless variables by choosing

the unit length to beh and the unit velocity to bec. The Euler equations of motion become

ΦXX + ΦY Y = 0, for 0 < Y < 1 + Z(X, t), (2.1)

with the boundary conditions

ΦY = 0 (2.2)

at the bottomY = 0, and

Zt + ZX + ZXΦX = ΦY (2.3)

Φt + ΦX +
1
2

(Φ2
X + Φ2

Y ) + λZ − bZXX
(1 + Z2

X)3/2
= 0 (2.4)

on the free surfaceY = 1 + Z(X, t). The dimensionless numbers

λ = gh/c2 and b = T/ρhc2

are the inverse square of the Froude number and the Bond number. The analysis is made for

capillary-gravity waves, so we fixb 6= 0.

The goal of this section is to write the system (2.1)–(2.4) in the abstract form

Dwt = wx + F (w;λ), (2.5)
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with boundary conditions

0 = f(w), on y = 0, (2.6)

Bwt = f(w), on y = 1, (2.7)

whereD, B are linear andF , f nonlinear maps acting on a Hilbert space of functions defined on

the bounded cross-section of the domain.

Consider the new variables

u = ΦX , η =
bZX√
1 + Z2

X

.

and the change of coordinates

x = X, y =
Y

1 + Z(X, t)
, (2.8)

which transforms the moving domain{(X,Y ) ∈ R2 | 0 ≤ Y ≤ 1 +Z(X, t)} intoR× [0, 1]. Then,

(2.1), (2.4) lead to the system

0 = Φx − u−
yη

(1 + Z)
√
b2 − η2

Φy, in R× (0, 1), (2.9)

0 = ux +
1

(1 + Z)2
Φyy −

yη

(1 + Z)
√
b2 − η2

uy, in R× (0, 1), (2.10)

0 = Zx −
η√

b2 − η2
, (2.11)

Φt = ηx − λZ − u−
u2

2
+

1
2(1 + Z)2

Φ2
y −

η(1 + u)

(1 + Z)
√
b2 − η2

Φy, ony = 1, (2.12)

with boundary conditions

0 = Φy, ony = 0, (2.13)

Zt =
1

1 + Z
Φy −

η(1 + u)√
b2 − η2

, ony = 1, (2.14)

obtained from (2.2) and (2.3).

Equations (2.9)–(2.12) are of the form (2.5) in which the independent variablew, the linear opera-

torD and the mapF are defined through

w = (Φ, u, Z, η)T , Dw = (0, 0, 0,Φ|y=1
)T ,

and

F (w;λ) =



−u− yη

(1+Z)
√
b2−η2

Φy

1
(1+Z)2 Φyy − yη

(1+Z)
√
b2−η2

uy

− η√
b2−η2

−λZ −
[
u+ u2

2 −
1

2(1+Z)2 Φ2
y + η(1+u)

(1+Z)
√
b2−η2

Φy

]
|y=1


.
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The boundary conditions (2.13), (2.14) are of the form (2.6), (2.7) in which

Bw = Z, f(w) =
1

1 + Z
Φy −

yη(1 + u)√
b2 − η2

.

We consider (2.5) as an abstract differential equation on the phase space

X := H1(0, 1)× L2(0, 1)× R2.

SetU = {(Φ, u, Z, η) ∈ X |Z > −1, |η| < b}, and define

X1 := H2(0, 1)×H1(0, 1)× R2,

andV = U ∩X1. The properties ofD, F ,B andf are summarized in the following lemma.

Lemma 2.1 The following statements hold:

(i) D is bounded linear operator fromX (resp.X1) intoX (resp.X1).

(ii) B is bounded linear operator fromX (resp.X1) intoR.

(iii) F ∈ Ck(V × R, X) andf ∈ Ck(U,L2(0, 1)) ∩ Ck(V,H1(0, 1)), for anyk ≥ 0.

The proof is an easy consequence of the definition ofD,B, f , andF and the function spacesX,X1

and left to the reader.

Remark 2.2 The Euler equations(2.1)–(2.4) possess a reversibility symmetry. For any solution

(Z(X, t),Φ(X, t)), reversibility yields a different solution(Z(−X,−t), −Φ(−X,−t)). For the

system(2.5) this means thatD commute andF anticommute with theR = diag(−1, 1, 1,−1), and

for the boundary conditions(2.6)–(2.7) thatBR = B andg(Rw) = −g(w), for anyw ∈ U .

3 Steady solitary waves

The Euler equations (2.1)–(2.4) possess steady solitary-wave solutions for anyb > 1/3 andλ =

1 + ε2 for ε sufficiently small. Mathematical proofs go back to [Ki88, AK89, Sa91]. Our main

purpose is a study of the temporal stability properties of these solitary waves. As we explained

in the previous section, our approach to the stability problem is technically based on a spatial

dynamics formulation of the eigenvalue problem — similar to the existence proof given in [Ki88].

However, our formulation slightly differs from the one exploited there. For the convenience of the

reader, and in order to exhibit the main technical tools in the slightly simpler steady problem, we

sketch the proof of existence of solitary waves in this section. In particular, we describe the most
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important properties of the steady solitary wave solutions of (2.5)–(2.7) that exist forb > 1/3 and

λ > 1, λ close to 1.

From now on we fixb > 1/3 and setλ = 1 + ε2. The solitary waves are not unique, due to the

invariance of the equations under translations inX, Φ, and due to Galilean invariance. Translational

symmetry is ruled out by restriction to symmetric waves, that is reversible solutions of the spatial

dynamics formulation, satisfyingZ(X) = Z(−X) andΦ(X,Y ) = −Φ(−X,Y ). In the steady

problem the mean flowm is conserved and can be used to select a unique solitary wave from the

family of solitary waves obtained by Galilean invariance. Fixing the mean flow through a cross

section to one amounts to the condition

m = 1 + Z(X) +

1+Z(X)∫
0

ΦX(X,Y ) dY = 1. (3.1)

We consider the steady water-wave problem (2.5) withwt = 0

wx + F (w;λ) = 0, (3.2)

with boundary conditions

f(w) = 0, on y = 0, 1. (3.3)

The proof of existence of solitary waves for this system is, as the one in [Ki88], based on a center

manifold reduction. However, the reduction procedure cannot be applied directly to this system

because of the nonlinear boundary condition ony = 1. We therefore consider first a nonlinear

change of variables onU which transforms this boundary condition into a linear condition on

y = 1.

Lemma 3.1 The mapχ : U → U defined byχ(Φ, u, Z, η) = (Φ̃, u, Z, η) where

Φ̃ = Φ +

y∫
0

(
f(w)− f ′(0)w

)
dy′ − Z

1 + Z
Φ(0)

is aC1-diffeomorphism. Moreover, the restrictionχ : V → V is aC1-diffeomorphism.

Proof. It is easy to check thatχ is a smooth map fromU intoX. A direct calculation shows that

Φ̃ =
1

1 + Z
Φ +

y2η

2b
− η√

b2 − η2

y∫
0

y′(1 + u(y′)) dy′,

soχ is invertible with inverseχ−1 : U → U defined throughχ−1(Φ̃, u, Z, η) = (Φ, u, Z, η) with

Φ = (1 + Z)

Φ̃− y2η

2b
+

η√
b2 − η2

y∫
0

y′(1 + u(y′)) dy′

 .
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The fact thatχ−1 is smooth proves the first part of the lemma. The second part follows from the

fact that the restrictions toV , χ : V → V andχ−1 : V → V , are well defined and smooth.

Setw = χ−1(w̃). Then (3.2)–(3.3) yields the following system forw̃

w̃x = −
[
Dχ−1(w̃)

]−1
F (χ−1(w̃);λ) =: G(w̃;λ), (3.4)

with boundary conditions

Φ̃y = 0, on y = 0, (3.5)

Φ̃y =
η

b
, on y = 1, (3.6)

since

Φ̃y = f(w) +
yη

b
.

We treat this system as an infinite dimensional dynamical system on the phase spaceX. We write

w̃x = Ã(λ)w̃ + G̃(w̃;λ), (3.7)

whereÃ(λ) = Dw̃G(0;λ) andG̃(w̃;λ) = G(w̃;λ) − Ã(λ)w̃. The boundary conditions (3.5)–

(3.6) are included in the domain of definition of the linear operatorÃ(λ) by taking

Y := Dom(Ã(λ)) =
{

(Φ̃, u, Z, η) ∈ X1 | Φ̃y(0) = 0, Φ̃y(1) =
η

b

}
.

ThenÃ(λ) is a closed linear operator inX with domainY dense inX, andG̃ is a smooth map

fromW = U ∩ Y × R intoX.

Note thatχ(0) = 0 andDχ(0) = I, soÃ(λ) = Dw̃G(0;λ) = −DwF (0;λ). This means that the

linear part of the system (3.2) is not changed by the transformation above. The same is true for the

boundary conditions (3.3). A direct calculation shows that

Ã(λ)w̃ =
(
u,−Φ̃yy,

η

b
, λZ + u|y=1

)T
.

Remark also that (3.7) is reversible with reverserR defined in Section 2, sinceχ(Rw) = Rχ(w).

We apply center manifold reduction directly to this system. We find a four-dimensional reduced

system which describes the steady waves. Note that the reduced system obtained in [Ki88] is only

two-dimensional. The two additional dimensions here are due to the invariance of (2.1)–(2.4) under

translations in the fluid potentialΦ and due to Galilean invariance. Both symmetries are inherited

by the system (3.7) from the full Euler equations. In [Ki88], these invariances were factored out,

already in the dynamical formulation of the problem, before the reduction procedure, such that

the reduced equation did not possess these symmetries any more. Here, we only use them after

the reduction, and show that it is possible to simplify the reduced system on the four-dimensional
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center-manifold to a two-dimensional differential equation with the help of reversibility and con-

dition (3.1). The reason for this slightly different approach is that we cannot factor out these

symmetries in the eigenvalue problem.

