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Abstract

The numerical computation of solitary waves to semilinear elliptic equations in infinite
cylinders is investigated. Rather than solving on the infinite cylinder, the equation
is approximated by a boundary-value problem on a finite cylinder. Convergence and
stability results for this algorithm are given. In addition, it is shown that Galerkin
approximations can be used to calculate solitary waves for the elliptic problem on the
finite cylinder. The theoretical predictions are compared with numerical computations.
In particular, post buckling of an infinitely long cylindrical shell under axial compression
is considered; it 1s shown numerically that, for a fixed spatial truncation, the error in
the truncation on the length of the cylinder scales in accordance with the theoretical

predictions.
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1 Introduction

The numerical computation of solitary-wave solutions to elliptic systems
Upy + Ayu~+ ¢g(y, u, up, Vyu) =0,  (z,y) € R x Q, (1.1)

in infinite cylinders R x €2 is investigated. Here, v € R™, and ) is an open and bounded

subset of R™ with Lipschitz boundary. Appropriate boundary conditions
R((uv Uy Vyu)h:{xaﬁ) =0 (12)

on R x 99 should be added. Solitary waves are solutions h(z,y) satisfying

im Az, y) = pe(y)

uniformly for y € Q. In applications, they frequently arise as travelling waves h(z — ct, y)

for parabolic equations
U = Upy + Ay + g(y, u,ug, Vyu),  (2,y) € R X Q. (1.3)

These applications include problems in structural mechanics such as shells and struts,
chemical kinetics, combustion, and nerve impulses; see, for instance, [32] and the compre-
hensive bibliography there. Analytically, the existence of solitary-wave solutions exhibiting
non-trivial structure in the direction of the cross-section is still a largely open problem.
Existence has been proved in many cases for small solutions using center-manifold theory
[19, 25]. In special cases, it may be possible to exploit maximum principles [1, 2, 17] and
variational structure [27, 28]. Another approach establishing existence of front solutions

uses topological methods [10, 12].

Suppose that h(z,y) is a solitary wave which satisfies (1.1-1.2). In order to calculate h
numerically, the problem on the infinite cylinder R x ) has to be approximated by a suitable

system
Upy + Ay + g(y, u,uy, Vyu) = 0, (z,y) € (T-,T4) x Q (1.4)
R((u, uz, Vyu)lr_ ry1x00) = 0,
posed on a finite cylinder. Here, we have to specify appropriate conditions
R_((u, ue, Vyu)l1_yx0) = 0, (1.5)
Ry ((u, up, Vyu)l i1y 3x0) = 0,

at the boundaries induced by the truncation of the cylinder axis. The issue is then to
determine whether equation (1.4-1.5) has a unique solution close to the solitary wave h,

and if it does, to derive estimates for the error caused by the truncation.



In this article, we give sufficient conditions on the equation and the boundary conditions
(1.5) such that the aforementioned algorithm works. Boundary conditions which satisfy
these conditions are called admissible. One implication of our assumptions is that the
solitary wave h(x,y) converges exponentially towards py(y) as |z| — oo uniformly in y € Q.
The difference of the solution k7 of (1.4-1.5) and the solitary wave h can then be estimated
by

|h = hr| < CIR-(hl{7_1x0)l + [B4(Rl{1,3x0)]);

in appropriate norms, where the positive constant C' does not depend on 7_ and T;. Here,

the right-hand side converges to zero exponentially as |T_|, Ty — oc.

In order to prove this result, we interpret the variable z as time, and write (1.1) as a

(vi) - (—Ayu —g(y,u,v, Vyu))' (1.6)

Here, for each fixed 2 € R, (u,v)(x)is a function of y € Q contained in some function space

first-order system

depending on the boundary conditions on 0€2. A solitary wave of (1.1) corresponds to a
homoclinic or heteroclinic solution of (1.6) which connects the equilibria p_(y) and p4(y),

that is, we have

lim (f(x), he(2)) — (p+,0) (L.7)

r—too
in the underlying function space. We then investigate the truncated boundary-value prob-

lem by replacing (1.7) by a condition of the form
Ro((u,0)(T2)) =0, Ry((u,0)(T4)) = 0. (18)

The key for solving the resulting boundary-value problem are exponential dichotomies for

