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Abstract

We consider the Euler equations describing nonlinear waves on the free surface of a two-
dimensional inviscid, irrotational fluid layer of finite depth. For large surface tension, Bond
number larger thai/3, and Froude number close to 1, the system possesses a one-parameter
family of small-amplitude, traveling solitary wave solutions. We show that these solitary waves
are spectrally stable with respect to perturbations of finite wave-number. In particular, we
exclude possible unstable eigenvalues of the linearization at the soliton in the long-wavelength
regime, corresponding to small frequency, and unstable eigenvalues with finite but bounded
frequency, arising from non-adiabatic interaction of the infinite-wavelength soliton with finite-
wavelength perturbations.



1 Introduction

In this article, we study stability of solitary waves traveling at constant velocity on the free surface

of a two-dimensional inviscid fluid layer of finite depth under the influence of gravity and surface
tension. The equations of motion are the Euler equations for nonlinear surface waves. Solitary
waves are among the most striking phenomena and appear to be stable in several parameter regimes.
Both for large surface tension and in the absence of surface tension, solitary waves are known to
exist as particular solutions. Together with the solitary waves, there exists a family of spatially
periodic waves, which are known as Stokes waves in the absence of surface tension.

Phenomenologically, solitary waves appear to be stable in both parameter regimes mentioned,
whereas Stokes waves are stable only for large enough wavelengths. At some critical finite wave-
length, the periodic waves destabilize, an instability mechanism first discovered in [BF67, Be67,
Wh67] and known as the Benjamin-Feir instability.

Mathematically, the water wave problem is an evolutionary partial differential equation and pos-
sesses a Hamiltonian structure [Za68]. Various symmetries and associated conservation laws are
known; see [BO80]. The initial-value problem to this partial differential equation is well posed
locally in time in the case of gravity waves [Na74, KN79, Yo82, Cr85, Wu97]. Both solitary waves
and spatially periodic Stokes waves are particular equilibria of the Hamiltonian system. Their
stability or instability is to first order determined by the spectrum of the linearization. Complete
stability proofs would however have to take into consideration the effects of nonlinearity, as well.
Throughout this paper, we focus on the spectrum of the linearization, the first and basic step towards
stability of solitary waves.

Existence of free surface waves in the full Euler equations has attracted a lot of interest in the late
80’s using bifurcation theory. For example, existence of solitary waves for large surface tension,
Bond number larger thaty3, was shown in [Ki88, AK89, Sa91].

Stability of surface waves in the full Euler equation is, from a mathematical point of view, a com-
pletely open problem, for both cases of gravity and capillary-gravity waves. Although a tremendous
amount of literature is devoted to stability and instability of surface waves, to our knowledge, the
present work represents the first rigorous attempt to show stability of solitary waves. Below, we
summarize part of the previous work on stability and instability.

Most detailed results are available for Stokes waves. In the absence of surface tension, a rigorous
proof of the Benjamin-Feir instability of small-amplitude Stokes waves has been given in [BM95].
Rigorous stability proofs, even for the linearized problem, do not seem to be available. On the
other hand, instability induced by critical eigenvalues leaving the imaginary axis of the linearized
equations about a periodic wave upon variations of parameters has been extensively studied, both



numerically and analytically; see, for example, [Mc82, LH84, Sa85, MS86, LHT97] and the refer-

ences therein.

Solitary waves in shallow water in the absence of surface tension appear to be stable at small
amplitude. This is suggested by the numerical results on eigenvalues of the linearized operator
in the absence of surface tension in [Ta86]. An instability seems to occur at some critical, finite
amplitude, see again [Ta86]. The nature of this crest instability has also been investigated in direct
numerical simulations, in [LHT97].

As already mentioned, stability results for solitary waves in the full Euler equations are not known.
However, for large-wavelength initial data, the evolution of the free surface is governed on large
time scales by certain model equations. For example, both for zero and for large surface tension,
a formal expansion of the solution in the large wavelength exhibits at leading order a Korteweg-de
Vries equation [KdV, Bou]. In other parameter regimes, the fifth order Kawahara equation [Ka72],
or nonlinear Sclirdinger equations can be derived. Together with these model equations, there
come two mathematical problems:

() What are the wave dynamics in the model equations?

(i) What can we conclude from the dynamics in the model equations for the dynamics of the full
equations?

For the particular question of stability of solitary waves, we are interested in, these two prob-
lems reduce to first, the question of stability of solitary waves in the Korteweg-de Vries equa-
tion, and second, the question of validity of the approximation. Stability of solitary waves in the
Korteweg-de Vries equation is fairly well understood. Orbital stability of the two-parameter fam-
ily of solitary waves in this infinite-dimensional, integrable Hamiltonian system has been shown
in [Be72, BSS87]. More towards the spirit of the present work, asymptotic stability of solitary
waves has been shown in [PW96]. The proof there relies on a very careful understanding of the
linearized problem using a scattering-type analysis. Convergence then is, necessarily, established
in an exponentially weighted function space, where the Korteweg-de Vries equation is not Hamil-
tonian. Deviating from the primary objective of this work, we also mention stability results for the
Kawahara equation [Ka72]. This fifth order partial differential equation describes the dynamics of
surface waves in critical case of moderate surface tension, that is, for Bond numbers dlose to

For Bond numbers slightly larger thar3, the Kawahara equation supports solitary wave solutions
just like the Korteweg-de Vries equation. Again, existence and orbital stability of these waves have
been proved; see [1S92].

These stability results for the model equations let us believe that the solitary waves of the full Euler
equations are stable at low amplitudes. However, the question to which extent solutions of the full



system are well approximated by solutions of the model equations has not received a satisfactory
answer that would allow us to conclude the stability of the solitary waves of the full system from
only the stability of the corresponding waves of the model equation. Moreover, results on the
validity of the model equations exist only in the case of gravity waves [KN79, KN86, Cr85, SWO00].

In the presence of surface tension, the reduction method in [Ha96] permits to derive, in a rigorous
and systematic manner, reduced systems that are nonlocal in the unbounded space variable and
local in time, for different regions in the parameter planeb). The model equations, such as

the Korteweg-de Vries and Kawahara equations, appear as the lowest order part in these reduced
systems, but the connection between the solutions of the model equations and those of the reduced
systems is still not clear.

If we want to infer stability of solitary waves in the full Euler equations from stability of the soliton

in the Korteweg-de Vries equation, two major problems arise. First, the Korteweg-de Vries equa-
tions are valid on large, but finite time scales. Instabilities beyond these time scales are invisible
in this leading order approximations. The second difficulty are non-adiabatic interactions between
the infinite-wavelength solitary wave and finite-wavelength perturbations. In the long-wavelength
approximation of the Korteweg-de Vries equation, these perturbations are ignored. However, even
at the linear level, these types of interaction may produce unstable eigenvalues, as has been shown,
in a different context, in [KS98].

We give an outline of our results. In the case of large surface tension, we use bifurcation theory
to deduce spectral stability of small-amplitude solitary waves for eigenvalues of finite frequencies,
corresponding to finite wave numbers of the perturbations; see Theorem 2. As a first step, we re-
formulate the Euler equations as an abstract, first-order differential equation in the spatial variable
x; Section 2. The existence of solitary waves, Section 3, is described by a four-dimensional dif-
ferential equation, which, due to symmetries reduces at leading order to a one-degree of freedom
Hamiltonian system. The homoclinic orbit of this Hamiltonian system represents the solitary wave
solution. This part of the analysis is similar to [Ki88]. The formulation of the Euler equations as

a dynamical system in the spatial variablén [Ki88] is slightly simpler, but does not generalize

to the time-dependent case. We then linearize the Euler equations about this solitary wave solution
and look for eigenfunctions with temporal growttt. We obtain a generalized eigenvalue problem

for the linearized operatdr(o), depending on the spectral parameteiVe formulate the stability
problem in terms of the spectrum of this generalized eigenvalue problem and state our main results
in Section 4. Stability of the continuous spectrum then follows from general perturbation argu-
ments together with an explicit computation of the dispersion relation; Section 5. The main body
of the proof is contained in Section 6, where point spectrum off the imaginary axis is excluded. It
is here, that we crucially rely on the dynamical systems formulation of the problem. We define a
complex analytic function, depending on the spectral paramagtehich we call the Evans func-



tion of the full water-wave problem. Its zeroe<oincide with the point spectrum. Stability of the
solitary wave decomposes into stability in three different regimes, depending on the magnitude of
the frequency of the eigenvalue, given by imaginary part of the spectral parameter

(I) the long-wavelength,
(1) the intermediate-wavelength, and

(1) the short-wavelength regime.

Our main result claims stability in (1) and (I1). Stability in the short-wavelength regime (lll) remains
open.

In the intermediate-wavelength regime (1), we exclude eigenvalues popping out of the essential
spectrum by analytically continuing the Evans function into the essential spectrum and explicitly
computing its value from the linear dispersion relation about the flat surface.

The long-wavelength regime (I) requires a more subtle analysis. In appropriate scalings, we find the
Korteweg-de Vries equation and the Evans function associated to the Korteweg-de Vries soliton,
already computed explicitly in [PW92]. The major difficulty then is associated to the fact that the
linear dispersion relation about the trivial surface in the long-wavelength limit is the dispersion
relation of the wave equation and not the dispersion relation of the Korteweg-de Vries equation.
Technically, the problem appears when we formulate the Euler equations for the potential of the
velocity field, whereas we derive the Korteweg-de Vries equation for the derivative of the potential.
In particular, at bifurcation, we have four critical modes with zero group velocity. Only three
are represented in the third order Korteweg-de Vries equation. The central argument relies on
the symmetry of the dispersion relation induced by reflection in physical space. The symmetry
is exploited in Section 6.2.4, where we show that the additional critical mode does not couple to
the three other modes. More precisely, we show that we can continue the Evans function for the
full water-wave problem problem analytically in the KdV-scaled spectral pararaetat leading

order, we are able to compute the Evans function explicitly and find the Evans function of the KdV-
soliton, multiplied bys. The additional factor precisely accounts for the fourth critical mode
induced by translation of the velocity potential by constants. The stability proof is concluded by a
perturbation argument, which shows that all roots of the Evans function are located in the origin,
even for higher order perturbations, since they are induced by symmetries of the full water-wave
problem.