Theorem 1 For anyb > 1/3 andk ≥ 0 there existε∗ > 0 andC > 0 such that, for anyε ∈ (0, ε∗)

the system(3.2)–(3.3)withλ = 1+ε2 possesses a uniquesolitary-wavesolutionw∗ε ∈ Ckb (R, X1)

with the following properties:

(i) w∗ε = w∗0ε + w̃∗ε wherew∗0ε = (U0, u0,−u0,−bu0
x) with

u0(x) = ε2sech2

(√
βεx

2

)
, U0(x) =

x∫
0

u0(x′) dx′, β =
3

3b− 1
,

and‖w̃∗ε(x)‖X1 ≤ Cε3 for anyx ∈ R. Moreover,

‖(I − PΦ) w̃∗ε(x)‖X1 ≤ Cε4e−
√
βε|x|, ‖∂yPΦw̃

∗
ε(x)‖X1 ≤ Cε3e−

√
βε|x|,

wherePΦ is the projection on theΦ–component ofw: PΦ : X → X, PΦ = diag(1, 0, 0, 0).

(ii) w∗ε is reversible, i.e.Rw∗ε(x) = w∗ε(−x), and the componentsΦ∗ε, u
∗
ε, Z

∗
ε , η
∗
ε ofw∗ε satisfy

Z∗ε (x) + (1 + Z∗ε (x))

1∫
0

u∗ε(x, y) dy = 0.

(iii) w∗ε is a smooth function ofε.

Proof. By Lemma 3.1 it is enough to show the existence of solitary waves for the system (3.7). As

in [Ki88] one can show that̃A(λ) has compact resolvent, so its spectrum consists only of isolated

eigenvalues of finite multiplicities. The eigenvalue problem

Ã(λ)w̃ = ζw̃, w̃ ∈ Y

can be solved explicitly, and we find thatζ is an eigenvalue of̃A(λ) if and only if it satisfies the

equality

ζ2 cos ζ = (λ− bζ2)ζ sin ζ.

A direct calculation shows that 0 is always an eigenvalue ofÃ(λ) with generalized eigenvectors

w0 = (1, 0, 0, 0)T , wλ = (0, 1,−1/λ, 0)T ,
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such thatÃ(λ)w0 = 0, Ã(λ)w1 = w0. If b > 1/3 andλ = 1 this eigenvalue has algebraic

multiplicity 4; the generalized eigenvectors

w0 =


1

0

0

0

 , w1 =


0

1

−1

0

 , w2 =


−y2

2

0

0

−b

 , w3 =


0

−y2

2
1
2 − b

0

 ,

satisfyÃ(1)w0 = 0, Ã(1)wi = wi−1, i = 1, 2, 3, and form a basis for the generalized eigenspace

associated to the eigenvalue 0.

We apply the reduction result in [Mi88] to system (3.7) withb > 1/3 andλ = 1 + ε2 close to

λ0 = 1. By direct calculation one can prove that there exist positive constantsC(λ) andq0 such

that

‖(iq − Ã(λ))−1‖X→X ≤
C(λ)
|q|

, (3.8)

for anyq ∈ R, |q| > q0. Moreover, the map̃G is smooth inw̃ andε2 when considered as a map

from the domainY = Dom (Ã) intoX. With these preparations, the reduction theorem in [Mi88]

shows that any small bounded solutionw̃ ∈ Ckb (R, Y ) of (3.7) is of the form

w̃(x) = a0(x)w0 + a1(x)w1 + a2(x)w2 + a3(x)w3 + Ψ(a0, a1, a2, a3; ε2), (3.9)

with Ψ(a0, a1, a2, a3; ε2) = O(|aj |(|aj |+ ε2)), andaj satisfy the reduced system

a0,x = a1 + f0(a0, a1, a2, a3; ε2),

a1,x = a2 + f1(a0, a1, a2, a3; ε2),

a2,x = a3 + f2(a0, a1, a2, a3; ε2),

a3,x = f3(a0, a1, a2, a3; ε2),

(3.10)

in whichfj(a0, a1, a2, a3; ε2) = O(|aj |(|aj |+ ε2)).

By a careful choice of a cut-off function, necessary in the construction of the center-manifold, one

can arrange to have the reduced flow inherit the symmetries of the full system (3.7). In particular,

the invariance of (3.7) under translation inΦ implies thatΨ and (3.10) are invariant under trans-

formations of the forma0 → a0 + α, for anyα ∈ R, such thatΨ and thefj , j = 0, . . . , 3 do not

depend upona0. The reduced equations (3.10) possess a skew-product structure and decouple into

a system fora1, a2, a3,

a1,x = a2 + f1(a1, a2, a3; ε2),

a2,x = a3 + f2(a1, a2, a3; ε2),

a3,x = f3(a1, a2, a3; ε2),

(3.11)
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and one differential equation fora0, which can be integrated. Reversibility can be used to uniquely

determinea0. The reduced system (3.10) is reversible with reverserR0 acting through

R0(a0, a1, a2, a3) = (−a0, a1,−a2, a3),

sinceRw0 = −w0, Rw1 = w1, Rw2 = −w2, Rw3 = w3. Reversible solutions of (3.10) are

those witha0, a2 odd anda1, a3 even functions inx. For such solutionsa0 is uniquely determined

by the conditiona0(0) = 0, which leads to

a0(x) =

x∫
0

a1 + f0(a1, a2, a3; ε2) dx′. (3.12)

Next, we use the condition (3.1) to uniquely determinea3 for solutions of (3.7) with mean flow

one. Forw̃ = (Φ̃, u, Z, η) this condition reads

Z(x) + (1 + Z(x))

1∫
0

u(x, y) dy = 0, x ∈ R.

Substitution ofw̃ from (3.9) yields an equality

F(a1, a2, a3; ε2) = 0.

It is not difficult to see thatF is smooth in its arguments, and a direct calculation shows that

Da3F(0, 0, 0; ε2) =
1
3
− b 6= 0.

Then by the implicit function theorem we obtain

a3 = ψ(a1, a2; ε2) = O(|aj |(|aj |+ ε2)), (3.13)

with ψ smooth function. Substituting (3.13) into (3.11) we obtain the two-dimensional system

a1,x = a2 + g1(a1, a2; ε2),

a2,x = g2(a1, a2; ε2).
(3.14)

This system is also reversible with reverser acting througha1 → a1, a2 → −a2. One can now argue

as in [Ki88] and prove that (3.14) possesses a unique reversible homoclinic solution(a∗1(ε), a∗2(ε)),

smooth function ofε, for sufficiently smallε > 0. Explicit calculation of the relevant quadratic

terms shows that

a∗1(x; ε) = ε2sech2

(√
βεx

2

)
+O(ε4).

The equalities (3.12), (3.13) give the reversible homoclinic solution of the reduced system (3.10),

and from (3.9) we find the reversible solitary-wave solution of (3.7). This proves the theorem.
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4 Spectral stability of solitary waves

In this section we formulate the stability problem in terms of the spectrum of a family of linear

operators and state the main results.

4.1 Linearized system

Consider the linearization of the problem (2.5)–(2.7) about the solitary wavew∗ε ∈ Ckb (R, X1)

found in Theorem 1 forε ∈ (0, ε∗):

DWt = Wx +DwF (w∗ε ; 1 + ε2)W (4.1)

0 = f ′(w∗ε)W , on y = 0 (4.2)

BWt = f ′(w∗ε)W , on y = 1. (4.3)

We look for solutions of this system of the form

W (t, x) = eσtWσ(x), (4.4)

withWσ bounded function fromR into the complexification ofX1, for σ ∈ C. For simplicity we

denote the complexification ofX1, and later those ofX andY , also byX1 (resp.X andY ).

Roughly speaking, the solitary wavew∗ε is stable if (4.1)–(4.3) does not possess any solutions of

the form (4.4) for anyσ ∈ C with Reσ > 0.

Substitution of (4.4) into (4.1)–(4.3) yields the following system forWσ:

σDW = Wx +DwF (w∗ε ; 1 + ε2)W (4.5)

0 = f ′(w∗ε)W , on y = 0 (4.6)

σBW = f ′(w∗ε)W , on y = 1. (4.7)

We write this system in abstract form

L(σ, ε)W̃ := W̃x − L(σ, ε)W̃ = 0,

with L(σ, ε) some linear operator inX, and then formulate the stability problem forw∗ε in terms of

the spectrum of the family of operatorsLε = (L(σ, ε))σ∈C. We proceed as in the steady problem

by constructing first a linear diffeomorphismχσ which transforms the non-autonomous boundary

conditions (4.6)–(4.7) into autonomous boundary conditions.

Lemma 4.1 Assumeσ ∈ C andε ∈ (0, ε∗). The linear mapχσ : X → X defined by

χσW = Dχ(w∗ε)W − σ

2
(
y2BW , 0, 0, 0

)
14



is bounded and has bounded inverseχ−1
σ : X → X. Moreover,χσ andχ−1

σ are analytic inσ,

smooth inε, and their restrictions toX1 are well defined.

The proof is similar to the one of Lemma 3.1 so we omit it here. Note thatχ0 is the linearization

aboutw∗ε of the diffeomorphismχ in Lemma 3.1.

SetW = χ−1
σ W̃ . Then the system (4.5) becomes

W̃x = χσ
[
σD −DwF (w∗ε ; 1 + ε2)

]
χ−1
σ W̃ + (∂xχσ)χ−1

σ W̃ , (4.8)

with boundary conditions

Φ̃y = 0, on y = 0, (4.9)

Φ̃y =
η

b
, on y = 1. (4.10)

for W̃ = (Φ̃, u, Z, η).

Explicit calculation of the equations in (4.8) show that it is of the form

W̃x = D(σ, ε)W̃ +A(ε)W̃ , (4.11)

with

D(σ, ε) = D∞(σ) + ε2D1(x;σ, ε),

a bounded linear operator inX, and

A(ε) = A∞(ε2) + ε2A1(x; ε),

a closed linear operator inX. The partsA∞ andD∞ correspond to the linearization evaluated

at the asymptotic state of the solitary wave, atx = ∞. The partsA1 andD1 correspond to the

perturbation due to the solitary wave. These are operators with coefficients depending onx, and

decaying to 0 atx = ∞ with the same rate as the decay rate of the solitary wavew∗ε . Since we

do not need the explicit formulas of these operators in the following, we omit them here. However,

note thatA∞(ε2) = Ã(1 + ε2), and thatD∞(σ) andD1(x;σ, ε) depend uponσ in the following

way

D∞(σ) = σD∞1 + σ2D∞2, D1(x;σ, ε) = σD11(x; ε) + σ2D12(x; ε),

sinceBD = 0. As in the formulation of the steady problem (3.7), the boundary conditions (4.9)–

(4.10) are included in the domain of definition of the operatorA(ε).