Uy, 0 id o
= , (1.9)
Vg -Ay — Dyg - Dv,ugVy Duy,g v

of (1.6) about the solitary wave (h(z),h;(z)). Here, derivatives of g are evaluated at

the linearization

(y, h, by, Vyh). Exponential dichotomies are projections onto z-dependent stable and un-
stable subspaces, say E°(z) and E%(z), such that solutions (u, v)(z) of (1.9) associated with
initial values (u,v)(zo) in the stable space F*(zg) exist for 2 > ¢ and decay exponentially
for # — oo. In contrast, solutions (u,v)(x) associated with initial values (u,v)(zo) in the
unstable space E%(zg) satisfy (1.9) in backward z-direction 2 < ¢ and decay exponen-
tially for decreasing z. In the context of elliptic equations, the stable and unstable spaces

are both infinite-dimensional. Existence of exponential dichotomies for ordinary, parabolic



or functional differential equations is well known. For elliptic equations, existence has re-
cently been proved in [26] using a novel functional-analytic approach. The results in this
latter article then allow us to solve the truncated boundary-value problem and to derive

the aforementioned error estimate.

It remains to actually solve the truncated boundary-value problem. There are two differ-
ent ways of accomplishing this task. Firstly, we concentrate on the elliptic formulation.

Consider, for instance, equation (1.1) with Dirichlet boundary conditions, that is,
Upy + Ayu+ g(y, u,up, Vyu) = 0, (2,y) € R XQ
ulrxoa = 0,

and assume that the solitary wave converges to zero as |z| tends to infinity. We may then
want to take Dirichlet boundary conditions for the artificial conditions (1.5) which results

in the truncated problem

Upy + Ayu + g(y, u, up, Vyu) = 0, (z,y)€ (1T-,T4) X Q
ulpr_riyx) = 0.

This system can now be discretized using finite differences or finite elements. Of course,
the same procedure works for Neumann or periodic boundary conditions provided they are
admissible. Secondly, we could take a dynamical-systems point of view and consider the
first-order system (1.6-1.8). We now discretize only in the cross-section € and obtain a

large system of ODEs

SN
-~
8 8
~—
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Qn( Ayu—g(y,u,v Vu))
R_((u,v)(T-)),
0 = Ri((u,0)(T4)),

defined on R(Q),) where the Galerkin projection @, projects the function space in £ onto

=)
ll

w, v

w, v

a finite-dimensional subspace. ODE codes such as HOMCONT, see [7, 9], can then be used

to solve the resulting boundary-value problem.

Often, elliptic equations have an additional reflection symmetry. For instance, consider the

fourth-order equation
Ugrzr + Af/u + 9(y, u, Ugy, Ayu) =0,  (z,y) € R X Q, (1.10)

which is included in our general set-up. The Zg-symmetry u(z,y) — u(—z,y) leaves
(1.10) invariant. This symmetry manifests itself as a time-reversibility S : (u, v, va, v3) —

(u, —v1,v9, —v3) for the associated dynamical system

(uv vy, V2, v-?))l’ = (vlv V2, V3, _Agz/u - g(y7 u, vz, Ayu))



It is shown that the algorithm given above can be adapted to this situation. We also remark

that our results apply to parabolic equations
w = Au+ g(u, Vu), z€Q,

with £ C R™ bounded and open. Here, we are interested in the computation of homoclinic

or heteroclinic solutions h(t,2) which satisfy lim;_ 1o h(t,2) = ps(2).

For ordinary differential equations, well-posedness of the truncated problem has been inves-
tigated by Beyn [4], and Doedel and Friedman [11] for very general boundary conditions.
In addition, error estimates have been derived in these articles. Hagstrom and Keller
[15, 16] considered elliptic problems of the form (1.1) assuming that (1.9) has an exponen-
tial dichotomy. They investigated the so-called asymptotic boundary conditions. These
conditions select precisely those solutions converging to pi(y) as @ — foo. In particu-
lar, the solution of the truncated problem coincides with the true wave h on the infinite
cylinder. The actual calculation of the asymptotic boundary conditions, however, involves

again certain approximations which were not investigated in [15, 16].