The method developped here for the case of large surface tension can be applied to the case of zero
surface tension, as well. Although, the formulation of the problem, Section 2, has to be adapted,
most of the consequent analysis is very similar. In particular, Theorem 2 on spectral stability holds
in absence of surface tension, as well. An important difference arises when proving absence of
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unstable point spectrum with small frequency. The fourth critical mode, which appears in addition
to the KdV-spectrum, carries a group velocity with the opposite sign when compared with the
case of large surface tension. This actually simplifies the stability proof substantially in allowing
for a continuation of the Evans function across the essential spectrum by means of exponentially
weighted spaces, just like in the Korteweg-deVries approximation; see [PW97] and [HSO01] for
solitary waves in different contexts, where a similar situation arises.

Acknowledgements The authors gratefully acknowledge financial support by DAAD/Procope,
Nr. D/0031082 and F/03132UD.

2 The Euler equations and spatial dynamics

Consider nonlinear waves propagating at a constant speedhe free surface of an inviscid fluid
layer of mean depth and constant density. Assume that both gravity and surface tension are
present, and denote gythe acceleration due to gravity and Bythe coefficient of surface tension.
In a coordinate systerfiX, Y') moving with the waves the bottom lies¥it= 0 and the free surface

is described by = Z(X,t), wheret is the time variable. The flow is supposed to be irrotational,
so the velocity field has a potential= ®(X, Y, t). Introduce dimensionless variables by choosing
the unit length to bé and the unit velocity to be. The Euler equations of motion become

Oxx +Pyy =0, forO0<Y <1+ Z(X,t), (2.1)

with the boundary conditions

Py =0 (2.2)

at the botton” = 0, and
Zi+ Zx + Zx®x = Oy (2.3)
<I>t+<I>X+%(<I>§(+<I>§/)+)\Z—(1iZZ%:0 (2.4)

on the free surfac®¥ = 1 + Z(X,t). The dimensionless numbers
A=gh/c? and b=T/phc?

are the inverse square of the Froude number and the Bond number. The analysis is made for
capillary-gravity waves, so we fix #£ 0.

The goal of this section is to write the system (2.1)—(2.4) in the abstract form

Dw; = wy + F(w; \), (2.5)



with boundary conditions
0= f(w), ony=0, (2.6)
Bw, = f(w), ony=1, (2.7)

whereD, B are linear and’, f nonlinear maps acting on a Hilbert space of functions defined on
the bounded cross-section of the domain.

Consider the new variables

bZ
u = ®X7 77 — 4)(.
1+ 7%
and the change of coordinates
Y
=X = 2.8
SR S TS (2:8)

which transforms the moving domafitX,Y) € R? |0 <Y < 1+ Z(X,t)} intoR x [0, 1]. Then,
(2.1), (2.4) lead to the system

yn

0=b, —u— 1+2) b2—772(1)y7 inR x (0,1), (2.9)
1 yn .
= Ug Q. — ; R 1), 2.10
0=u +(1+Z)2 uy 112 b2—772uy inR x (0,1) ( )
0=Zp— — 1 (2.11)
/b2 — 2
u? 1 2 n(1+u)
Sr=np — AN —u——+ o — ¢ ony=1, (2.12)

2 20+2)2Y (42— 7

with boundary conditions

0=9®,, ony=0, (2.13)
1 n(l+u)

Jy = b, — ony =1 2.14

t 1+Z Yy m? ) ) ( )

obtained from (2.2) and (2.3).

Equations (2.9)—(2.12) are of the form (2.5) in which the independent vaniepile linear opera-
tor D and the mayF are defined through

w = (®,u,Zn)", Dw=(0,0,0,2 )",

and

_ yn B
(1+2)\/b2—n2 Y
1 yn

S T S 7
(1+Z)2 vy (1+Z) /b2 _n2 Y
F(w; ) = n !

=T
2

N7 — w1 2, n(+4w)
Mot T m St e




The boundary conditions (2.13), (2.14) are of the form (2.6), (2.7) in which

1+ ZY g
We consider (2.5) as an abstract differential equation on the phase space
X := HY(0,1) x L?(0,1) x R2.
SetU = {(®,u,Z,n) € X|Z > —1,|n| < b}, and define
X':=H?*0,1) x H'(0,1) x R?,

andV = U N X'. The properties oD, F, B and f are summarized in the following lemma.

Lemma 2.1 The following statements hold:

(i) D is bounded linear operator fronY (resp.X') into X (resp. X1).
(i) B is bounded linear operator fronX (resp.X!) into R.

(i) FeCHV xR, X)andf € CF(U, L*(0,1)) N C*(V, H'(0,1)), for anyk > 0.

The proof is an easy consequence of the definitioR oB, f, andF’ and the function spaces, X!
and left to the reader.

Remark 2.2 The Euler equation§2.1}+2.4) possess a reversibility symmetry. For any solution
(Z(X,t),®(X,t)), reversibility yields a different solutiofZ (—X, —t), —®(—X, —t)). For the
systen(2.5)this means thab commute and” anticommute with th& = diag(—1,1,1,—1), and

Y ) )

for the boundary condition&.6)(2.7)that BR = B andg(Rw) = —g(w), foranyw € U.

3 Steady solitary waves

The Euler equations (2.1)—(2.4) possess steady solitary-wave solutions for-arny3 and \ =

1 + &2 for ¢ sufficiently small. Mathematical proofs go back to [Ki88, AK89, Sa91]. Our main
purpose is a study of the temporal stability properties of these solitary waves. As we explained
in the previous section, our approach to the stability problem is technically based on a spatial
dynamics formulation of the eigenvalue problem — similar to the existence proof given in [Ki88].
However, our formulation slightly differs from the one exploited there. For the convenience of the
reader, and in order to exhibit the main technical tools in the slightly simpler steady problem, we
sketch the proof of existence of solitary waves in this section. In particular, we describe the most
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important properties of the steady solitary wave solutions of (2.5)—(2.7) that existfar/3 and
A > 1, Acloseto 1.

From now on we fixo > 1/3 and set\ = 1 + 2. The solitary waves are not unique, due to the
invariance of the equations under translationXinb, and due to Galilean invariance. Translational
symmetry is ruled out by restriction to symmetric waves, that is reversible solutions of the spatial
dynamics formulation, satisfying(X) = Z(—X) and®(X,Y) = —®(—X,Y). In the steady
problem the mean flown is conserved and can be used to select a unique solitary wave from the
family of solitary waves obtained by Galilean invariance. Fixing the mean flow through a cross
section to one amounts to the condition
14+Z(X)
m=1+Z(X)+ / dx(X,Y)dy = 1. (3.1)

0

We consider the steady water-wave problem (2.5) with= 0
w, + F(w;\) =0, (3.2)

with boundary conditions
fw)=0, ony=0,1. (3.3)

The proof of existence of solitary waves for this system is, as the one in [Ki88], based on a center
manifold reduction. However, the reduction procedure cannot be applied directly to this system
because of the nonlinear boundary conditionyoa= 1. We therefore consider first a nonlinear
change of variables oy which transforms this boundary condition into a linear condition on

y = 1.

Lemma 3.1 The mapy : U — U defined by (®, u, Z,1) = (®,u, Z,n) where

b=+ [ (fw) - FOw)dy - 7,80)
0

is a C'!'-diffeomorphism. Moreover, the restrictign: V — V is a C''-diffeomorphism.

Proof. Itis easy to check thag is a smooth map frory into X. A direct calculation shows that

Y

x 1 9277 n // / /
b — o4 ¥ __ 1 [y d

R TS el I ACRECOO
0

soy is invertible with inversey~! : U — U defined throughy ™} (®, u, Z, ) = (®, u, Z, 1) with

y
= (1+2) é—M+L/y'(l+u(y’))dy’
2b b2 — 2

0



The fact thaty~! is smooth proves the first part of the lemma. The second part follows from the
fact that the restrictions to, y : V — V andyx~! : V — V, are well defined and smooth. ®

Setw = y~!(w). Then (3.2)—(3.3) yields the following system far

1

W, = — [Dx~H(w)]  F(xH(w); A) =: G(w; \), (3.4)

with boundary conditions
<i>y =0, ony=0, (3.5)
&)y = %, ony =1, (3.6)

since

We treat this system as an infinite dimensional dynamical system on the phase&spaleanrite
w, = AN + G(w; ), (3.7)

where A(\) = D, G(0; \) andG(w; \) = G(w; \) — A(\)w. The boundary conditions (3.5)—
(3.6) are included in the domain of definition of the linear operaltox) by taking

Y := Dom(A())) = {(ci,u, Zm) € X1 B,(0) =0, &,(1) = g} .

Then A()\) is a closed linear operator il with domainY dense inX, andG is a smooth map
fromW =UnNY x Rinto X.

Note thaty (0) = 0 andDx(0) = I, SOA(N) = Dy G(0; \) = —Daw F'(0; \). This means that the
linear part of the system (3.2) is not changed by the transformation above. The same is true for the
boundary conditions (3.3). A direct calculation shows that

. - T
AW = <u ~d,,, E,)\Z+u|y:1> .

Remark also that (3.7) is reversible with reverRedefined in Section 2, sincg( Rw) = Ry (w).

We apply center manifold reduction directly to this system. We find a four-dimensional reduced
system which describes the steady waves. Note that the reduced system obtained in [Ki88] is only
two-dimensional. The two additional dimensions here are due to the invariance of (2.1)—(2.4) under
translations in the fluid potentid and due to Galilean invariance. Both symmetries are inherited

by the system (3.7) from the full Euler equations. In [Ki88], these invariances were factored out,
already in the dynamical formulation of the problem, before the reduction procedure, such that
the reduced equation did not possess these symmetries any more. Here, we only use them after
the reduction, and show that it is possible to simplify the reduced system on the four-dimensional
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center-manifold to a two-dimensional differential equation with the help of reversibility and con-
dition (3.1). The reason for this slightly different approach is that we cannot factor out these

symmetries in the eigenvalue problem.