The properties ofD(σ, ε) andA(ε) needed later are summarized in the next lemma. They follow

from Lemma 2.1, the decay properties ofw∗ε in Theorem 1, and the definition ofχσ in Lemma 4.1.

Lemma 4.2 Assumeσ ∈ C, ε ∈ (0, ε∗) andx ∈ R.
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(i) D∞(σ) andD1(x;σ, ε) are bounded linear operators inX (resp.X1), depending analyti-

cally uponσ and smoothly uponε.

(ii) A∞(ε2) andA1(x; ε) are closed linear operators inX with dense domainY , depend ana-

lytically uponσ and smoothly uponε.

Moreover, there exists a positive constantC such that the following inequalities hold for anyσ ∈ C,

ε ∈ (0, ε∗) andx ∈ R:

‖D∞(σ)‖X(resp.X1)→X(resp.X1) ≤ C |σ|(1 + |σ|),

‖D1(x;σ, ε)‖X(resp.X1)→X(resp.X1) ≤ C |σ|(1 + |σ|)e−
√
βε|x|,

‖A∞(ε2)‖Y→X ≤ C, ‖A1(x; ε)‖Y→X ≤ C e−
√
βε|x|.

4.2 Spectral stability

SetL(σ, ε) = D(σ, ε) +A(ε), and consider the family of operatorsLε = (L(σ, ε))σ∈C defined by

L(σ, ε) =
d

dx
− L(σ, ε).

Equation (4.11) becomesL(σ, ε)W̃ = 0. SetH = L2(R, X) andW = H1(R, X) ∩ L2(R, Y ).

ThenL(σ, ε) is closed linear operator inH with dense domainW .

Define theresolventof the family of operatorsLε as the set

ρ(Lε) = {σ ∈ C : L(σ, ε) invertible}.

The setΣ(Lε) = C \ ρ(Lε) is called thespectrumof Lε. We distinguish betweenpoint spectrum

Σp(Lε) = Σ(Lε) ∩ {σ ∈ C : L(σ, ε) Fredholm with index 0},

andessential spectrumΣe(Lε) = Σ(Lε) \ Σp(Lε).

Definition 4.3 The solitary wavew∗ε is calledspectrally stableif

Σ(Lε) ⊂ {σ ∈ C : Reσ ≤ 0},

andspectrally unstableotherwise.

The main result in this paper is:

Theorem 2 Fix b > 1/3, and choose anyR > 0 large. Then there existsεb > 0 such that, for any

ε ∈ (0, εb), the spectrum ofLε coincides with the imaginary axis in a ball of radiusR:

Σ(Lε) ∩ {σ ∈ C : |σ| ≤ R} = iR ∩ {σ ∈ C : |σ| ≤ R}
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The proof consists of two parts summarized in the following two theorems.

Theorem 3 There existsεe > 0 such that for anyε ∈ (0, εe) the essential spectrum ofLε coincides

with the imaginary axis.

Theorem 4 Fix b > 1/3, and choose anyR > 0 large. Then there existsεp > 0 such that for any

ε ∈ (0, εp) the point spectrum ofLε is contained iniR ∪ {|σ| ≥ R}.

Both theorems are proved in Sections 5 and 6. The result in Theorem 2 is a consequence of Theo-

rems 3 and 4.

Remark 4.4 In fact, we prove slightly more. We actually compute eigenvalues embedded into the

essential spectrumΣe(Lε) = iR. We show that inside the essential spectrum, there is only the zero

eigenvalue with geometric multiplicity two and algebraic multiplicity three. One eigenfunction is

due to the invariance of the Euler equations underΦ → Φ + const., and the second eigenfunc-

tion is given by thex-derivative of the solitary wave. The generalized eigenvector to the second

eigenfunction is given by the derivative of the solitary wave with respect to the wave speed.

5 The essential spectrum of solitary waves

We prove Theorem 3. We study first the spectrum of the family of asymptotic operatorsLε∞ =

(L∞(σ, ε))σ∈C where

L∞(σ, ε) =
d

dx
− L∞(σ, ε), L∞(σ, ε) = D∞(σ) +A∞(ε2).

Lemma 5.1 For any ε ≥ 0, the essential spectrum ofLε∞ is equal toiR. The point spectrum of

Lε∞ is empty.

Proof. The asymptotic operatorsD∞(σ) andA∞(ε2) are independent ofx, so in order to deter-

mine the spectrum ofLε∞ we can use the Fourier transform inx. Let k denote the Fourier variable.

Then the spectrum ofLε∞ in H coincides with the spectrum of̂Lε∞ = (L̂∞(σ, ε))σ∈C where

L̂∞(σ, ε) = ik − L∞(σ, ε). The domain ofL̂∞(σ, ε) is Ŵ = L2(R, Y ) ∩ Ĥ1(R, X), where

Ĥ1(R, X) = {f̂ ∈ L2(R, X) : (1 + |k|)f̂ ∈ L2(R, X)}.

The resolvent set of̂Lε∞ consists of the valuesσ ∈ C with the following two properties:

(i) Σ(L∞(σ, ε)) ∩ iR = ∅, whereΣ(L∞(σ, ε)) denotes the spectrum ofL∞(σ, ε) in X,
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(ii) there exists a positive constantC(σ, ε) such that the estimate

‖(ik − L∞(σ, ε))−1‖X→X ≤
C(σ, ε)
1 + |k|

, (5.1)

holds for anyk ∈ R.

Indeed, assume that (i) and (ii) hold for someσ ∈ C. Then, for anyf̂ ∈ H there existŝg(k) =

(ik − L∞(σ, ε))−1f̂(k) with

‖(1 + |k|)ĝ‖2H =
∫
R

(1 + |k|)2‖ĝ(k)‖2X dk ≤ C(σ, ε)2

∫
R

‖f̂(k)‖2X dk = C(σ, ε)2‖f̂‖2H .

Henceĝ ∈ Ŵ and the map̂f → ĝ is bounded fromH into Ŵ .

The operatorL∞(σ, ε) has compact resolvent, so its spectrum consists only of isolated eigenvalues

of finite multiplicities. The eigenvalue problem

L∞(σ, ε)w̃ = ζw̃, w̃ ∈ Y,

can be solved explicitly. We find thatζ is an eigenvalue ofL∞(σ, ε) if

(σ + ζ)2 cos ζ = (1 + ε2 − bζ2)ζ sin ζ. (5.2)

Setσ = σ1 + iσ2 andζ = ik. Then (5.2) yields

(σ2 + k)2 − σ2
1 = (1 + ε2 + bk2)k tanh k, (5.3)

2σ1(σ2 + k) = 0. (5.4)

If σ1 6= 0, i.e. σ /∈ iR, the equality (5.4) impliesk = −σ2 which is clearly not a solution of (5.3).

Hence (5.2) has no purely imaginary solutions, i.e.Σ(L∞(σ, ε)) ∩ iR = ∅, for anyσ /∈ iR. If

σ1 = 0, i.e. σ ∈ iR, the last equality is always satisfied, and (5.3) has, for anyσ2 6= 0, exactly

two real solutions, one positive and one negative (recall thatb > 1/3), so (5.2) has in this case

two purely imaginary solutions, both simple and different from zero. Forσ = 0, (5.2) has only

one purely imaginary solution,ζ = 0 which is a root of multiplicity two ifε 6= 0, and a root of

multiplicity four if ε = 0. We conclude that (i) is satisfied for anyσ /∈ iR, and is not satisfied if

σ ∈ iR.

We show that (ii) holds for anyσ /∈ iR. Recall thatA∞(ε2) = Ã(1 + ε2) whereÃ(λ) is the linear

operator in (3.7). Then (3.8) implies

‖(ik −A∞(ε2))−1‖X→X ≤
C(ε)
|k|

,

for any|k| ≥ k0, for some positivek0 andC(ε). SinceD∞(σ) is a bounded operator inX,

‖(ik −A∞(ε2))−1D∞(σ)‖X→X ≤ ‖D∞(σ)‖C(ε)
|k|
≤ 1

2
,
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if |k| ≥ k1(σ, ε) = max{k0, 2‖D∞(σ)‖C(ε)}. Then

(ik − L∞(σ, ε))−1 = (I + (ik −A∞(ε2))−1D∞(σ))−1(ik −A∞(ε2))−1,

so, for any|k| ≥ k1(σ, ε),

‖(ik − L∞(σ, ε))−1‖X→X ≤
2C(ε)
|k|

.

Now (5.1) follows forσ /∈ iR from Σ(L∞(σ, ε)) ∩ iR = ∅.

We conclude that anyσ /∈ iR belongs to the resolvent ofLε∞. It remains to show that the entire

imaginary axis belongs to the essential spectrum. We therefore exhibit an orthonormal sequence

w` ∈ X, with L∞(σ, ε)w` → 0 and conclude thatL∞(σ, ε) cannot be Fredholm of index zero,

for σ ∈ iR.

From (5.3), (5.4), we find ak∗ = k∗(σ) ∈ R and a vectorw0 such that(ik∗ − L∞(σ, ε))w0 =

0. Let θR be a smooth, even cut-off function, withθR(x) = 1 for |x| ≤ R, θR(x) = 0 for

|x| ≥ R + 1, andθR(x) = θ0(x − R) for x ∈ [R,R + 1]. Definew̃` := θ`(x − 2`2)eik∗xw0

and renormalizew` := w̃`/‖w̃`‖H . Since the supports of allw` are disjoint, thew` form an

orthonormal sequence. A straight forward computation shows that‖L∞(σ, ε)w`‖H = O(`−1/2).

This proves the Lemma.

We show now that the essential spectrum ofLε is contained iniR.

Proposition 5.2 There existsε0 > 0 such that, for anyε ∈ (0, ε0) and anyσ /∈ iR, the operator

L(σ, ε) is Fredholm with zero index, soΣe(Lε) ⊂ iR.