As a concrete application, we consider the post buckling of an infinitely long cylindrical shell
under axial compression as modeled by the von Karman—Donnell equations. In [22, 23] and
[24] solitary-waves were computed as solutions representing localized buckling patterns and
it was shown that these solutions provide a good approximation to the localized buckling
pattern observed in experiments on long shells. The numerical procedure involved the
reduction to a truncated boundary-value problem and its discretization using Galerkin
approximation as discussed above. Here, we show numerically that, for a fixed spatial
truncation, the error in the truncation on the length of the cylinder scales in accordance

with our theoretical predictions.

This paper is organized as follows. Section 2 contains the general set-up and the main
results. We summarize the results about exponential dichotomies from [26] in Section 3.
The theorems on Galerkin approximations and the truncated boundary-value problem are
proved in Sections 4-6. We show in Section 7 that our results apply to semilinear elliptic
equations. Numerical simulations and a comparison of the numerical and theoretical error
are presented in Section 8. Finally, the application to the von Kirman—Donnell equation

is given in Section 9.

Acknowledgements BS is grateful to Andrew Poje for helpful discussions on discretiza-
tion issues and for allowing us to use his conjugated-gradient solver. DP was supported by
the Deutsche Forschungsgemeinschaft (DFG) under grant Schn426/5-1. GJL was supported
by the EPSRC, UK.



2 Main Results

2.1 The Setting

Assume that A is a closed operator defined on a reflexive Banach space X with dense
domain D(A).

Let B € £(X) be any bounded operator. We say that A and B commute if Bu € D(A) for
any v € D(A) and AB = BA on D(A).

Hypothesis (A1) Suppose that there is a constant C' such that

1A =N gx) <

14+ [A]

for all X € R. Assume that there is a projection P_ € LX) with the following properties:
A~Y and P_ commute, and there exists a 6 > 0 such that Re A < —é for any A € spec(AP_)
and Re A > § for any \ € spec(A(id —P_)).

Throughout, €' denotes various different constants all independent of T_ and T.

Sufficient conditions for the existence of the projection ]3_, which is sometimes referred
to as the Calderon projector [6], have been given in [5, 13]. We also refer to the explicit

construction of the projections for semilinear elliptic equations in [26, Section 6].

Define Py =id—P_ and A_ = —P_A, Ay = P; A, and let X_ = R(P_) and X, = R(P,).
Here, range and kernel of an operator L are denoted by R(L) and N(L), respectively. By
Hypothesis (A1), the operators A_ and A, are sectorial with their spectrum contained in
the right half-plane. Therefore, for a > 0, we can define the interpolation spaces X¢ =
D(AY) and X = D(AY), see [18]. Finally, we set X* = X§ x X®. We denote the norm
in X* by |- |, and the operator norm in £(X®) by || - |lo. The projection P_ is then in
LX) for any a < 1.

In addition, we assume that A has compact resolvent.
Hypothesis (A2) The operator A=! € L(X) is compact.

In the following, we consider the abstract evolution equation
o= Au+ f(u,p), (u,p)€ X*xXR (2.1)

for some fixed a € [0,1) and for f € C?(X* x R, X'). We say that u(¢) is a solution of (2.1)
on the interval [0,7) if

e CH(0,T),X)n C°(0,T), D(A)NCO([0,T), X*)

5



and u(t) satisfies (2.1) in X for ¢t € (0,7)). We assume the existence of a hyperbolic

equilibrium and of a homoclinic orbit for p = 0.

Hypothesis (H1) FEquation (2.1) has a hyperbolic equilibrium py € D(A) for p = 0. In
particular, A+ D, f(po,0) meets Hypothesis (A1).

Hypothesis (H2) Let h(t) € CY{R,X*) N0 C°R, X"') be a homoclinic solution of (2.1)
for i =0 with h(t) — po as |t| — co. We assume that h(t) is non-degenerate, that is, h(t)

s the only bounded solution, up to constant multiples, of the variational equation
v = Av+ Dy f(h(t),0)v (2.2)

about h(t).

Next, we introduce the adjoint variational equation
0= _(A* + Duf(h(t)v 0)*)?]7 (23)

about the homoclinic solution h(?). To describe the asymptotic behavior of solutions of

(2.2) and (2.3), we have to assume forward and backward uniqueness.