Theorem 1 Foranyb > 1/3 andk > 0 there exist* > 0 andC' > 0 such that, for any € (0, *)
the systen(3.2)~(3.3)with A = 1+ <2 possesses a unigselitary-wavesolutionw? € Cf(IR{, xh
with the following properties:

() w: = w0 + w* wherew?® = (U°, u°, —u®, —bul) with

u’(z) = e%sech? <\/z€$> , U%x) = /uo(x’) dz’/, B= _3
0

and||w}(z)||x1 < Ce? for anyz € R. Moreover,
I(I = Po) Wz ()| x1 < Cete P9, Ppwo? (w)|| 1 < CePem VPN,
where Py is the projection on th@—component ofv: Py : X — X, Py = diag(1,0,0,0).

(i) w? isreversible, i.eRw}(x) = w}(—x), and the components?, v}, Z*,n} of w} satisfy
1
Z: (@) + (14 2:(w) [ ui(o)dy =0,
0

(iii) w} is a smooth function af.

Proof. By Lemma 3.1 itis enough to show the existence of solitary waves for the system (3.7). As
in [Ki88] one can show thaﬁ()\) has compact resolvent, so its spectrum consists only of isolated
eigenvalues of finite multiplicities. The eigenvalue problem

can be solved explicitly, and we find thatis an eigenvalue oﬂ()\) if and only if it satisfies the
equality
¢?cos¢ = (A —bC?)CsinC.

A direct calculation shows that 0 is always an eigenvalué(df) with generalized eigenvectors

wy = (1,0,0,0)T, wy =(0,1,-1/X,0)7T,
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such thatA(\)wy = 0, AN)w; = wo. If b > 1/3 and\ = 1 this eigenvalue has algebraic
multiplicity 4; the generalized eigenvectors

1 0 e 0
0 0 _y
wy = , Wy = , Wy = . ws = ],
0 —1 0 b
0 0 —b 0

satisfy A(1)wy = 0, A(1)w; = w;_1, i = 1,2,3, and form a basis for the generalized eigenspace
associated to the eigenvalue 0.

We apply the reduction result in [Mi88] to system (3.7) with> 1/3 and\ = 1 + <2 close to
Ao = 1. By direct calculation one can prove that there exist positive constapits and gy such
that c
. < — A
g = A00) M x-x < S (3.8)
foranyq € R, |¢| > qo. Moreover, the mayg- is smooth inw ande? when considered as a map

from the domaint” = Dom (A) into X. With these preparations, the reduction theorem in [Mi88]
shows that any small bounded solutiane C¥(R,Y") of (3.7) is of the form

w(z) = ag(x)wo + a1 (x)wy + az(x)ws + ag(x)ws + ¥(ag, ay, az, as;%), (3.9
with ¥ (ag, a1, as, as; %) = O(|a;|(Ja;| + €%)), anda; satisfy the reduced system

a0 = a1+ folao, a1, as, as;€?),
arz = az + fi(ag, a1, az, az; €2),
a2 = a3 +f2(a07a17a27a3;52)>

ase = f3(ao,ar,as, as;e?),

(3.10)

in which f;(ao, a1, az, ag; %) = O(|a;|(|a;] + €2)).
By a careful choice of a cut-off function, necessary in the construction of the center-manifold, one
can arrange to have the reduced flow inherit the symmetries of the full system (3.7). In particular,
the invariance of (3.7) under translationdnimplies that¥ and (3.10) are invariant under trans-
formations of the formuy — ag + «, for anya € R, such that¥ and thef;, j = 0,...,3 do not
depend upomgy. The reduced equations (3.10) possess a skew-product structure and decouple into
a system fomny, as, as,

a1 = ag + fi(a1, az, az;e?),

asz = az + fa(ar, az,as;e?), (3.11)

as. = f3lay,as, as;e?),

12



and one differential equation fag, which can be integrated. Reversibility can be used to uniquely
determinezg. The reduced system (3.10) is reversible with revefgeacting through

Ro(ag,a1,a2,a3) = (—ag, a1, —az, a3),

sinceRwy = —wy, Rw; = wy, Rwy = —w,, Rws = ws. Reversible solutions of (3.10) are
those withag, a2 0dd anda, a3 even functions inc. For such solutiona is uniquely determined
by the conditioru(0) = 0, which leads to

T

ap(x) = /al + folay, az, as;e®) da’. (3.12)
0

Next, we use the condition (3.1) to uniquely determinefor solutions of (3.7) with mean flow
one. Forw = (®, u, Z,n) this condition reads

1
Z(:E)+(1+Z(m))/u(m,y)dy:0, z € R.
0

Substitution ofw from (3.9) yields an equality
Flay,as,a3;e%) = 0.
It is not difficult to see thaf is smooth in its arguments, and a direct calculation shows that
Do, F(0,0,0;€%) = % —b#0.
Then by the implicit function theorem we obtain
az = (a1, az;®) = O(lag|(Jay| + %)), (3.13)
with ¢ smooth function. Substituting (3.13) into (3.11) we obtain the two-dimensional system

a1z = az + gi(a1, az;€?), (3.14)

a2z = ga(a1, ag;e?).
This system is also reversible with reverser acting thraugh> a1, as — —as. One can now argue
as in [Ki88] and prove that (3.14) possesses a unique reversible homoclinic soltjtion a5 (<)),
smooth function ok, for sufficiently smalle > 0. Explicit calculation of the relevant quadratic
terms shows that

a}(z;€) = e’sech? <\/§€x> + O(e?).

The equalities (3.12), (3.13) give the reversible homoclinic solution of the reduced system (3.10),
and from (3.9) we find the reversible solitary-wave solution of (3.7). This proves the theoram.
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4 Spectral stability of solitary waves

In this section we formulate the stability problem in terms of the spectrum of a family of linear
operators and state the main results.

4.1 Linearized system

Consider the linearization of the problem (2.5)—(2.7) about the solitary waves CF(R, X1!)
found in Theorem 1 foe € (0,e*):

DW,; = W, + Dy F(w};1+HW (4.1)
0= f(wH)W, ony=0 4.2)
BW,; = f'(w))W, ony=1. (4.3)

We look for solutions of this system of the form
W(t,2) = " W, (x), (4.4)
with W, bounded function fronR into the complexification of*, for o € C. For simplicity we

denote the complexification of !, and later those ok andY’, also byX! (resp.X andY).

Roughly speaking, the solitary wawe; is stable if (4.1)—(4.3) does not possess any solutions of
the form (4.4) for anyr € C with Reo > 0.

Substitution of (4.4) into (4.1)—(4.3) yields the following system Wf, :

oDW = W, + Dy F(w?; 1+ )W (4.5)
0= fl(wH)W, ony=0 (4.6)
oBW = f(w5H YW, ony=1. 4.7)

We write this system in abstract form

L(o, 5)‘//‘7 =W, — L(o, s)ﬁ/ =0,
with L(o, ) some linear operator i, and then formulate the stability problem far’ in terms of
the spectrum of the family of operatofS = (L(o,¢)),cc. We proceed as in the steady problem
by constructing first a linear diffeomorphisgy. which transforms the non-autonomous boundary
conditions (4.6)—(4.7) into autonomous boundary conditions.

Lemma 4.1 Assumer € C ande € (0,e*). The linear mapy, : X — X defined by

o

(y*BW,0,0,0)
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is bounded and has bounded invergge! : X — X. Moreover,y, and x; ! are analytic ino,
smooth ire, and their restrictions toX! are well defined.

The proof is similar to the one of Lemma 3.1 so we omit it here. Notethas the linearization
aboutw; of the diffeomorphisnmy in Lemma 3.1.

SetW = Xglﬁ/. Then the system (4.5) becomes

W, = Xo [0D — DwF(w?; 1+ )] x; "W + (9ux0) X5 ' W, (4.8)
with boundary conditions

®, =0, ony=0, (4.9)
b, = g ony=1. (4.10)

for W = (d,u, Z,n).

Explicit calculation of the equations in (4.8) show that it is of the form

W, = D(0,e)W + A(e)W, (4.11)
with
D(0,€) = Doo(0) + 2Dy (5 0, €),

a bounded linear operator i, and
Ale) = Ao (€?) + 241 (3¢),

a closed linear operator iX. The partsAd., and D, correspond to the linearization evaluated
at the asymptotic state of the solitary wavezat: oo. The partsA; and D; correspond to the
perturbation due to the solitary wave. These are operators with coefficients dependingrah
decaying to 0 ar = oo with the same rate as the decay rate of the solitary waye Since we
do not need the explicit formulas of these operators in the following, we omit them here. However,
note thatAd..(c?) = A(1 + £2), and thatD.,(c) and D, (z; o, ) depend upow in the following
way

Doo(0) = 0Doo1 + 0*De2, Di(x;0,¢6) = 0D11(z;€) + 0 Dia(x;€),

sinceBD = 0. As in the formulation of the steady problem (3.7), the boundary conditions (4.9)—
(4.10) are included in the domain of definition of the operat¢s).

The properties oD(o, ¢) and A(¢) needed later are summarized in the next lemma. They follow
from Lemma 2.1, the decay propertieswf in Theorem 1, and the definition gf, in Lemma 4.1.

Lemma 4.2 Assumer € C, ¢ € (0,e*) andz € R.
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(i) Doo(o) and Dy (z; 0, ) are bounded linear operators iX (resp. X'), depending analyti-
cally upono and smoothly upoa.

(i) Axo(e?) and A;(z;¢) are closed linear operators iX with dense domai’, depend ana-
lytically uponos and smoothly upoa.

Moreover, there exists a positive constahsuch that the following inequalities hold for aaye C,
e € (0,e*)andz € R:

||D<>0(U)HX(resp.Xl)HX(resp.Xl) < Clo|(1+ |o]),

HD1($§Jv5)HX(resp.Xl)HX(resp.Xl) <Clo|(1+ |U|)€_\/E€|x"

Ao () lyox < C,  ||Ar(as)ly—x < C e VPEl,

4.2 Spectral stability
SetL(o,e) = D(o,¢) + A(e), and consider the family of operatof§ = (L(o, €)),<c defined by
d
=——-0°L .
L(o,e) = -~ L(oye)

Equation (4.11) become&(c, )W = 0. Set# = L3R, X) and# = HY(R, X) N L3(R,Y).
ThenL(o,¢) is closed linear operator i#” with dense domaif¥’.