This proposition is proved in six steps contained in the following lemmas.

Lemma 5.3 There exist positive constantsε1, c1(σ, ε), c2(σ), such that the inequalities

‖w‖W ≤ c1(σ, ε)‖L∞(σ, ε)w‖H , (5.5)

‖w‖W ≤ c2(σ) (‖w‖H + ‖L(σ, ε)w‖H ) , (5.6)

hold, for anyε ∈ (0, ε1), σ /∈ iR andw ∈ W .

Proof. From Lemma 5.1 follows

‖L∞(σ, ε)−1v‖W ≤ C(σ, ε)‖v‖H ,

for anyε > 0, σ /∈ iR, v ∈H . Forw ∈ W setv = L∞(σ, ε)w ∈H . Then

‖w‖W = ‖L∞(σ, ε)−1v‖W ≤ C(σ, ε)‖v‖H = C(σ, ε)‖L∞(σ, ε)w‖H .
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and (5.5) is proved.

Chooseσ0 /∈ iR andε0 ∈ (0, ε∗). Then

‖w‖W ≤ c1(σ0, ε0)‖L∞(σ0, ε0)w‖H ≤ c1(σ0, ε0)
[
‖L(σ, ε)w‖H

+‖(D∞(σ)−D∞(σ0))w‖H + ‖(A∞(ε2)−A∞(ε2
0))w‖H

+ε2‖D1(x;σ, ε)w‖H + ε2‖A1(x; ε)w‖H
]
.

From the explicit formula forA∞(ε2) = Ã(1+ε2) we deduce thatA∞(ε2)−A∞(ε2
0) is a bounded

operator inX, and

‖(A∞(ε2)−A∞(ε2
0))w‖H ≤ |ε2 − ε2

0|‖w‖H .

Furthermore, Lemma 4.2 implies

‖D1(x;σ, ε)w‖H ≤ C|σ|(1 + |σ|)‖w‖H , ‖A1(x; ε)w‖H ≤ C‖w‖W ,

for anyw ∈ W . The constantC is independent ofε andσ. Finally, recall thatD∞(σ) is bounded

in X and conclude

‖w‖W ≤ c1(σ0, ε0)
[
‖L(σ, ε)w‖H + C(σ)‖w‖H + |ε2 − ε2

0|‖w‖H + ε2C‖w‖W
]
.

Chooseε1 such thatε2
1c1(σ0, ε0)C ≤ 1/2 and (5.6) is proved.

For the next two lemmas we follow [RS95]. For eachT > 0 define the Hilbert spaces

HT = L2([−T, T ], X),

WT = L2([−T, T ], Y ) ∩H1([−T, T ], X).

The embeddingWT ⊂HT is compact (cf. [RS95], Lemma 3.8).

Lemma 5.4 Assumeε ∈ (0, ε1) andσ /∈ iR. There existT = T (σ, ε) > 0 andc3(σ, ε) > 0, such

that the inequality

‖w‖W ≤ c3(σ, ε)
(
‖w‖HT

+ ‖L(σ, ε)w‖H
)
, (5.7)

holds, for anyw ∈ W .

Proof. Assumew ∈ W is such thatw(x) = 0, for |x| ≤ T , for someT > 0. Then (5.5) and the

inequalities in Lemma 4.2 imply

‖w‖W ≤ c1(σ, ε)‖L∞(σ, ε)w‖H

≤ c1(σ, ε)
[
‖L(σ, ε)w‖H + ε2‖D1(x;σ, ε)w‖H + ε2‖A1(x; ε)w‖H

]
≤ c1(σ, ε)‖L(σ, ε)w‖H + C0(σ, ε)ε2e−

√
βεT ‖w‖W .
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Then, there existT = T (σ, ε) > 0 andC1(σ, ε) > 0 such that for anyw ∈ W , withw(x) = 0,

for |x| ≤ T − 1, we have

‖w‖W ≤ C1(σ, ε)‖L(σ, ε)w‖H . (5.8)

Take a smooth cutoff functionφ : R → [0, 1] such thatφ(x) = 0 for |x| ≥ T , φ(x) = 1 for

|x| ≤ T − 1, and|φ′(x)| ≤ m. Using (5.6) and (5.8) we obtain

‖w‖W ≤ ‖φw‖W + ‖(1− φ)w‖W ≤ c2(σ) (‖φw‖H + ‖L(σ, ε)φw‖H )

+C1(σ, ε)‖L(σ, ε)(1− φ)w‖H ≤ c3(σ, ε)
(
‖w‖HT

+ ‖L(σ, ε)w‖H
)
,

sinceL(σ, ε)φw = φL(σ, ε)w + φ′w.

Lemma 5.5 For any ε ∈ (0, ε1) and σ /∈ iR, the operatorL(σ, ε) has closed range and finite

dimensional kernel.

Proof. Since the restrictionW → HT is compact the conclusion follows from the Lemma 5.4

and the Abstract Closed Range Lemma (cf. [RS95]).

Lemma 5.6 For anyε ∈ (0, ε1) andσ /∈ iR, the adjoint operatorL(σ, ε)∗ has closed range and

finite dimensional kernel.

Proof. The proof is similar to the proof of Lemma 5.5 and we omit it.

Lemmas 5.5 and 5.6 imply:

Lemma 5.7 For anyε ∈ (0, ε1) andσ /∈ iR, the operatorL(σ, ε) is Fredholm.

Finally, we show

Lemma 5.8 For anyε ∈ (0, ε1) andσ /∈ iR, the Fredholm index ofL(σ, ε) is zero.

Proof. SinceL(σ, ε) − L∞(σ, ε) is a small perturbation ofL∞(σ, ε), and since this operator has

a bounded inverse fromH into W , for anyσ /∈ iR, a perturbation argument shows thatL(σ, ε)

is invertible forσ in an open set in the right half planeReσ > 0, and forσ in an open set in the

left half planeReσ < 0. Hence, forσ in these open subsets the Fredholm index ofL(σ, ε) is zero.

Since the Fredholm index ofL(σ, ε) is constant on connected subsets ofC \ iR, we conclude that

its Fredholm index is zero, for anyε ∈ (0, ε1) andσ /∈ iR.

Proposition 5.9 For any ε ∈ (0, ε1), the entire imaginary axisσ ∈ iR belongs to the essential

spectrum ofLε.

Proof. The proof is identical to the proof forLε∞ from Lemma 5.1. The orthonormal sequence

w`, which was constructed there, satisfiesL(σ, ε)w` → 0 for `→∞.
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6 The point spectrum of solitary waves

The goal of this section is to prove Theorem 4. Equivalently, given the information on the essential

spectrum from Theorem 3, we show thatReσ 6= 0 belongs to the resolvent set for bounded|σ| and

smallε.

Proposition 6.1 For anyR > 0, there existsε2 > 0 such that, for anyε ∈ (0, ε2) and anyσ /∈ iR,

|σ| ≤ R, the operatorL(σ, ε) is invertible.

The proposition is proved in several steps. Since we have bounds on the norm ofL∞(σ, ε)−1,

uniformly for values|Reσ| ≥ δ > 0, |σ| ≤ R, it is sufficient to consider a neighborhood of the

imaginary axisσ ∈ i[−R,R]. We therefore concentrate on a neighborhood ofσ = iq for fixed q.

There are then two different cases:

I) finite frequenciesq 6= 0

II) small frequenciesq = 0.

In both cases, we are interested in the kernel of the operatorL(σ, ε), which is Fredholm index zero

for Reσ 6= 0. Elements of the kernel are bounded solutions of the abstract, non-autonomous, linear

differential equation

W̃x = D(σ, ε)W̃ +A(ε)W̃ . (6.1)

It is sufficient to show that this ordinary differential equation does not possess any non-trivial,

bounded solutions. We will see that, just as for the nonlinear steady equation, bounded solutions lie

on a finite-dimensional, invariant manifold. To the abstract, quasilinear differential equation (6.1),

we apply non-autonomous center-manifold reduction; see [Mi88]. The reduction is performed for

σ close toiq ∈ iR andε small. Note that for anyq fixed, finite, andε = 0, the linear equation is a

relatively bounded perturbation of the principal part

W̃x = L∞(iq, 0)W̃ = (D∞(iq) +A∞(0))W̃ ,

with small relative bound. In Lemma 5.1 we proved the resolvent estimate

|(ik − L∞(iq, 0))−1|X→X ≤
C

|k|
,

for all |k| ≥ k0(q), and we may apply the reduction theorem in [Mi88] in a neighborhood of any

fixed pointq, uniformly for boundedq.
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6.1 The case of non-zero frequency

6.1.1 The reduction

We exclude point spectrum in a neighborhood ofiq 6= 0, case (I). Setσ = iq + δ and rewrite (6.1)

as

W̃x = L∞(iq, 0)W̃ + δB∞(δ)W̃ + ε2(B0 +B1(x; δ, ε))W̃ , (6.2)

whereL∞(iq, 0) = D∞(iq) +A∞(0), and

δB∞(δ) = D∞(iq + δ)−D∞(iq), ε2B0 = A∞(ε2)−A∞(0),

B1(x; δ, ε) = D1(x; iq + δ, ε) +A1(x; ε).

We view equation (6.2) as a small perturbation of the eigenvalue problem forδ = 0 andε = 0.

This is justified by the following inequalities

‖B∞(δ)‖Y (resp.X)→Y (resp.X) ≤ C(1 + |q|), ‖B0‖Y (resp.X)→Y (resp.X) ≤ C

‖B1(x; δ, ε)‖Y→X ≤ C(1 + |q|2)e−
√
βε|x|

for ε ∈ (0, ε3) and anyq 6= 0.

The reduction procedure is performed for smallε andδ. We have to find the center eigenspace of

the linear operatorL∞(iq, 0). The linear operatorL∞(iq, 0) is closed inX with dense domainY .

Moreover, it has compact resolvent, so its spectrum consists only of isolated eigenvalues of finite

multiplicities. As shown in the proof of Lemma 5.1,ζ is an eigenvalue ofL∞(iq, 0) if

(iq + ζ)2 cos ζ = (1− bζ2)ζ sin ζ.