Hypothesis (A3) The only bounded solution of (2.2) and (2.3) on R or R~ with v(0) = 0

is the trivial solution v(t) = 0.

Hypotheses (H2) and (A3) imply that the adjoint equation (2.3) has a unique, up to scalar
multiples, bounded solution #(¢) on R. Finally, we assume that the Melnikov integral

associated with h(¢) does not vanish.
Hypothesis (H3) M := [*_(4(1), D, f(h(1),0)) di # 0.

2.2 The Galerkin Approximation

First, we show persistence of the homoclinic orbit h(¢) under finite-dimensional Galerkin

approximations of equation (2.1). We may think of a Galerkin approximation as a family
of projections denoted by @, € L(X) for p > 0. Here, Q¢ = id, while ¢, will have

finite-dimensional range for p > 0 and approximates the identity in a weak sense.

Hypothesis (Q)

(i) A commutes with Q,.



(i) The norms [|Q,l|z(x) < C are bounded uniformly in p.

(iii) For any u € X, we have |Q,u — ulop — 0 as p — 0.

It is a consequence of Hypothesis (Q)(i) that A°Q, = Q,A%. Therefore, we have @), €
L(X) and [|Q,]|z(x+) < C independently of p > 0. Furthermore, |Q,u—ul, — 0asp— 0
for any v € X¢. In order to obtain uniform convergence of the Galerkin approximation,

we assume compactness of the nonlinearity f.

Hypothesis (C) If ), # id for some p > 0, we assume that f : X* X R — X is a

compact map.

The next theorem shows the persistence of the equilibrium and the homoclinic orbit under

the Galerkin approximation
o=Au+Q,f(u,p), (u,p)€ X xR, (2.4)

of equation (2.1).

We emphasize that the subspaces R(Q,) and N((),) are both invariant under equation
(2.4). For initial data ug € (id —Q),)X?®, equation (2.4) reduces to the linear equation

i = Au, which has no bounded solution on R except u = 0.

We also remark that the norms on ¢),X“ and (),X are equivalent, but the equivalence
constants tend to infinity as p — 0. Therefore, estimates which are uniform with respect

to p can only be expected in the X“-norm.

Theorem 1 Assume that Hypotheses (A1)—(A3), (H1)-(H3), (C), and (Q) are satisfied.
There are then posilive numbers pg, 69, and C such that the following is true for any

0<p<poand|u| < bp.
(1) Equation (2.4) has a hyperbolic equilibrium p,(p) € R(Q,) with po(0) = py and

Po(1) = pola < C(I(d =Q,)pola + |1])-

(i1) For every p, there exists a yu, such that equation (2.4) has a non-degenerate homoclinic

orbit h,(t) € Q, X with h,(t) — p,(p,) as [t| — oo, and

[1tp] + sup |h,y(1) — h(1)]o < Csup|(id —=Qp)h(t)]a-
teER teR

(711) Besides p,(11) and h,(t), there are no other equilibria or homoclinic solutions of (2.4)
in the open set {(u,p) € X X R; |p| + infren |u — h(t)]|a < b0}

7



We denote the spectral projections associated with A+ D, f(po,0) and A+Q, Dy f(p,(1t), 1)
in X% by Py and Py ,(p), respectively. In particular, P_ and P_ ,(u) project onto the
stable eigenspaces corresponding to eigenvalues with negative real part of A + D, f(po,0)

and A+ Q,Dyf(p,(1), ft), respectively.

2.3 The Truncated Boundary-Value Problem

Here, we investigate the numerical computation of the homoclinic orbits A, of the Galerkin
approximation. The approach most commonly used consists of truncating the infinite
interval R to a finite interval [T_,T4] for some T_ < 0 < T4 and imposing boundary

conditions at the end points ¢ = T_ and ¢t = Ty. The truncated boundary-value problem

is given by
o — Au—Q,f(u,p)
Ry(u(Ty ), u(T-) ) | =0 (2.5)
JT0(u, 1)

fort €T = (I_,1%). Here, Jr , denotes a phase condition and R, encodes the boundary

conditions. They have to satisfy the following conditions.