Define theresolventof the family of operator<® as the set
p(LF) ={o € C : L(o,¢) invertible}.
The set(Lf) = C \ p(L9) is called thespectrunof £5. We distinguish betweepoint spectrum
Y,(L5) =%(L)N{o € C : L(o,e) Fredholm with index §,

andessential spectrurB. (£°) = X(L£°) \ £,(L£°).

Definition 4.3 The solitary waveaw; is calledspectrally stabléf
¥(Lf) c{oce€C : Reo <0},

andspectrally unstabletherwise.
The main result in this paper is:

Theorem 2 Fix b > 1/3, and choose any > 0 large. Then there exists, > 0 such that, for any
e € (0,¢p), the spectrum of© coincides with the imaginary axis in a ball of radis

YL N{oceC:lo|<R}=iRN{oceC: |o| <R}
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The proof consists of two parts summarized in the following two theorems.

Theorem 3 There exists. > 0 such that for any € (0, ¢.) the essential spectrum gf coincides
with the imaginary axis.

Theorem 4 Fix b > 1/3, and choose any > 0 large. Then there exists, > 0 such that for any
e € (0,¢p) the point spectrum of€ is contained inR U {|o| > R}.

Both theorems are proved in Sections 5 and 6. The result in Theorem 2 is a consequence of Theo-
rems 3 and 4.

Remark 4.4 In fact, we prove slightly more. We actually compute eigenvalues embedded into the
essential spectru. (£°) = iR. We show that inside the essential spectrum, there is only the zero
eigenvalue with geometric multiplicity two and algebraic multiplicity three. One eigenfunction is
due to the invariance of the Euler equations under— ® + const., and the second eigenfunc-

tion is given by ther-derivative of the solitary wave. The generalized eigenvector to the second
eigenfunction is given by the derivative of the solitary wave with respect to the wave speed.

5 The essential spectrum of solitary waves

We prove Theorem 3. We study first the spectrum of the family of asymptotic opeEiors
(Loo(0,€))oec Where

d

EOO(O',€) = %

— Loo(0,6), Loo(0,€) = Do (0) 4+ Aso(€).

Lemma 5.1 For anye > 0, the essential spectrum @f_ is equal toiR. The point spectrum of
LS is empty.

Proof. The asymptotic operato®, (o) and A (¢2) are independent af, so in order to deter-
mine the spectrum of:_ we can use the Fourier transformanLet £ denote the Fourier variable.

~

Then the spectrum af<_ in J# coincides with the spectrum @5, = (Lo(0,¢))sec Where
Loo(0,€) = ik — Log(0, ). The domain o+ (0, €) is # = L*(R,Y) N HI(R, X), where

HU(R,X) = {f € L*(R,X) : (1+]k|)f € L*(R, X)}.
The resolvent set afgo consists of the values € C with the following two properties:

(i) X(Loo(o,e)) NiR = (), whereX (L (o, €)) denotes the spectrum @f (o, ) in X,
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(i) there exists a positive constafif{ o, £) such that the estimate

C(o,¢)

, 5.1
1+ |k 5-1)

ik — Loo(o,€)) " lx—x <

holds for anyk € R.

Indeed, assume that (i) and (ii) hold for some= C. Then, for anyf € J there existgj(k) =
(ik — Loo(0, €))L f (k) with

11+ [kD)g15 = /(1 + k)23 (k)% dk < C(o,€)? / I (R[5 dk = C(o,)*| 115
R R

Henceg € W and the map?—> g is bounded from7Z into .

The operatol., (o, ) has compact resolvent, so its spectrum consists only of isolated eigenvalues
of finite multiplicities. The eigenvalue problem

Lo(o,e)w =Cw, weY,
can be solved explicitly. We find thatis an eigenvalue of (o, ¢) if

(0 +¢)%cosC = (1+e2—b¢%)CsinC. (5.2)

Seto = 01 + i09 and( = ik. Then (5.2) yields

(o9 + k)? — 02 = (1 4 &% + bk?)k tanh k, (5.3)
201 (O’Q + k‘) = 0. (54)

If o1 # 0, i.e. 0 ¢ iR, the equality (5.4) implied = —o, which is clearly not a solution of (5.3).
Hence (5.2) has no purely imaginary solutions, B.L..(c,£)) NiR = (), for anyo ¢ iR. If
o1 = 0, i.e. o € iR, the last equality is always satisfied, and (5.3) has, forany 0, exactly
two real solutions, one positive and one negative (recallthat 1/3), so (5.2) has in this case
two purely imaginary solutions, both simple and different from zero. &6t 0, (5.2) has only
one purely imaginary solutiorg, = 0 which is a root of multiplicity two ife # 0, and a root of
multiplicity four if ¢ = 0. We conclude that (i) is satisfied for aay¢ iR, and is not satisfied if
o €iR.

We show that (i) holds for any ¢ iR. Recall thatd,.(c?) = A(1 + £2) whereA()\) is the linear
operator in (3.7). Then (3.8) implies

. _ C
16k = Ao o < 2.
for any|k| > ko, for some positivésy andC/(¢). SinceD (o) is a bounded operator i,
. _ Cle 1
Ik~ An(&) Declo)lxx < D] G < 5.
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if |k| > k1(0,e) = max{ko, 2||Dso(0)||C(g)}. Then
(ik — Loo(0,€)) ™ = (I + (ik — A (e2)) "t Do (0)) ik — Aso(€?)) 7L,

so, for any|k| > ki (o, €),

2C(e)

15— Loo(o: )l < =

Now (5.1) follows foro ¢ iR from X(Ls (0, €)) NiR = ().

We conclude that any ¢ iR belongs to the resolvent @_. It remains to show that the entire
imaginary axis belongs to the essential spectrum. We therefore exhibit an orthonormal sequence
wy € X, with L (0,2)w, — 0 and conclude thaf (o, ) cannot be Fredholm of index zero,

for o € iR.

From (5.3), (5.4), we find &. = k.(0) € R and a vectonw, such that(ik, — Lo (0, ¢))wo =
0. Let#r be a smooth, even cut-off function, withz(z) = 1 for |z| < R, 6r(z) = 0 for
|z| > R+ 1, andfg(z) = bo(z — R) for z € [R, R + 1]. Definew, := 6,(x — 202)e*Twy
and renormalizav, := w,/||wy|| . Since the supports of alb, are disjoint, thew, form an
orthonormal sequence. A straight forward computation shows|hat(c, £)wy|| s = O(¢~1/2).
This proves the Lemma. |

We show now that the essential spectrunéfis contained irR.

Proposition 5.2 There existg, > 0 such that, for any € (0,e) and anyo ¢ iR, the operator
L(o,¢) is Fredholm with zero index, 96, (L°) C iR.

This proposition is proved in six steps contained in the following lemmas.

Lemma 5.3 There exist positive constants, ¢, (o, €), c2(o), such that the inequalities
[wlly < ci(0,€)]|Loc(0, )W 12, (5.5)
lwlly < calo) (|lwllse + [|1£(o, e)wl| ) , (5.6)
hold, for anys € (0,¢1),0 ¢ iRandw € #'.
Proof. From Lemma 5.1 follows
1£s(0,€)" [l < Clo,€)l|v]l e,
foranye > 0,0 ¢ iR, v € JZ. Forw € # setv = L (0,e)w € J€. Then
lwlly = [Loc(o,6) " 0]y < Clo,e)l[v]l e = Clo,2) | Loo(0, )wl| e
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and (5.5) is proved.
Chooser ¢ iR andgg € (0,£*). Then
lwll < e1(00,€0)]|Loc (00, €0)w]| 2 < 01(00760)[H~’3(07€)w||%
H[(Doo(0) = Doo(00)) W]l e + [ (Ao (€?) — Aco(e5))w | 2
2| Da (s, ) + 7 A (w5 2)w e .

From the explicit formula for , (£2) = A(1+¢2) we deduce thatl . (c?) — Ao (¢2) is a bounded
operator inX, and
1(Ase(e?) = Ao (eg))w ]l e < |€? = ||l w] 2

Furthermore, Lemma 4.2 implies
[D1(z;0,e)w| 2 < Clo|(1 + o)) |w|e.  [Ai(zse)w] e < Cllwlly,

for anyw € # . The constan€ is independent of ando. Finally, recall thatD (o) is bounded
in X and conclude

lwlly < e1(o0,20) [£(0, e)wlle + Clo)|wlle + |e* = edl|wlle + 2 Cllw]ly |

Chooses; such that?c (0, 0)C < 1/2 and (5.6) is proved. ]

For the next two lemmas we follow [RS95]. For eaéEh> 0 define the Hilbert spaces

% = LQ([*Tv T]7X)’
Wr = L*([-T,T),Y)NHY([-T,T], X).

The embedding?; C 77 is compact €f. [RS95], Lemma 3.8).

Lemma 5.4 Assume € (0,¢;) ando ¢ iR. There exisfl’ = T'(o,¢) > 0 andcs(o,e) > 0, such
that the inequality

lwlly < es(o,e) (lwllsg + 1£(0,e)wllse) (6.7)

holds, for anyw € #'.

Proof. Assumew € # is such thatw(x) = 0, for |x| < T, for someT > 0. Then (5.5) and the
inequalities in Lemma 4.2 imply

lwlly < ei(0,6)[[Loc(o, )Wl 2

< ci(o,e) [[IL(o, e)wl e + (| D1 (5 0, e)w| s + 2| Ar (5 )w]| e

IN

c1(0,)||L(0,e)w| s + Co(o, €)™V ||w)|y.
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Then, there exisT” = T'(o,¢) > 0 andC (o, ) > 0 such that for anyw € #/, with w(z) = 0,
for |z| <T — 1, we have

lwlly < Ci(o,e)[[£(0; e)w] e (5.8)
Take a smooth cutoff functiop : R — [0, 1] such thatp(z) = 0 for |z| > T, ¢(x) = 1 for
|| < T —1, and|¢'(x)| < m. Using (5.6) and (5.8) we obtain

lwlly < llowly + (1= Q)wly < calo) (lowlle + |1£(0, ) pw|[ )
+C1(0,¢)[L(0,e)(1 = p)wll e < es(0,€) ([wllsg +1£(0,e)wl ) .

sinceL(o,e)pw = ¢L(0,e)w + ¢'w. [ |

Lemma5.5 For anye € (0,e1) ando ¢ iR, the operatorL(c,<) has closed range and finite
dimensional kernel.