Imaginary solutionsζ = ik of this equation satisfy

(q + k)2 = (1 + bk2)k tanh k.

We find exactly two simple rootsik1 andik2 with k2 < 0 < k1 (sinceb > 1/3). Hence,L∞(iq, 0)

has two simple, purely imaginary eigenvaluesik1, ik2. The corresponding eigenvectors are

w1,2 =


cosh(k1,2y) + 1

2qy
2z̃1,2

ik1,2 cosh(k1,2y)

iz̃1,2

−bk1,2z̃1,2

 , z̃1,2 = −k1,2 sinh k1,2

k1,2 + q
= −(k1,2 + q) cosh k1,2

λ+ bk2
1,2

.

The center manifold reduction implies that small bounded solutions of (6.2) are of the form

W̃ (x) = a1(x)w1 + a2(x)w2 + O((|δ|+ ε2)|aj |). (6.3)
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For the amplitudesa = (a1, a2), we find a linear, non-autonomous system of ordinary differential

equations, depending on the eigenvalue parameterσ and the bifurcation parameterε

ax = A(x; δ, ε)a. (6.4)

In ε = 0, the2 × 2-matrixA does not depend onx any more and possesses two distinct purely

imaginary eigenvalues. In the remainder of this section, we set up a perturbation argument, which

shows that forε small andRe δ > 0, there are no bounded solutions to (6.4).

6.1.2 Exponential dichotomies

In ε = 0, the equation (6.4) is autonomous. AtReσ = 0, the spectrum of the matrixA consists

precisely of the eigenvaluesζ1 = ik1, k1 > 0 andζ2 = ik2, k2 < 0. Depending onδ = σ − iq,

the eigenvalues may move off the imaginary axis. A direct computation shows thatdζ1/dδ > 0

anddζ2/dδ < 0, such that the eigenvalues leave the axis, with non-vanishing speed, in opposite

directions. In particular, forReσ > 0 small andε = 0, we find that (6.4) is a hyperbolic, linear

ordinary differential equation. The eigenspaces are analytic inδ = σ − iq.

For ε > 0, the eigenvaluesζ1 andζ2 still describe the dynamics atx = ±∞, since the solitary

wave and therefore the coefficients of the matrixA(x; δ, ε) converge to zero, with ratee−
√
βε|x|.

Therefore, whenRe δ > 0, the dynamics for|x| → ∞ are hyperbolic, with stable eigenvalueζ2 and

unstable eigenvalueζ1. The following lemma on exponential dichotomies shows in which sense the

hyperbolic structure can be continued to finitex. We therefore consider a general non-autonomous,

linear differential equation

ax = A(x; δ, µ), a ∈ Rn, (6.5)

depending on a real parameterµ and a complex spectral parameterδ. In our example,µ represents

the (small) parameterε.

Lemma 6.2 Consider (6.5) with fundamental solutionϕ(x, y). Assume asymptotically constant

coefficientsA(x; δ, µ)→ A±(δ, µ) asx→∞, and smoothness:A andA± areCk in the parameter

µ ∈ Uµ ⊆ R, k ≥ 0, and analytic in the spectral parameterδ ∈ Uδ ⊆ C, andA is continuous

in x. Furthermore assume thatA± are hyperbolic, that is, they do not possess eigenvalues on the

imaginary axis, for allµ ∈ Uµ and all δ ∈ Uδ.

Then there exists a unique decomposition of the phase spaceR
n into linear, stable and unstable

subspacesEs
+(x; δ, µ) andEu

−(x; δ, µ), which are as smooth asA. The subspaces are invariant

under the linear evolutionϕ(x, y):

ϕ(x, y)Es
+(y) = Es

+(x), ϕ(x, y)Eu
−(y) = Eu

−(x).
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Moreover, any initial value to a bounded solution on[0,∞) is contained inEs
+(0) and initial values

to bounded solutions on(−∞, 0] are contained inEu
−(0).

On the other hand, there are positive constantsC, η+ > 0, andη− > 0 such that we have uniform

exponential decay for solutions in forward time,

|ϕ(x, y)a| ≤ Ce−η+|x−y||a|

for all a ∈ Es
+(y), x ≥ y ≥ 0, and in backward time

|ϕ(x, y)a| ≤ Ce−η−|x−y||a|

for all a ∈ Eu
−(y), x ≤ y ≤ 0. The constantsC andη± can be chosen independently ofµ, δ in

compact subsets ofUµ × Uδ.

For the proof, see [Co78], for example.

By the above lemma, we find nontrivial, bounded solutions, if and only if stable and unstable

subspaces intersect nontrivially

Eu
−(0) ∩ Es

+(0) 6= {0}.

We may choose basesaj±, analytic inδ and continuous inµ in the two subspaces and compute the

determinant

E(δ;µ) = det (aj±). (6.6)

A variant of this analytic function is usually referred to as the Evans function [Ev72, AGJ90].

Clearly, zeroes ofE detect precisely the nontrivial bounded solutions to (6.4), and therefore the

point spectrum coincides with the zeroes ofE . The algebraic multiplicity of eigenvalues coincides

with the order of the zeroes ofE ; see [AGJ90]. By analyticity inδ and continuous dependence

onµ, the number of zeroes counted with multiplicity varies continuously withµ. We are going to

exploit this fact in Section 6.2.

In our setting, both subspaces are well-defined and complex one-dimensional forRe δ > 0. They

are spanned by the complex vectorsas
+(0) andau

−(0), which lead to solutionsas
+(x) andau

−(x).

It is our goal to show, that both solutions can be extended, analytically inδ and continuously in

ε in an open neighborhood ofδ = 0, in particular, across the imaginary axis where hyperbolicity

at x = ±∞ is lost, into the left half plane. We show that in the limitε = 0 andRe δ = 0, the

initial valuesas
+(0) andau

−(0) converge to eigenvectorse2 ande1 to the eigenvaluesζ2 andζ1,

respectively.

In particular,E(0; 0) 6= 0, and by continuity, we can exclude unstable eigenvalues in a neighbor-

hood ofσ = iq.
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6.1.3 A gap lemma

The goal here is, to continue the Evans function across the essential spectrum. The idea is to

exploit rapid convergence of the coefficients of the non-autonomous differential equationA(x),

compensating for the loss of hyperbolicity in the asymptotic equation atx = ±∞.

The main idea was already used in [GZ98, Theorem 2.3] and [KS98, Lemma 2.2].

We recall the results stated there.

Theorem 5 [GZ98, KS98] Consider a non-autonomous, linear differential equation

ax = A(x; δ, µ)a ∈ Rn

with fundamental solutionϕ(x, y), with paramtersδ ∈ Uδ(0) ⊂ C andµ ∈ Uµ(0) ⊂ R close to

the origin. Assume exponential convergence to asymptotically constant coefficients

|A(x; δ, µ)−A∞(δ, µ)| ≤ Ce−η|x|

with positive constantsC, η > 0. Assume furthermore thatA andA∞ areCk in µ, k ≥ 0, and

analytic in δ, andA is continuous inx. At µ = 0, δ = 0, we require the existence of a spectral

projectionP toA∞ such thatRe specPA∞ ≤ 0 andRe spec (id − P )A∞ ≥ 0.

Then there exists a unique decomposition of the phase spaceR
n into linear, stable and unstable

subspacesEs
+(x; δ, µ) andEu

−(x; δ, µ), which are as smooth asA. The subspaces are invariant

under the linear evolutionϕ(x, y):

ϕ(x, y)Es
+(y) = Es

+(x), ϕ(x, y)Eu
−(y) = Eu

−(x).

Solutions to initial values inEs
+(0) converge toEs(δ, µ) asx→∞, where the eigenspaceEs(δ, µ)

smoothly depends onδ andµ and coincides with the rangeImP for µ = 0, δ = 0.

Also, solutions to initial values inEu
−(0) converge toEu(δ, µ) asx → ∞, where the eigenspace

Eu(δ, µ) smoothly depends onδ andµ and coincides with the kernelKerP for µ = 0, δ = 0.

In particular, for parameter valuesδ, µ where the eigenspacesEs/u(δ, µ) are actually the stable

and unstable eigenspaces, respectively, the subspacesEs
+(x; δ, µ) andEu

−(x; δ, µ) coincide with

the eigenspaces from Lemma 6.2.

In our problem, one additional difficulty arises. The convergence rateη of the non-autonomous

perturbation depends onµ = ε. The rate,
√
βε, although fast compared to the eigenvalues of the

asymptotic matrixO(ε2), is not bounded away from zero, as required in the above theorem.

We therefore restate a parameter-dependent version of these results, taking into account the different

orders of convergence of the solitary wave and possible eigenfunctions.
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Proposition 6.3 Consider a non-autonomous, linear differential equationax = A(x; δ, µ)a, de-

pending on a parameterµ ∈ Rp and an eigenvalue parameterδ ∈ C, in a neighborhood of the

origin in Rp × C. Assume that the coefficientsA areCk, k ≥ 0, in µ and analytic inδ, and that

A is continuous inx. Furthermore assume that the coefficientsA(x; δ, µ) converge to constant

matrices, as|x| → ∞
|A(x; δ, µ)−A∞(δ, µ)| ≤ C|µ|e−η(µ)|x|,

and, asµ→ 0,

|A(x; δ, µ)−A0(δ)| ≤ C|µ|.

AssumespecA0(0) ⊂ iR, andA∞(δ, µ) is hyperbolic forRe δ 6= 0, with

|(ik −A∞(δ, µ))−1| ≤ C

|Re δ|
, (6.7)

for all k ∈ R and withC > 0 independent ofµ ≥ 0.

Suppose that spatial convergence of the coefficients is fast compared to the rate of hyperbolicity:

µ/η(µ)→ 0 asµ→ 0.

Then, the Evans functionE(δ;µ) defined forRe δ > 0, can be extended continuously inµ and

analytically inδ, in a sector{(δ, µ);−Re δ ≤ M |µ|}, for any fixed constantM > 0. In the limit

µ→ 0, we findE(δ; 0) 6= 0 for δ close to zero.

Proof. For anyµ 6= 0 small, the conclusions of the proposition directly follow from the gap

lemma, Theorem 5. We have to show that the limitµ→ 0 of E(δ;µ) exists, and is nonzero.

ForRe δ > 0, µ ≥ 0, the equation possesses exponential dichotomies, as stated in Lemma 6.2. The

subspaces can actually be constructed from a fixed point argument. We focus onEs
+, first. From

the resolvent estimate (6.7), we conclude that the subspaces corresponding to stable and unstable

eigenvaluesEs/u
+ (δ) for the equation withµ = 0 continue analytically in a neighborhood ofδ = 0.

We writeP+ for the projection onEs
+(0) alongEu

+(0), andB(y) := A(y)−A∞, suppressing the

dependence onδ andµ. ForRe δ > 0, solutionsa(x) which are bounded onx ≥ 0 then solve the

integral equation

a(x) = eA∞xa0 +

x∫
0

eA∞(x−y)P+B(y)a(y)dy +

x∫
∞

eA∞(x−y)(id − P+)B(y)a(y)dy

with a0 = P+a(0). We substitutêa(x) = e−A∞xa(x) and arrive at

â(x) = a0 +

x∫
0

e−A∞yP+B(y)eA∞yâ(y)dy +

x∫
∞

e−A∞y(id − P+)B(y)eA∞yâ(y)dy.
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We view the right side as an affine operator on the space of bounded, continuous functions on

[0,∞), equipped with the supremum norm. SinceB(y) ≤ C|µ|e−η(µ)|y|, and|eA∞y| ≤ CeC|µ|y

for −Re δ ≤ C|µ|, we find that the norm of the linear part of the right side isC ′µ/η(µ), which

converges to zero forµ → 0 by assumption. We therefore find a unique solutionâ(x) in the

sector, which converges to the constant solution asµ → 0. We find the stable subspace asâ(0),

parameterized overa0. The construction of the unstable subspace is similar. In the limit,µ = 0,

we find the Evans function for the constant coefficient equation, which is nonzero, since we have

a spectral decomposition on the imaginary axis corresponding to the limits of stable and unstable

subspaces.

Together with the considerations in Section 6.1.2, this proves absence of point spectrum in a neigh-

borhood of the imaginary axis, outside a given small neighborhood of the origin, which we consider

next.

6.2 The case of small frequency

We exclude point spectrum in a neighborhood of the originσ = 0, off the imaginary axis. As a

first step, we reduce the eigenvalue problem to finding non-trivial solutions to a four-dimensional

non-autonomous ordinary differential equation; Section 6.2.1. We then introduce and justify a

long-wave scaling corresponding to the Korteweg-de Vries limit; Section 6.2.2. We then recall

from [PW92] the structure of the spectrum in the scaling limit, where we find the spectrum of the

Korteweg-de Vries soliton; Section 6.2.3. The last part of this chapter, Section 6.2.4, is devoted to

the central perturbation arguments. We show that the spectrum of the capillary-gravity waves coin-

cides with the point spectrum of the Korteweg-de Vries soliton in a neighborhood of the imaginary

axis.

6.2.1 The reduction

Rewrite (6.1) forσ = δ small as

W̃x = L∞(0, 0)W̃ + δB∞(δ)W̃ + ε2(B0 +B1(x; δ, ε))W̃ , (6.8)

whereL∞(0, 0) = A∞(0), and

δB∞(δ) = D∞(δ), ε2B0 = A∞(ε2)−A∞(0), B1 = D1 +A1.

Recall thatA∞(0) = Ã(1), so it is exactly the linear operator used for the analysis of the steady

problem in Theorem 1. From those results we find thatA∞(0) has only one purely imaginary
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eigenvalueζ = 0, with algebraic multiplicity four. The corresponding (generalized) eigenvectors

arew0,w1,w2,w3 found in the proof of Theorem 1.

The center manifold reduction implies that the bounded solutions of (6.8) are of the form

W̃ (x) = a0(x)w0 + a1(x)w1 + a2(x)w2 + a3(x)w3 + O((|δ|+ ε2)|aj |),

and the amplitudesaj satisfy a non-autonomous, linear, reduced system of the form

a0,x = a1 + δ(c00a0 + c02a2) + ε2(c01a1 + c03a3) + ε2f0(x; a1, a2, a3) + O((|δ|+ ε2)2|aj |)
a1,x = a2 + δ(c11a1 + c13a3) + ε2f1(x; a1, a2, a3) + O((|δ|+ ε2)2|aj |)
a2,x = a3 + δ(c20a0 + c22a2) + ε2(c21a1 + c23a3) + ε2f2(x; a1, a2, a3) + O((|δ|+ ε2)2|aj |)
a3,x = δ(c31a1 + c33a3) + ε2f3(x; a1, a2, a3) + O((|δ|+ ε2)2|aj |)

(6.9)

The constantscij areO(1) and can be determined explicitly. In particular, we havec20 = c31 = −β
andc21 = β. Note that the functionsfj are independent ofa0. This is due to the invariance of

(2.1)–(2.4) underΦ → Φ + const. which implies the invariance of the reduced system under

a0 → a0 + const. if δ = 0. A direct calculation of the relevant terms gives

ε2f2(x; a1, a2, a3) = −βu0a1 + ε2f22(x; a2, a3)

ε2f3(x; a1, a2, a3) = −2βu0
xa1 − 2βu0a2 + ε2f33(x; a3)

with u0 from Theorem 1 (i).

6.2.2 Justifying the Korteweg-de Vries scaling

As a first step, we prove that any eigenvalueδ, Re δ 6= 0 is necessarily located in anO(ε3)-

neighborhood of the origin. Suppose thereforeε = ν|δ|1/3 with ν small. We shall prove, that the

system (6.9) does not possess non-trivial, bounded solutions, providedRe δ 6= 0. We may scale the

system (6.9) according to

ξ = |δ|1/3x, aj(x) = |δ|j/3Aj(ξ), j = 0, 3,

and obtain
A0,ξ = A1 + O(δ2/3 + ν2δ2/3)

A1,ξ = A2 + O(δ2/3 + ν2δ1/3)

A2,ξ = A3 − βarg(δ)A0 + O(δ2/3 + ν2)

A3,ξ = −βarg(δ)A1 + O(δ2/3 + ν2).

(6.10)

At ν = δ = 0, we have an autonomous linear ODE with eigenvaluesζ0 = 0, ζ3
1,2,3 = −2βarg(δ),

and corresponding eigenvectorsA0
1 = A0

2 = 0, A0
3 = −βarg(δ), A0

0 = 1, andAkj = (−ζk)j ,
k = 1, 2, 3 andj = 0, . . . , 3. Now suppose firstRe δ 6= 0. Thenζj , j = 1, 2, 3 are hyperbolic.
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Therefore the eigenspace to the eigenvalueζ0 forms a normally hyperbolic center-manifold for the

linear flow. This center-manifold persists under small, non-autonomous perturbations and contains

all bounded solutions (we may construct the center-manifold as the robust intersection of center-

stable manifold atx = ∞ and center-unstable manifold atx = −∞). On the other hand, the

eigenvalueζ0 = 0 is easily seen from (5.2) to move off the imaginary axis wheneverζ moves off

the axis. But this eigenvalue determines the asymptotic behavior of solutions in the center-manifold

atx = +∞ andx = −∞. If now δ approaches the imaginary axis, we have to refine the arguments

as in Case 1, above. Using the gap lemma, Proposition 6.3, we continue the center-stable manifold

at x = +∞ and the center-unstable manifold atx = −∞ smoothly across the imaginary axis,

exploiting fast convergence of the non-autonomous terms on the scale,O(ε) compared to the order

of the perturbationO(ε2). We omit the details which are similar to the case of non-zero frequency,

Section 6.1.

6.2.3 The Korteweg-de Vries limit

We may now assume that the eigenvalueδ is necessarily of the orderε3 and therefore scaleδ = ε3Λ.

We obtain in the KdV-scaling

ξ = εx, aj(x) = εjAj(ξ), j = 0, 3,

the scaled reduced system

A0,ξ = A1 + O(ε2)

A1,ξ = A2 + O(ε)

A2,ξ = A3 − βΛA0 + βA1 − βA∗1A1 + O(ε2)

A3,ξ = −βΛA1 − 2βA∗1,ξA1 − 2βA∗1A2 + O(ε).

(6.11)

HereA∗1 is the steady solitary wave solution of the KdV-equation

2βA1,τ +A1,ξξξ − βA1,ξ + 3βA1A1,ξ = 0, (6.12)

A∗1(ξ) = sech 2

(√
βξ

2

)
.

We consider the caseε = 0 first. We transform variables

B0 = A0, B1 = A1, B2 = A2, B3 = A3 − βΛA0 + βA1 − βA∗1A1

and obtain atε = 0

B0,ξ = B1

B1,ξ = B2

B2,ξ = B3

B3,ξ = −2βΛB1 + βB2 − 3βA∗1,ξB1 − 3βA∗1B2

(6.13)
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which is the KdV-equation, linearized in the soliton solutionA∗1, for B1 = B0,ξ. The equation at

|ξ| =∞ reduces to

B0,ξ = B1, B1,ξξξ + 2βΛB1 − βB1,ξ = 0

with characteristic polynomialζ4 + 2βΛζ − βζ2 for the ζ-eigenvalues, determining exponential

spatial decay or growth of possible eigenfunctions. Besidesζ = 0 with eigenvector(1, 0, 0, 0)T ,

we have precisely the spectrum of the linearization about the KdV-soliton. In particular, dynamics

in the space(1, 0, 0, 0)⊥ are precisely the (linear) dynamics around the KdV-soliton. This strongly

suggests, that eigenfunctions will appear wherever the KdV-soliton possesses eigenfunctions —

and nowhere else. Given the stability of the KdV-soliton [PW92], this would then prove stability

of the solitary wave in the Euler-equations!

We construct in the sequel a more refined picture of the spectrum inε = 0, which will, in particular,

be persistent forε > 0.