Proof. Since the restrictio?” — .77 is compact the conclusion follows from the Lemma 5.4
and the Abstract Closed Range Lemmf (RS95]). |

Lemma 5.6 For anye € (0,¢;) ando ¢ iR, the adjoint operator’(c,<)* has closed range and
finite dimensional kernel.

Proof. The proof is similar to the proof of Lemma 5.5 and we omit it. |
Lemmas 5.5 and 5.6 imply:

Lemma 5.7 For anye € (0,¢1) ando ¢ iR, the operator(o, ) is Fredholm.

Finally, we show

Lemma 5.8 For anye € (0,¢1) ando ¢ iR, the Fredholm index of (o, €) is zero.

Proof. SinceL(o,c) — L (o, ¢) is a small perturbation of .. (¢, ), and since this operator has
a bounded inverse from?” into #, for anyc ¢ iR, a perturbation argument shows th, )

is invertible foro in an open set in the right half plafe ¢ > 0, and foro in an open set in the
left half planeRe o < 0. Hence, foro in these open subsets the Fredholm indeX @f, <) is zero.
Since the Fredholm index d&(o, ¢) is constant on connected subset£dfiR, we conclude that
its Fredholm index is zero, for anye (0, ;) ando ¢ iR. [

Proposition 5.9 For anye € (0,¢1), the entire imaginary axig € iR belongs to the essential
spectrum ofZc.

Proof. The proof is identical to the proof fofZ_ from Lemma 5.1. The orthonormal sequence
wy, which was constructed there, satisfif®, )w, — 0 for £ — oc. n
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6 The point spectrum of solitary waves

The goal of this section is to prove Theorem 4. Equivalently, given the information on the essential
spectrum from Theorem 3, we show tiiRato # 0 belongs to the resolvent set for boundefand

smalle.

Proposition 6.1 For any R > 0, there existg, > 0 such that, for any € (0,e2) and anyo ¢ iR,
lo| < R, the operatorL(o, ) is invertible.

The proposition is proved in several steps. Since we have bounds on the ndlm(efe) 1,
uniformly for values|Reo| > ¢ > 0, |o| < R, itis sufficient to consider a neighborhood of the
imaginary axiso € i[—R, R|. We therefore concentrate on a neighborhood ef ig for fixed q.
There are then two different cases:

[) finite frequencieg # 0

I1) small frequencieg = 0.

In both cases, we are interested in the kernel of the opefdtor), which is Fredholm index zero
for Re o # 0. Elements of the kernel are bounded solutions of the abstract, non-autonomous, linear
differential equation

W, = D(0,e)W + A(e)W. (6.1)

It is sufficient to show that this ordinary differential equation does not possess any non-trivial,
bounded solutions. We will see that, just as for the nonlinear steady equation, bounded solutions lie
on a finite-dimensional, invariant manifold. To the abstract, quasilinear differential equation (6.1),
we apply non-autonomous center-manifold reduction; see [Mi88]. The reduction is performed for
o close toig € iR ande small. Note that for any fixed, finite, and: = 0, the linear equation is a
relatively bounded perturbation of the principal part

W, = Loo(iq,0)W = (D (iq) + A (0)) W,
with small relative bound. In Lemma 5.1 we proved the resolvent estimate

|(ik — Loo(ig,0)) ! x—x < T

for all |k| > ko(q), and we may apply the reduction theorem in [Mi88] in a neighborhood of any
fixed pointg, uniformly for bounded.
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6.1 The case of non-zero frequency
6.1.1 The reduction

We exclude point spectrum in a neighborhoodq#~ 0, case (). Set = iq + ¢ and rewrite (6.1)
as

W, = Loo(iq,0)W + 6 Boo(5)W + £2(By + Bi(x;6,¢))W, (6.2)
whereLq,(ig,0) = D (iq) + Axo(0), and

6Boo(8) = Doo(ig + 6) — Doo(iq), €*Bp = Ano(€?) — Ax(0),
Bi(x;0,¢) = Dy (x;iq + 0,€) + Ay (x;€).

We view equation (6.2) as a small perturbation of the eigenvalue problem#$o ande = 0.
This is justified by the following inequalities

[ Boo (0) Iy (resp.x)—v (resp.x) < C(L+1al), || Bolly (resp.x)—v (resp.x) < C
IB1(;6,8)|ly—x < C(1+ |g?)e Vel

fore € (0,e3) and anyg # 0.

The reduction procedure is performed for smadindd. We have to find the center eigenspace of
the linear operatof., (ig, 0). The linear operatof.(ig, 0) is closed inX with dense domaiiy.
Moreover, it has compact resolvent, so its spectrum consists only of isolated eigenvalues of finite
multiplicities. As shown in the proof of Lemma 5.4 js an eigenvalue of.(ig, 0) if

(ig + C)Q cosC = (1— bC2)CsinC.
Imaginary solutiong = ik of this equation satisfy
(q+k)? = (1 + bk?)k tanh k.

We find exactly two simple rooti; andiks with k2 < 0 < k; (sinceb > 1/3). Hence,L(iq, 0)
has two simple, purely imaginary eigenvalugs ik,. The corresponding eigenvectors are

cosh(ki1,2y) + 2qy°Z1 2

ikLQ COSh(kLzy) - kLQ sinh kLQ (k‘LQ + q) cosh k1’2
Wi2 = - , R12 = — = — 5 .
121,2 k172 + q )\ + bk172
—bk1 2212

The center manifold reduction implies that small bounded solutions of (6.2) are of the form
W (z) = a1 (z)w: + az(z)ws + O((|8] + £%)[ay]). (6.3)
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For the amplitudes = (a1, a2), we find a linear, non-autonomous system of ordinary differential
equations, depending on the eigenvalue paramseserd the bifurcation parameter

a, = A(z;9,¢)a. (6.4)

Ine = 0, the2 x 2-matrix A does not depend an any more and possesses two distinct purely
imaginary eigenvalues. In the remainder of this section, we set up a perturbation argument, which
shows that foe small andRe § > 0, there are no bounded solutions to (6.4).

6.1.2 Exponential dichotomies

In e = 0, the equation (6.4) is autonomous. Rt ¢ = 0, the spectrum of the matriX consists
precisely of the eigenvaluegs = iki, k1 > 0 and(s = iks, ko < 0. Depending o = o — ig,

the eigenvalues may move off the imaginary axis. A direct computation showd¢hato > 0
andd¢,/dd < 0, such that the eigenvalues leave the axis, with non-vanishing speed, in opposite
directions. In particular, foRe s > 0 small and= = 0, we find that (6.4) is a hyperbolic, linear
ordinary differential equation. The eigenspaces are analyticino — ig.

Fore > 0, the eigenvalueg; and(, still describe the dynamics at = +oo, since the solitary
wave and therefore the coefficients of the mattix:; J, <) converge to zero, with rate vV/7lz,

Therefore, whefike § > 0, the dynamics fofz| — oo are hyperbolic, with stable eigenvalgieand
unstable eigenvalug . The following lemma on exponential dichotomies shows in which sense the
hyperbolic structure can be continued to finiteWe therefore consider a general non-autonomous,
linear differential equation

a, = A(z;0,pn), a € R", (6.5)

depending on a real paramejeand a complex spectral paramedetn our exampley represents
the (small) parameter.

Lemma 6.2 Consider (6.5) with fundamental solutigi(x, y). Assume asymptotically constant
coefficientsA(z; 8, 1) — A+ (J, u) asx — oo, and smoothnessd and A are C¥ in the parameter

w e U, €R, k>0, and analytic in the spectral parametérc Us C C, and A is continuous

in . Furthermore assume that.. are hyperbolic, that is, they do not possess eigenvalues on the
imaginary axis, for ally € U, and allé € Us.

Then there exists a unique decomposition of the phase dgfadeto linear, stable and unstable
subspaced?s (z; 4, ) and E* (x; 4, 1), which are as smooth ad. The subspaces are invariant
under the linear evolutiop(z, y):

o(r,y)EL(y) = EL(2), ¢(z,y)E%(y) = E%(x).
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Moreover, any initial value to a bounded solution|0nco) is contained inf% (0) and initial values
to bounded solutions oft-co, 0] are contained inE™ (0).

On the other hand, there are positive constafits); > 0, andrn_ > 0 such that we have uniform
exponential decay for solutions in forward time,

lp(z,y)a| < Ce l*Vl|qg|
foralla € E5 (y), >y > 0, and in backward time
lo(z,y)al < Ce177V|q

forall @ € E"(y), x < y < 0. The constant§’ andn. can be chosen independently;0f in
compact subsets of, x Us.

For the proof, see [C078], for example.

By the above lemma, we find nontrivial, bounded solutions, if and only if stable and unstable
subspaces intersect nontrivially

E(0) N E5(0) # {0}

We may choose baseé_L, analytic iné and continuous im in the two subspaces and compute the
determinant

E(8; ) = det (a,). (6.6)

A variant of this analytic function is usually referred to as the Evans function [Ev72, AGJ90].
Clearly, zeroes of detect precisely the nontrivial bounded solutions to (6.4), and therefore the
point spectrum coincides with the zeroes£ofThe algebraic multiplicity of eigenvalues coincides
with the order of the zeroes &f; see [AGJ90]. By analyticity id and continuous dependence
on u, the number of zeroes counted with multiplicity varies continuously withVe are going to
exploit this fact in Section 6.2.

In our setting, both subspaces are well-defined and complex one-dimensioRalfas 0. They
are spanned by the complex vectafs(0) anda® (0), which lead to solutions®, (x) anda" (z).