First of all, we note that the trivial zero-eigenvalue moves out of zero as soon asε becomes positive

andΛ non-zero. This can be readily seen from (5.2), by substituting the KdV-scalingδ = ε3Λ and

ζ = εZ. From the dispersion relation (5.2) we then obtain a new equation forZ,Λ andε. The

Taylor expansion of this equation inε2 is, up to third order

ε4[(b− 1
3

)Z4 − Z2 + 2ΛZ + ε2(−1
6

(b− 1
5

)Z6 +
1
6
Z4 − ΛZ3 + Λ2) + O(ε4)] = 0. (6.14)

To second order inε2, there is still one eigenvalueζ0 = 0 which can be seen to be perturbed to

ζ0 = −1
2ε

2Λ + O(ε4Λ) by the third order terms inε2.

We emphasize here, thatall eigenvalues are, forε ≥ 0 small,smoothfunctions inΛ andε.

6.2.4 Perturbing the Korteweg-de Vries spectrum

We consider the scaled eigenvalue-problem for the water-waves (6.11) as a small perturbation of

the eigenvalue problem for the KdV-equation (6.13).

We distinguish three cases, with increasing difficulty. First we considerΛ bounded away from the

imaginary axis. We then continue the arguments forΛ close to the imaginary axis, but bounded

away from the origin. Finally, we study the eigenvalue problem forΛ in a neighborhood of the

origin.

(I) Eigenvalues far from the imaginary axis Suppose first thatRe Λ ≥ ν∗ > 0 for someν∗ > 0.

We have to exclude bounded solutions to (6.11) forε > 0, small. As in Section 6.1, we exploit

the fact that theξ-dependent coefficients in (6.11) converge exponentially as|ξ| → ∞, uniformly

in ε ≥ 0. In order to construct stable and unstable subspaces as in Section 6.1, we discuss the
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spatial eigenvaluesζj of (6.11) at|ξ| =∞. From the scaled dispersion relation (6.14), we find two

eigenvalues with positive real part,ζ1 andζ3, one eigenvalue with negative real part, which we call

ζ2 and the eigenvalueζ0, which forε = 0 remains in the origin, and moves into the left half plane

for ε > 0:

Re ζ1, Re ζ3 > 0 Re ζ0 ≤ 0, Re ζ2 < 0.

With Lemma 6.2, we can construct linear subspacesEs(0) andEu(0), such that all initial values

at ξ = 0 of the linear equation (6.11) leading to bounded solutions onR
+ or R− are contained

in Es(0) or Eu(0), respectively. Both subspaces depend analytically onΛ, Re Λ ≥ ν∗ > 0, and

smoothly onε ≥ 0. Choosing analytic basesB1/2
s/u in Es/u(0), we can compute the Evans function

E(Λ; ε) = det (B1
s , B

2
s , B

1
u, B

2
u).

We show thatE(Λ; 0) is nonzero forRe Λ ≥ 0. By continuity inε and the previous considerations

for largeΛ, this excludes eigenvalues inRe Λ ≥ ν∗ > 0.

The Evans functionE(Λ; 0) can be computed almost explicitly from (6.13). Recall, that the equa-

tion for (B1, B2, B3) does not depend onB0 and is precisely the linearization about the KdV-

soliton. We therefore define the subspace(0, ∗, ∗, ∗) = (1, 0, 0, 0)⊥ as theKdV-subspace. This

subspace isnot flow-invariant, but the dynamics in this subspace are independent of the value

of B0 in the first component ifε = 0. This gives the equations a skew-product structure. We

may first solve the equation in the KdV-subspace and then solve the equation forB0. Within the

KdV-subspace, we find the eigenvaluesζ1, ζ2, andζ3. We find the stable and unstable subspaces

Es
KdV(0) andEu

KdV(0) by intersecting the subspacesEs(0) andEu(0) with the KdV-subspace. In

particular,Es
KdV(0) is one-dimensional andEu

KdV(0) is two-dimensional. Choosing analytic bases

in these two subspaces, we can compute an analytic functionEKdV(Λ), the Evans function of the

KdV-soliton. We are now going to use information from [PW92] on the zeroes ofEKdV(Λ).

Theorem 6 [PW92] The Evans functionEKdV(Λ) for the KdV-soliton can be extended analytically

into Re Λ > −4/3. It vanishes precisely in the origin, where we have

EKdV(0) = 0, E ′KdV(0) = 0, E ′′KdV(0) 6= 0.

From this information, we can infer absence of zeroes forE(Λ; 0) in Re Λ ≥ ν∗.

Lemma 6.4 The reduced, scaled Evans function of the water-wave problem,E(Λ; 0), and the

Evans function for the KdV-soliton,EKdV(Λ), differ by a non-vanishing analytic functionS(Λ):

E(Λ; 0) = S(Λ)EKdV(Λ); S(Λ) 6= 0

for Re Λ > 0.
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Proof. [of Lemma 6.4] We computeE(Λ) choosing a particular analytic basis inEs(0) andEu(0).

Note first thatB1
s := B0 = (1, 0, 0, 0)T ∈ Es(0) since this vector is constant under time-ξ-

evolution. Next, letB2
s,KDV(Λ), B1

u,KdV(Λ), B1
u,KdV(Λ) ∈ C3 denote the basis vectors for stable

and unstable KdV-subspacesEs/u
KdV(0). SolvingB0,ξ = B1, withB1 given from the KdV-subspace,

with initial conditionBj
s/u,KDV(Λ), we find particular basesBj

s/u of Es/u(0), which coincide with

Bj
s/u,KdV in the KdV-subspace. SinceB1

s = (1, 0, 0, 0)T , we find that in these coordinates the

determinantdet (B1
s , B

2
s , B

1
u, B

2
u) is of the form

E(Λ; 0) = det


1 ∗ ∗ ∗
0 (B1

s,KdV)1(Λ) (B1
u,KdV)1(Λ) (B2

u,KdV)1(Λ)

0 (B1
s,KdV)2(Λ) (B1

u,KdV)2(Λ) (B2
u,KdV)2(Λ)

0 (B1
s,KdV)3(Λ) (B1

u,KdV)3(Λ) (B2
u,KdV)3(Λ)


= det (B1

s,KdV(Λ), B1
u,KdV(Λ), B2

u,KdV(Λ))

= EKdV(Λ).

Choosing different analytic bases, the determinant only differs by a nonzero, analytic factor, which

proves the lemma.

Corollary 6.5 The scaled Evans function of the water-wave problemE(Λ; 0) does not vanish in the

right half plane. In particular, for0 < ε ≤ ε∗(ν), there are no unstable eigenvalues of the solitary

wave inRe δ ≥ νε3/2.

(II) Eigenvalues close to the imaginary axis We show that we may continue the construction

from Lemma 6.4 across the imaginary axis, outside a neighborhood of the origin.

Lemma 6.6 The reduced Evans functionE(Λ; ε) can be continued analytically inΛ and continu-

ously inε in a region{Re Λ ≥ −ν, |Λ| ≥ ν} ⊂ C.

Proof. We have to show that the stable and unstable subspacesEs(0) andEu(0) continue analyti-

cally inΛ and continuously inε across the imaginary axis. This in turn is an immediate consequence

of the gap lemma, Theorem 5.

Corollary 6.7 The scaled Evans function of the water-wave problemE(Λ; ε) does not vanish in a

region{Re Λ ≥ −ν, |Λ| ≥ ν} ⊂ C.

In order to finish the proof, it remains to exclude eigenvalues for the perturbed, scaled eigenvalue

problem (6.14) in a neighborhood of the origin.
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(III) Eigenvalues close to the origin Finally, we address the crucial neighborhood of the origin.

We may already suspect that transversality as above might not hold, since already the KdV-equation

possesses an eigenvalueΛ = 0 of algebraic multiplicity two, embedded in the essential spectrum.

Again, the strategy consists of first continuing the Evans functionE(Λ; ε) for the water-wave prob-

lem analytically inΛ and continuously inε in a neighborhood of the origin, first. As a second step,

we show how this Evans function is related to the Evans function of the Korteweg-de Vries equa-

tion, EKdV(Λ). The goal of this step to conclude that for allε ≥ 0 sufficiently small,E possesses

at most three zeroes in a neighborhood of the origin — exploiting that the number of zeroes of

an analytic functions is invariant under small perturbations. We then conclude the stability proof

exhibiting two explicit eigenvectors in the kernel and an explicit principal vector in the generalized

kernel.

We start with some notational preliminaries for the asymptotic equation at|ξ| =∞. The eigenval-

ues of the linear equation on the right side of (6.13) atΛ = 0, |ξ| = ∞ areζs = ζu = 0, a double

zero eigenvalue, andζss = −
√
β andζuu =

√
β. The zero eigenvalue is geometrically simple with

eigenvector(1, 0, 0, 0)T .

The central observation now is that forΛ, ε 6= 0 the zero eigenvalues unfold smoothly:

ζs = −1
2
ε2Λ + O(ε2Λ2), ζu = 2Λ + O(Λ2 + ε2Λ).

These expansions are readily computed from the Newton polygon to (6.14), with leading order con-

tribution−Z2 + 2ΛZ + ε2Λ2. Eigenvectors are smooth as well and given byej = (−1, ζj , ζ2
j , ζ

3
j )

for j = s,u, ss,uu. Forε > 0,Re Λ > 0, the stable eigenspace is spanned byEs = span {es, ess}
and the unstable eigenspace byEu = span {eu, euu}. At Λ = 0, we find a nontrivial intersection

of stable and unstable subspacesEs ∩ Eu = span {es} = span {eu}.

We emphasize that this smooth unfolding is non-generic: in a typical unfolding of the Jordan block

with a parameterΛ, the eigenvalues are smooth functions of
√

Λ! The smooth unfolding, here, is

due to reversibility: in the scaled dispersion relation (6.14), there is no linear termΛ, which would

make the leading order contribution in theZ-Λ Newton polygon for (6.14) to be−Z2 + Λ = 0,

with Z ∼
√

Λ. Reversibility implies invariance of the dispersion relation underZ 7→ −Z and

Λ 7→ −Λ, for all ε! It is this symmetry which excludes linear terms inΛ.

We next show, that the subspacesEs(ξ) andEu(ξ), constructed forΛ outside a neighborhood of

zero above, can be continued analytically inΛ and smoothly inε across this neighborhood.

Lemma 6.8 The Evans functionE(Λ; ε) to the scaled linearization about the solitary wave in the

water-wave problem(6.14)possesses an analytic extension into an open neighborhood of the origin

|Λ| ≤ ν0, which depends continuously onε ≥ 0 sufficiently small. The neighborhood is uniform in

ε, that is,ν0 does not depend onε ≥ 0.
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Proof. The construction very much relies, in the spirit of the gap lemma, Theorem 5, on a stable

manifold theorem. However, we cannot apply the gap lemma directly, since additional hyperbolic

eigenvalues are present, which actually are in resonance with spatial convergence of the coefficients

atΛ = 0.

We compactify time2βξ = log(1+τ
1−τ ), τ ∈ [−1, 1] and obtain a smooth (C1 in τ and analytic inΛ)

differential equation, suspended with the equationτξ = β(1− τ2). The fibersτ = +1 andτ = −1

are invariant and describe the limiting situation atξ = ±∞. In these fibers the dynamics possesses

invariant subspaces which are the linear eigenspaces to the eigenvaluesζj , j = s,u, ss,uu. In the

τ -direction, the asymptoticτ = ±1-subspaces are linearly stable (τ = +1) and linearly unstable

(τ = −1), respectively, with exponential rate±2β.

The flows insideτ = 1 and τ = −1 are linear and coincide. Subspaces corresponding to

eigenspaces and generalized eigenspaces are flow-invariant subspaces. For example, the two-

dimensional subspace inτ = ±1 corresponding to the generalized kernel forΛ = 0, can be viewed

as a smooth, normally hyperbolic, local center-manifold. Inside this center-manifold, we find the

particularly important flow-invariant subspacesspan {es} in τ = +1 andspan {eu} in τ = −1.

The subspaces are analytic inΛ and continuous inε. They possess strong unstable and strong stable

foliations, which are as smooth as the vector field. Indeed, we may smoothly transform variables,

Bj 7→ Bje−ζs/uξ to trivialize the flow inside the eigenspace, which consists of a line of equilibria

after the rescaling. The foliations are then given as the strong stable manifolds of the equilibria

in the eigenspaces. Analyticity follows from differentiability and the Cauchy-Riemann differential

equations. We denote byW ss(span {es}) the three-dimensional stable manifold of the subspace

span {es} in the extended phase-space(τ,B). Analogously, letW uu(span {eu}) denote the three-

dimensional unstable manifold of the subspacespan {eu}. By construction, these manifolds are

the smooth continuations ofEs(ξ) andEu(ξ), that we already constructed in the regionReΛ > 0:

W ss(span {es})∩{τ = 0} = Es(0) andW uu(span {eu})∩{τ = 0} = Eu(0). Choosing analytic

bases in these subspaces, and evaluating the determinant, we have continued the Evans-functionE

into a neighborhood of the originΛ = 0 smoothly, analytically inΛ and continuously inε.

Remark 6.9 The above construction does not show, that we can smoothly single out a particular

one-dimensional subspace of initial conditions which converges tospan {eu} or span {eu} faster

than the other solutions — which is part of the proof of the gap lemma; see the proof of Proposi-

tion 6.3. In fact, we believe that this is in general impossible, since precisely at the origin,Λ = 0,

the contracting and expanding eigenvaluesζss andζuu are equal to the rate of exponential approach

in theξ-direction, which makes it impossible to single out a strong stable or unstable direction.

The next step provides an expansion forE(Λ; 0) nearΛ = 0.
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Lemma 6.10 There exists a nonzero coefficientE3 6= 0 such that

E(Λ; 0) = E3Λ3 + O(Λ4).

Proof. For ε = 0, the linear equation (6.13) possesses a skew-product structure, already exploited

in the previous paragraphs (I) and (II).

In the KdV-subspace, the dynamics are independent ofB0. Stable and unstable subspacesEs
KdV(0)

andEu
KdV(0) are well-defined. We may choose particular bases

Es
KdV(0) = span {Bss

KdV(0)}, Eu
KdV(0) = span {Buu

KdV(0), Bu
KdV(0)}

such that solutions in the KdV-subspace with these initial conditions satisfy

e−ζ
ssξBss

KdV(ξ) → bssKdV for ξ →∞

e−ζ
uuξBuu

KdV(ξ) → buu
KdV for ξ → −∞

e−ζ
uξBu

KdV(ξ) → buKdV for ξ → −∞.

From these solutions, we are going to construct a basis of stable and unstable subspaces for the full

water-wave problem (6.14),Es(0) andEu(0). We start withEs(0). First,Bs(1, 0, 0, 0)T is a ξ-

independent, bounded solution and belongs toEs(0). The second basis vector is readily computed

fromBss
KdV(ξ). Define

Bss
0 (ξ) =

ξ∫
∞

(Bss
KdV)1(s)ds

and

(Bss
1 (ξ), Bss

2 (ξ), Bss
3 (ξ))T = Bss

KdV(ξ).

ThenBss(ξ) = (Bss
0 (ξ), Bss

1 (ξ), Bss
2 (ξ), Bss

3 (ξ))T is exponentially decaying forξ →∞ andBss(0)

is the desired second basis vector inEs(0).

Similarly, we define

Buu
0 (ξ) =

ξ∫
−∞

(Buu
KdV)1(s)ds

and

(Buu
1 (ξ), Buu

2 (ξ), Buu
3 (ξ))T = Buu

KdV(ξ).

ThenBuu(ξ) = (Buu
0 (ξ), Buu

1 (ξ), Buu
2 (ξ), Buu

3 (ξ))T is exponentially decaying forξ → ∞ and

Buu(0) ∈ Eu(0).

The same construction forBu
KdV would give a pole inΛ = 0 since the integral diverges due to slow

exponential decay,ζu = 2Λ + O(Λ2 + ε2Λ),

Bu
KdV(ξ) = buKdVeζ

uξ + r(ξ)
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with r(ξ) = O(e(ζu+ν)ξ) for ξ → −∞with someν > 0, uniformly inΛ close to zero. We therefore

rescale the KdV-eigenvector withΛ and set

B̃u
KdV(ξ) = ΛBu

KdV(ξ).

We then proceed as forBuu and define

Bu
0 (ξ) =

ξ∫
0

(B̃u
KdV)1(s)ds+Bu

0 (0).

with

Bu
0 (0) =

Λbu

ζu
+

0∫
−∞

r(s)ds.

With this choice ofBu
0 (0), Bu

0 (ξ) decays to zero exponentially forRe Λ > 0. Note thatBu
0 (0) is

analytic in a neighborhood ofΛ = 0 and that, with a suitable choice ofbu we can arrange to have

Bu
0 (0) = 1 + O(Λ).

(Bu
1 (ξ), Bu

2 (ξ), Bu
3 (ξ))T = Bu

KdV(ξ).

ThenBu(ξ) = (Bu
0 (ξ), Bu

1 (ξ), Bu
2 (ξ), Bu

3 (ξ))T is exponentially decaying forξ → −∞ and

Re Λ > 0 andBu(0) ∈ Eu(0).

The Evans function for the water-wave problem is then given by the determinant

E(Λ, 0) = det(Buu, Bu, Bs, Bss).

Exploiting thatBs(0) = 1, we find that

E(Λ, 0) = det(Buu
KdV, B̃

u
KdV, B

ss
KdV) = ΛEKdV(Λ).

Together with Theorem 6 for the Evans function of the KdV equation, this proves the lemma.

Geometrically, the unfolding of the subspaces is as follows, roughly speaking. ForΛ = 0, Bu and

Bs coincide andBss andBuu can be assumed to coincide as well. The weak directions,Bs andBu

cross transversely inΛ = 0, contributing a factorΛ to E . The strong directionsBss andBuu unfold

with quadratic tangency, just as in the KdV-equation, contributing a factorΛ2 to E .

By continuity inε and analyticity inΛ, Lemma 6.8, we conclude using Rouché’s theorem that for

ε > 0 small,E(Λ; ε) possesses precisely three roots close to the origin, counted with multiplicity.

The following lemma therefore shows that there are indeed no unstable eigenvalues in a small

enough neighborhood of the origin.

Lemma 6.11 The Evans function for the water-wave problemE(Λ; ε) possesses a triple root in the

origin for all ε ≥ 0 sufficiently small.
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Proof. Let Λ = 0. We find forε ≥ 0 a two-dimensional intersection ofEs(0) andEu(0), generated

by the derivative of the solitary wave and the translation of the potential(1, 0, 0, 0)T . Indeed, by

construction, Lemma 6.8, any bounded solution necessarily lies in the intersection, since solutions

which atΛ = 0 do not belong to the intersection grow at least linearly. From Galilean invariance,

we find the exponentially localized derivative of the solitary wave with respect to the wave speed

as a principal vector to the derivative of the solitary wave. Following [PW92], we conclude that

E(Λ; ε) possesses at least a triple zero inΛ = 0. On the other hand, Lemma 6.10 shows that the

multiplicity is at most three. This proves the lemma.

6.3 Proof of Proposition 6.1

We conclude the proof of absence of point spectrum in the right half plane. First, we showed in

Section 6.1 that there are no unstable eigenvalues in a neighborhood of the imaginary axis, up to

possible eigenvalues with large imaginary part or in a neighborhood of the imaginary axis. We then

showed in Section 6.2.2 that eigenvalues in a neighborhood of the imaginary axis necessarily scale

with ε3, justifying the Korteweg-de Vries scaling. Finally, we showed in Section 6.2.4 that in the

Korteweg-de Vries scaling, there are no unstable eigenvalues. The main part was a perturbation

argument, based on the construction of an analytic Evans function. We showed that any eigenvalue

is a root of an analytic functionE(Λ; ε). We then continuedE(Λ; ε) analytically in an open neigh-

borhood ofΛ = 0, for ε ≥ 0. Lemma 6.10 showed that there are at most three eigenvalues in a

neighborhood of zero, counting multiplicity, and Lemma 6.11 showed that all three eigenvalues are

located in zero, forε ≥ 0 sufficiently small. This proves spectral stability up to possible eigenvalues

with imaginary part tending to∞ asε→ 0, Proposition 6.1.
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