It is our goal to show, that both solutions can be extended, analyticallyaimd continuously in

€ in an open neighborhood éf= 0, in particular, across the imaginary axis where hyperbolicity
atx = +oo is lost, into the left half plane. We show that in the limit= 0 andReé = 0, the
initial valuesa® (0) anda® (0) converge to eigenvectors ande; to the eigenvalueg, and(;,
respectively.

In particular,£(0;0) # 0, and by continuity, we can exclude unstable eigenvalues in a neighbor-
hood ofo = ig.
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6.1.3 Agaplemma

The goal here is, to continue the Evans function across the essential spectrum. The idea is to
exploit rapid convergence of the coefficients of the non-autonomous differential equition
compensating for the loss of hyperbolicity in the asymptotic equatien-att-oc.

The main idea was already used in [GZ98, Theorem 2.3] and [KS98, Lemma 2.2].

We recall the results stated there.

Theorem 5 [GZ98, KS98] Consider a non-autonomous, linear differential equation
a; = A(z;0,p)a € R"

with fundamental solutiop(z, y), with paramters) € Us(0) ¢ C andp € U,(0) C R close to
the origin. Assume exponential convergence to asymptotically constant coefficients

|A(; 6, 1) = Aoo(6, )| < Ce™

with positive constant§’,n > 0. Assume furthermore that and A, are C* in p, &k > 0, and
analytic ind, and A is continuous inz. Aty = 0, § = 0, we require the existence of a spectral
projection P to A, such thatRe spec PA,, < 0 andRe spec (id — P)A, > 0.

Then there exists a unique decomposition of the phase $pfadeto linear, stable and unstable
subspaceds (x; 6, u) and E* (x; 6, 1), which are as smooth ad. The subspaces are invariant
under the linear evolutiop(x, y):

o(z,y)EL(y) = EL(2), ¢(z,y)E%(y) = E%(x).

Solutions to initial values if%_ (0) converge ta~* (4, 1) asz — oo, where the eigenspade’ (0, ;1)
smoothly depends ahand . and coincides with the rangen P for . = 0,6 = 0.

Also, solutions to initial values " (0) converge toE" (4, 1) asxz — oo, where the eigenspace
E"(0, 1) smoothly depends anand i and coincides with the kern&ler P for 4 =0, § = 0.

In particular, for parameter values, ;. where the eigenspacéds®/ (9, u) are actually the stable
and unstable eigenspaces, respectively, the subspates; 6, 1) and E* (x; 6, 1) coincide with
the eigenspaces from Lemma 6.2.

In our problem, one additional difficulty arises. The convergencerraiethe non-autonomous
perturbation depends gn= ¢. The rate, /s, although fast compared to the eigenvalues of the
asymptotic matrixO(¢2), is not bounded away from zero, as required in the above theorem.

We therefore restate a parameter-dependent version of these results, taking into account the different
orders of convergence of the solitary wave and possible eigenfunctions.
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Proposition 6.3 Consider a non-autonomous, linear differential equation= A(x;d, 1)a, de-
pending on a parameter € R? and an eigenvalue parametére C, in a neighborhood of the
origin in R? x C. Assume that the coefficiendsare Ck k> 0,in w4 and analytic ind, and that
A is continuous inx. Furthermore assume that the coefficientse; 6, ;1) converge to constant
matrices, asz| — oo

|A(;6, 12) = Aso (8, )| < Cple™ Wl

and, asu — 0,
|A(z; 6, p) — Ao(d)] < Clpl-

Assumepec Ay (0) C iR, and A (9, i) is hyperbolic forRe 6 # 0, with

|(ik — Aoc(d, 1)) 1] <

C
g
’Re(5’7 (6 )

for all £ € R and withC' > 0 independent of, > 0.

Suppose that spatial convergence of the coefficients is fast compared to the rate of hyperbolicity:

p/n(p) — 0aspu — 0.

Then, the Evans functiofi(d; 1) defined forReé > 0, can be extended continuously jinand
analytically ing, in a sector{(d, 1); —Red < M]|ul|}, for any fixed constart/ > 0. In the limit
u— 0, we find€(0;0) # 0 for § close to zero.

Proof. For anyu # 0 small, the conclusions of the proposition directly follow from the gap
lemma, Theorem 5. We have to show that the limit> 0 of £(§; 1) exists, and is nonzero.

ForRed > 0, 1 > 0, the equation possesses exponential dichotomies, as stated in Lemma 6.2. The
subspaces can actually be constructed from a fixed point argument. We foéiis @irst. From
the resolvent estimate (6.7), we conclude that the subspaces corresponding to stable and unstable
eigenvalueﬁ?fr/“((S) for the equation with, = 0 continue analytically in a neighborhood &f 0.
We write P, for the projection ot (0) along £ (0), andB(y) := A(y) — A, Suppressing the
dependence oflandu. ForRed > 0, solutionsa(x) which are bounded om > 0 then solve the
integral equation

x

a(z) = e*>"ag + /eA“(g""y)ﬂB(y)a(y)der /e““”(””_y)(id — Py)B(y)a(y)dy
0

o0

with ag = P,a(0). We substitut@i(z) = e~ “4~"a(x) and arrive at

alz) = an+ [ IPB@Ta)dy + [ e - P B al)dy,
0 [e's)
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We view the right side as an affine operator on the space of bounded, continuous functions on
[0, 00), equipped with the supremum norm. SinB¢y) < C|ule™ "W, and|ed=y| < CeClrly
for —Red < C|u|, we find that the norm of the linear part of the right side’g./n(u), which
converges to zero fon — 0 by assumption. We therefore find a unique solutiofx) in the
sector, which converges to the constant solutiop as 0. We find the stable subspace@g)),
parameterized ovat,. The construction of the unstable subspace is similar. In the limit, 0,
we find the Evans function for the constant coefficient equation, which is nonzero, since we have
a spectral decomposition on the imaginary axis corresponding to the limits of stable and unstable
subspaces. [ |

Together with the considerations in Section 6.1.2, this proves absence of point spectrum in a neigh-
borhood of the imaginary axis, outside a given small neighborhood of the origin, which we consider
next.

6.2 The case of small frequency

We exclude point spectrum in a neighborhood of the origia- 0, off the imaginary axis. As a

first step, we reduce the eigenvalue problem to finding non-trivial solutions to a four-dimensional

non-autonomous ordinary differential equation; Section 6.2.1. We then introduce and justify a
long-wave scaling corresponding to the Korteweg-de Vries limit; Section 6.2.2. We then recall

from [PW92] the structure of the spectrum in the scaling limit, where we find the spectrum of the

Korteweg-de Vries soliton; Section 6.2.3. The last part of this chapter, Section 6.2.4, is devoted to
the central perturbation arguments. We show that the spectrum of the capillary-gravity waves coin-
cides with the point spectrum of the Korteweg-de Vries soliton in a neighborhood of the imaginary

axis.

6.2.1 The reduction

Rewrite (6.1) foroc = 6 small as

W, = Loo(0,0)W + 3Buo ()W +&%(Bo + B (x:6,2)) W, (6.8)
whereL,(0,0) = A (0), and
6Boo(0) = Doo(8), €2By = Aso(e?) — Aso(0), By = Dy + Aj.

Recall that4d..(0) = A(1), so it is exactly the linear operator used for the analysis of the steady
problem in Theorem 1. From those results we find tAgt(0) has only one purely imaginary
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eigenvalugl = 0, with algebraic multiplicity four. The corresponding (generalized) eigenvectors
arewy, w1, w», ws found in the proof of Theorem 1.

The center manifold reduction implies that the bounded solutions of (6.8) are of the form
W () = ao(z)wo + a1 (z)w; + az(z)ws + az(z)ws + O((16] + £%)]ay)),
and the amplitudes; satisfy a non-autonomous, linear, reduced system of the form

aoz = a1 + 6(cooao + cozaz) + €%(corar + cozas) + €2 fo(w; a1, az, as) + O((|8] + £2)?|a;)
aix = az +6(cniar + cizaz) + e2f1(z; a1, az,a3) + O((|6] + 82)2|aj|)
a2,z = a3 + 6(ca0ag + ca2a2) + €2(ca1a1 + ca3as) + €% fo(w; ar, az, az) + O((|d] + €2)?|a;])

a3z = 6(ca1a1 + c33a3) + €2 f3(z; a1, az, az) + O((|0] + €%)?|a;|)
(6.9)

The constants;; areO(1) and can be determined explicitly. In particular, we haye= c3; = —3
andcy; = (. Note that the functiong; are independent afy. This is due to the invariance of
(2.1)—(2.4) unde® — & + const. which implies the invariance of the reduced system under
ag — ag + const. if 6 = 0. A direct calculation of the relevant terms gives

2 fo(w; a1, az,a3) = —pulay + €2 foo(; az, az)

2 f3(x; a1, ag, az) = —20udar — 28uas + % f33(x; az)

with «° from Theorem 1 (i).

6.2.2 Justifying the Korteweg-de Vries scaling

As a first step, we prove that any eigenvatyeRed # 0 is necessarily located in ad(e?)-
neighborhood of the origin. Suppose therefore v|5|'/3 with v small. We shall prove, that the
system (6.9) does not possess non-trivial, bounded solutions, prdvidee: 0. We may scale the
system (6.9) according to

€ =163z, a;(z)=1034;(), j=0,3,

and obtain
Ape = Ay + O(8%/3 +125%/3)
A = Ay + O(62/3 4 1251/3
e s o (6.10)
Ao ¢ = Az — Barg(0)Ag + 0(52/3 +12)
Az = —Barg(0) A + O(6%/3 + 1/?).
At v = § = 0, we have an autonomous linear ODE with eigenvaljges 0, Cf’,z,g = —2farg(9),

and corresponding eigenvectod§ = A9 = 0, A} = —parg(s), A§ = 1, and A} = (=),
k=1,2,3andj = 0,...,3. Now suppose firsRed # 0. Then(;, j = 1,2,3 are hyperbolic.
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Therefore the eigenspace to the eigenvglu®rms a normally hyperbolic center-manifold for the
linear flow. This center-manifold persists under small, non-autonomous perturbations and contains
all bounded solutions (we may construct the center-manifold as the robust intersection of center-
stable manifold atr = oo and center-unstable manifold at= —oc). On the other hand, the
eigenvalugy = 0 is easily seen from (5.2) to move off the imaginary axis whenévaoves off

the axis. But this eigenvalue determines the asymptotic behavior of solutions in the center-manifold
atr = +ooandxz = —oo. If now § approaches the imaginary axis, we have to refine the arguments
as in Case 1, above. Using the gap lemma, Proposition 6.3, we continue the center-stable manifold
atz = +oo and the center-unstable manifoldsat= —oco smoothly across the imaginary axis,
exploiting fast convergence of the non-autonomous terms on the €falecompared to the order

of the perturbatior©(s?). We omit the details which are similar to the case of non-zero frequency,
Section 6.1.

6.2.3 The Korteweg-de Vries limit

We may now assume that the eigenvalignecessarily of the ordef and therefore scale= e3A.
We obtain in the KdV-scaling

the scaled reduced system

A07§ = A1 + 0(62)
A1,§ = AQ + O(E)

(6.11)
AQ’E = Az — ﬁAAo + ﬂAl — ﬁA’{Al + 0(62)
Az e = —[AA; — QBA*{’gAl —2BAT A2 + O(e).
Here A is the steady solitary wave solution of the KdV-equation
2ﬂA177 + Al,.ﬁﬁg — BALE + 35141141’5 =0, (612)
A;(€) = sech? (@) .
We consider the cage= 0 first. We transform variables
By = Ao, B1 = A1, By = Ag, B3 = A3 — fAAy + A1 — BATA,
and obtainat =0
Bo,g =B
Bi.=B
Le T (6.13)
Bgé = B3

B3¢ = —2BABy + 3By — 334} :B1 — 33A; By
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which is the KdV-equation, linearized in the soliton solutidp, for B; = By¢. The equation at
|€] = oo reduces to
Bojg = By, Bl,&g + 28AB; — ﬁBLg =0

with characteristic polynomiaj* + 23A¢ — 5¢? for the ¢-eigenvalues, determining exponential
spatial decay or growth of possible eigenfunctions. Besides0 with eigenvector(1,0,0,0)7,

we have precisely the spectrum of the linearization about the KdV-soliton. In particular, dynamics
in the spacé1, 0,0, 0)* are precisely the (linear) dynamics around the KdV-soliton. This strongly
suggests, that eigenfunctions will appear wherever the KdV-soliton possesses eigenfunctions —
and nowhere else. Given the stability of the KdV-soliton [PW92], this would then prove stability
of the solitary wave in the Euler-equations!

We construct in the sequel a more refined picture of the spectrara-if, which will, in particular,
be persistent for > 0.

First of all, we note that the trivial zero-eigenvalue moves out of zero as saopeE®mMes positive
andA non-zero. This can be readily seen from (5.2), by substituting the KdV-scaling®A and
¢ = eZ. From the dispersion relation (5.2) we then obtain a new equatio’ farande. The
Taylor expansion of this equation i is, up to third order

1 1 1 1
e4(b - 5)24 — 724207 + 52(—6(1; — g)Z6 + 624 —~AZ3 4 A?)+0(eY)] =0. (6.14)
To second order in?, there is still one eigenvalug = 0 which can be seen to be perturbed to

(o = —3e%A + O(e'A) by the third order terms in?.

We emphasize here, thall eigenvalues are, far > 0 small,smoothfunctions inA ande.

6.2.4 Perturbing the Korteweg-de Vries spectrum

We consider the scaled eigenvalue-problem for the water-waves (6.11) as a small perturbation of
the eigenvalue problem for the KdV-equation (6.13).

We distinguish three cases, with increasing difficulty. First we considesunded away from the
imaginary axis. We then continue the argumentsXarlose to the imaginary axis, but bounded
away from the origin. Finally, we study the eigenvalue problemAdn a neighborhood of the
origin.

(I) Eigenvalues far from the imaginary axis Suppose first thdte A > v, > 0 for somev, > 0.

We have to exclude bounded solutions to (6.11)sfas 0, small. As in Section 6.1, we exploit

the fact that th&-dependent coefficients in (6.11) converge exponentiallyfjas> oo, uniformly

in e > 0. In order to construct stable and unstable subspaces as in Section 6.1, we discuss the
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spatial eigenvalue§; of (6.11) at|¢| = oo. From the scaled dispersion relation (6.14), we find two
eigenvalues with positive real pact, and(s, one eigenvalue with negative real part, which we call
(2 and the eigenvalu&), which fore = 0 remains in the origin, and moves into the left half plane
fore > 0:

Re(y, Re(3 >0 Re(p <0, Re(a < 0.

With Lemma 6.2, we can construct linear subspatgg)) and E*(0), such that all initial values
at¢ = 0 of the linear equation (6.11) leading to bounded solution®dnor R~ are contained
in £5(0) or EY(0), respectively. Both subspaces depend analyticallhApRe A > v, > 0, and

smoothly ore > 0. Choosing analytic basdg'/>

X in £5/%(0), we can compute the Evans function

E(A;e) = det (B, B2, By, BY).

We show tha€ (A; 0) is nonzero foRe A > 0. By continuity ine and the previous considerations
for large A, this excludes eigenvaluesike A > v, > 0.

The Evans functio (A; 0) can be computed almost explicitly from (6.13). Recall, that the equa-
tion for (B, Be, Bs) does not depend oB, and is precisely the linearization about the KdV-
soliton. We therefore define the subspdger, , ) = (1,0,0,0)* as theKdV-subspace This
subspace isot flow-invariant, but the dynamics in this subspace are independent of the value
of By in the first component iE = 0. This gives the equations a skew-product structure. We
may first solve the equation in the KdV-subspace and then solve the equatiBg. f§¥ithin the
KdV-subspace, we find the eigenvalugs (», and(s. We find the stable and unstable subspaces
E}4v(0) and Ex 4+, (0) by intersecting the subspacg$(0) and £*(0) with the KdV-subspace. In
particular,E% 4y, (0) is one-dimensional andy ;v (0) is two-dimensional. Choosing analytic bases
in these two subspaces, we can compute an analytic fun€tign(A), the Evans function of the
KdV-soliton. We are now going to use information from [PW92] on the zeroe&kg{ (A).

Theorem 6 [PW92] The Evans functiofiqy (A) for the KdV-soliton can be extended analytically
into Re A > —4/3. It vanishes precisely in the origin, where we have

Ekav(0) = 0, Ekay(0) = 0, Ekay(0) # 0.
From this information, we can infer absence of zeroe€f{dy; 0) in Re A > v,.

Lemma 6.4 The reduced, scaled Evans function of the water-wave probf&r;0), and the
Evans function for the KdV-solitofikqy (A), differ by a non-vanishing analytic functi@A):

E(A;0) = S(A)Ekav(A);  S(A) #0
for ReA > 0.
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Proof. [of Lemma 6.4] We computé(A) choosing a particular analytic basisi#(0) and E"(0).
Note first thatB! := By = (1,0,0,0)T € E®(0) since this vector is constant under tirie-
evolution. Next, letB2 iy (A), By kav(A), By kav(A) € C* denote the basis vectors for stable
and unstable KdV-subspacg¥ ;;(0). Solving By ¢ = By, with B; given from the KdV-subspace,
with initial condition B/, ,.;/(A), we find particular base8, of £*/"(0), which coincide with
Bg/u,KdV in the KdV-subspace. SincB! = (1,0,0,0)7, we find that in these coordinates the

determinantlet (B2, B2, BL, B2) is of the form

* * *

(le, Kdv)l(A) (Blll,Kdv)l(A) (Bﬁ KdV)l(A)
(B! kav)2(A) (Bl kav)2(A) (B2 gav)2(A)
<le, KdV)3(A) (3111 KdV>3(A) (Bﬁ KdV)S(A)

= det (B gav(A), By kav(A), BY kav (D))
= Ekav(A).

E(A;0) = det

o o o =

Choosing different analytic bases, the determinant only differs by a nonzero, analytic factor, which
proves the lemma. [ |

Corollary 6.5 The scaled Evans function of the water-wave prolf¢r 0) does not vanish in the
right half plane. In particular, fol0 < ¢ < £,(v), there are no unstable eigenvalues of the solitary
wave inRe § > ve3/2,

(I) Eigenvalues close to the imaginary axis We show that we may continue the construction
from Lemma 6.4 across the imaginary axis, outside a neighborhood of the origin.

Lemma 6.6 The reduced Evans functi@{A; <) can be continued analytically in and continu-
ously ine inaregion{Re A > —v, |A| > v} C C.

Proof. We have to show that the stable and unstable subsggi¢ésand E"(0) continue analyti-
cally in A and continuously il across the imaginary axis. This in turn is an immediate consequence
of the gap lemma, Theorem 5. |

Corollary 6.7 The scaled Evans function of the water-wave probférh; <) does not vanish in a
region{ReA > —v, |A| > v} C C.

In order to finish the proof, it remains to exclude eigenvalues for the perturbed, scaled eigenvalue
problem (6.14) in a neighborhood of the origin.
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(111 Eigenvalues close to the origin Finally, we address the crucial neighborhood of the origin.
We may already suspect that transversality as above might not hold, since already the KdV-equation
possesses an eigenvaltie= 0 of algebraic multiplicity two, embedded in the essential spectrum.
Again, the strategy consists of first continuing the Evans fundiadh <) for the water-wave prob-

lem analytically inA and continuously im in a neighborhood of the origin, first. As a second step,
we show how this Evans function is related to the Evans function of the Korteweg-de Vries equa-
tion, Ekqv(A). The goal of this step to conclude that for ali> 0 sufficiently small,£ possesses

at most three zeroes in a neighborhood of the origin — exploiting that the number of zeroes of
an analytic functions is invariant under small perturbations. We then conclude the stability proof
exhibiting two explicit eigenvectors in the kernel and an explicit principal vector in the generalized
kernel.

We start with some notational preliminaries for the asymptotic equatif at co. The eigenval-
ues of the linear equation on the right side of (6.13)at 0, |{| = co are(s = {, = 0, a double
zero eigenvalue, ang; = —+/8 and¢,, = /3. The zero eigenvalue is geometrically simple with
eigenvector1,0,0,0)7.

The central observation now is that fére # 0 the zero eigenvalues unfold smoothly:
1
s = —552A +0(e?A?),  Cu=2A+ O(A% +&°A).

These expansions are readily computed from the Newton polygon to (6.14), with leading order con-
tribution —Z? + 2AZ + ¢*A*. Eigenvectors are smooth as well and givereby-= (-1, ¢;, (7, ()

for j = s,u,ss,uu. Fore > 0,Re A > 0, the stable eigenspace is spannedBy= span {e, ess }

and the unstable eigenspaceBY = span {e,, eyu}. At A = 0, we find a nontrivial intersection

of stable and unstable subspaé#sn E" = span {es} = span {ey }.

We emphasize that this smooth unfolding is non-generic: in a typical unfolding of the Jordan block
with a parameten\, the eigenvalues are smooth functions,6k! The smooth unfolding, here, is

due to reversibility: in the scaled dispersion relation (6.14), there is no lineartewhich would

make the leading order contribution in ti'e A Newton polygon for (6.14) to be Z2 + A = 0,

with Z ~ v/A. Reversibility implies invariance of the dispersion relation under~ —Z and

A — —A, for all £! It is this symmetry which excludes linear terms/An

We next show, that the subspadg¥¢) and E*(¢), constructed for\ outside a neighborhood of
zero above, can be continued analyticaliimnd smoothly ire across this neighborhood.

Lemma 6.8 The Evans functio&(A; <) to the scaled linearization about the solitary wave in the
water-wave problern6.14)possesses an analytic extension into an open neighborhood of the origin
|A| < 1vp, which depends continuously er> 0 sufficiently small. The neighborhood is uniform in

e, that is,y does not depend an> 0.
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Proof. The construction very much relies, in the spirit of the gap lemma, Theorem 5, on a stable
manifold theorem. However, we cannot apply the gap lemma directly, since additional hyperbolic
eigenvalues are present, which actually are in resonance with spatial convergence of the coefficients
atA = 0.

We compactify timeg¢ = log(}j—:), 7 € [~1,1] and obtain a smooth{* in 7~ and analytic in\)
differential equation, suspended with the equatios- 3(1 — 72). The fibersr = +1 andr = —1

are invariant and describe the limiting situatiorf at +oc. In these fibers the dynamics possesses
invariant subspaces which are the linear eigenspaces to the eigerjaljies s, u, ss, uu. In the
T-direction, the asymptotic = +1-subspaces are linearly stable£ +1) and linearly unstable

(r = —1), respectively, with exponential rate25.

The flows insider = 1 andrT = —1 are linear and coincide. Subspaces corresponding to
eigenspaces and generalized eigenspaces are flow-invariant subspaces. For example, the two-
dimensional subspace in= +1 corresponding to the generalized kernelfo£ 0, can be viewed

as a smooth, normally hyperbolic, local center-manifold. Inside this center-manifold, we find the
particularly important flow-invariant subspacgsn {es} in 7 = +1 andspan {e,} in 7 = —1.

The subspaces are analyticArand continuous ia. They possess strong unstable and strong stable
foliations, which are as smooth as the vector field. Indeed, we may smoothly transform variables,
B; +— Bje /¢ to trivialize the flow inside the eigenspace, which consists of a line of equilibria
after the rescaling. The foliations are then given as the strong stable manifolds of the equilibria
in the eigenspaces. Analyticity follows from differentiability and the Cauchy-Riemann differential
equations. We denote By (span {es}) the three-dimensional stable manifold of the subspace
span {es} in the extended phase-spaee B). Analogously, leitV " (span {e, }) denote the three-
dimensional unstable manifold of the subspagen {e,}. By construction, these manifolds are

the smooth continuations @*(¢) andE"(¢), that we already constructed in the regi@aA > 0:
WS(span {es}) N {7 = 0} = E*(0) andW""(span {e, }) N {r = 0} = E"(0). Choosing analytic
bases in these subspaces, and evaluating the determinant, we have continued the Evangsfunction
into a neighborhood of the origift = 0 smoothly, analytically im\ and continuously in. |

Remark 6.9 The above construction does not show, that we can smoothly single out a particular
one-dimensional subspace of initial conditions which convergep#o {e, } or span {e,} faster

than the other solutions — which is part of the proof of the gap lemma; see the proof of Proposi-
tion 6.3. In fact, we believe that this is in general impossible, since precisely at the aXigin),

the contracting and expanding eigenvaldgsand(,, are equal to the rate of exponential approach

in the&-direction, which makes it impossible to single out a strong stable or unstable direction.

The next step provides an expansion§dn; 0) nearA = 0.
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Lemma 6.10 There exists a nonzero coefficiéht=£ 0 such that

E(A;0) = EA3 + O(AY).

Proof. Fore = 0, the linear equation (6.13) possesses a skew-product structure, already exploited
in the previous paragraphs (1) and (11).

In the KdV-subspace, the dynamics are independefofStable and unstable subspaégs;,; (0)
andEy 4y (0) are well-defined. We may choose particular bases

Eiav(0) = span {Biav(0)},  Ekay(0) = span {Bigy (0), Bray(0)}
such that solutions in the KdV-subspace with these initial conditions satisfy

e B (E) — gy for € — oo
e BRIV (E) — bRy foré — —oo

e BRav(€) — bkay foré — —oo.
From these solutions, we are going to construct a basis of stable and unstable subspaces for the full
water-wave problem (6.14);°(0) and £%(0). We start withE5(0). First, B%(1,0,0,0)" is a¢-
independent, bounded solution and belong&t@). The second basis vector is readily computed
from B,y (£). Define

3
By (e) = / (B )1 (s)ds

and

(BY(€), BS(€), BY(€))" = BRav(€).
ThenB> (&) = (B§(€), B{(€), Bs*(€), BS(€))T is exponentially decaying fgr — oo andB%(0)
is the desired second basis vectofif(0).

Similarly, we define
3

B (e) = / (B )1 (s)ds

—00

and
(BY"(€), By"(€), B3"(€))" = Biav (€)-
Then B (&) = (BYY(€), BiH(€), B¥u(€), By (€))T is exponentially decaying fof — oo and
B"(0) € E%(0).
The same construction fd#y; ;;, would give a pole im\ = 0 since the integral diverges due to slow
exponential decay"” = 2A + O(A? + £2A),
Bitav(€) = birave® ¢ +7(¢)
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with (&) = O(el¢"+¥)¢) for ¢ — —oo with somev > 0, uniformly in A close to zero. We therefore
rescale the KdV-eigenvector with and set

We then proceed as f@"" and define

3
Bi() = / (Bitav)1(s)ds + BE(0).
0

with
0

By(0) = % + / r(s)ds.

With this choice ofB{(0), B (&) decays to zero exponentially five A > 0. Note thatB{(0) is
analytic in a neighborhood of = 0 and that, with a suitable choice &f we can arrange to have
Bj(0) =1+ O(A).

(B1(€), B3(€), BS(€))" = Bitav (6).
Then BY(¢) = (By(€), BY(€), BY(€), By(€))T is exponentially decaying fof — —oo and
ReA > 0andB"(0) € E'(0).

The Evans function for the water-wave problem is then given by the determinant
E(A,0) = det(B"™, B, B®, B®).
Exploiting thatB®(0) = 1, we find that
E(A,0) = det(Bihy, Bitav, Biav) = A€kav(A).

Together with Theorem 6 for the Evans function of the KdV equation, this proves the lemrma.

Geometrically, the unfolding of the subspaces is as follows, roughly speaking. £av, B" and
B?® coincide andB® and B"" can be assumed to coincide as well. The weak directiBhand B"
cross transversely ih = 0, contributing a factoA to £. The strong direction8%* and B"* unfold
with quadratic tangency, just as in the KdV-equation, contributing a factdo £.

By continuity ine and analyticity inA, Lemma 6.8, we conclude using Ro@htheorem that for

e > 0 small,£(A; e) possesses precisely three roots close to the origin, counted with multiplicity.
The following lemma therefore shows that there are indeed no unstable eigenvalues in a small
enough neighborhood of the origin.

Lemma 6.11 The Evans function for the water-wave probléf; ¢) possesses a triple root in the
origin for all £ > 0 sufficiently small.
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Proof. LetA = 0. We find fore > 0 atwo-dimensional intersection &f (0) andE*(0), generated

by the derivative of the solitary wave and the translation of the potefitjal 0,0)”. Indeed, by
construction, Lemma 6.8, any bounded solution necessarily lies in the intersection, since solutions
which atA = 0 do not belong to the intersection grow at least linearly. From Galilean invariance,
we find the exponentially localized derivative of the solitary wave with respect to the wave speed
as a principal vector to the derivative of the solitary wave. Following [PW92], we conclude that
E(A;e) possesses at least a triple zerd\in= 0. On the other hand, Lemma 6.10 shows that the
multiplicity is at most three. This proves the lemma. |

6.3 Proof of Proposition 6.1

We conclude the proof of absence of point spectrum in the right half plane. First, we showed in
Section 6.1 that there are no unstable eigenvalues in a neighborhood of the imaginary axis, up to
possible eigenvalues with large imaginary part or in a neighborhood of the imaginary axis. We then
showed in Section 6.2.2 that eigenvalues in a neighborhood of the imaginary axis necessarily scale
with £3, justifying the Korteweg-de Vries scaling. Finally, we showed in Section 6.2.4 that in the
Korteweg-de Vries scaling, there are no unstable eigenvalues. The main part was a perturbation
argument, based on the construction of an analytic Evans function. We showed that any eigenvalue
is a root of an analytic functiofi(A; e). We then continued (A; ) analytically in an open neigh-
borhood ofA = 0, for ¢ > 0. Lemma 6.10 showed that there are at most three eigenvalues in a
neighborhood of zero, counting multiplicity, and Lemma 6.11 showed that all three eigenvalues are
located in zero, fot > 0 sufficiently small. This proves spectral stability up to possible eigenvalues
with imaginary part tending tec ass — 0, Proposition 6.1.
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