Hypothesis (T1)

(i) Jr,: CO(T,X*) x R — R is of class C%, and Jr ,(h,,p,) — 0 as |T_|, Ty — oo.
Furthermore, there is a constant dy > 0 independent of T_, Ty and p such that
DuJTW(hP,up)BP > do > 0 for all |T_|, Ty sufficiently large. Finally, D,Jr ,(u,p)
and D2Jr ,(u, ) are bounded in a ball in CO(T,X*) x R of fized radius centered at
(hp,ptp) uniformly in T_, Ty, and p.

(ii) We have R, € C*(X*x X* xR, X%) such that DR, and D*R, are bounded in a small
ball centered at (p,(1p), Pp(1p), fp) 1 X X X¥ X R uniformly in p. Furthermore,

Doy Rp(Po(hep)s Poltip)s 1) |R(P+,p(up)) X R(P—,o(1p))

s invertible, and the inverse is bounded uniformly in p.

Note that A(:) and h,(-) are contained in C°(T, X®). Therefore, the condition on J in
(T1)(i) makes sense.

Remark 2.1 The boundary conditions are often separated, that is, given by

Ryl suagt) = Ry ot 1), Be () € R(Py (1)) % R(P- (1)) = X°.



If the operators Dy Ry ,(py(fip); 14o)|R(Py p(np)) @T€ invertible, and the inverses are bounded

uniformly in p, then the invertibility condition in Hypothesis (T1)(ii) is also satisfied.
We have the following theorem.

Theorem 2 Assume that (A1)-(A3), (H1)-(H3), (C), (Q) and (T1) are met. There exist
positive numbers pg, n and C' such that for all sufficiently large intervals T the following is

true. For any p € [0, po), the boundary-value problem (2.5) has a unique solution (h,(t), fi,)
in the tube

{um) € OO T, X % Rl 4 sup[u(t) — A(0)]a < ),
te[T-,T4]

and

o = ol + sup  hp(t) = Bplt + y1p)la < CLRo(hp(T4), ho(T-), prp)la
tE[T_,T+]

for an appropriate small number vy ,.

Combining Theorems 1 and 2, and exploiting Hypothesis (T1), we obtain the following

corollary.

Corollary 1 Under the assumptions of Theorem 2, we have the estimate
Al + s (B (D) —h(Oa < C(IR(A(T), h(T-), 0]+ sup|(id =@, )h(D)].)
te[T_T4] teR

for the difference of the true homoclinic orbit b and the numerical approximation h obtained

by solving the boundary-value problem on a finite interval for the Galerkin approximation

of (2.1).
The error estimate can be made more explicit.

Corollary 2 Under the assumptions of Theorem 2, we have the estimate
|fip| +  sup |Bp(t) = h(t)]a < C(e_/\ST+ +eM T 4 sup [(id =@ ,)h(1)]a),
tE[T_,T+] teER

where the constants \* and \* are chosen such that A ¢ spec(A+ Dy f(po,0)) for any A € C
with Re A € [—A%, AY].

We point out that the case ¢}, = id for all p is included in the analysis. It corresponds to
truncating equation (2.1) directly without going to a finite-dimensional approximation. A
more analytical consequence of Theorem 2 is the existence of periodic solutions with large

period near the homoclinic orbit h.



Corollary 3 Assume that (A1)-(A3) and (H1)-(H3) are met. There is then a constant
T > 0 such that (2.1) has a periodic orbit (w,,p;) with minimal period T for any T > T..
Furthermore,

e+ sup  Jun(t) = h(t)]o < C(e7 4 M),
te[—%ﬂ',%ﬂ']

where the constants A®° and A" are as in Corollary 2.

Proof. Consider the phase condition Jr(u) := (p,u(0)) where ¢ € (X®)* is chosen

such that (p,(0)) = 1. The boundary condition is R(uy,u_,p) = uy — u_. Since
R(Py) x R(P-) = X%, Hypothesis (T1) is satisfied, and we can apply Theorem 2 with
(), = id for all p. |

This corollary has been proved for ordinary differential equations in [3] and [21]. The proof
given in [21] also covers parabolic and functional-differential equations. Our contribution

is the extension to elliptic equations.

2.4 The Algorithm in Practice

In practice, the Galerkin approximation is considered on the finite-dimensional space
R(Q,), that is,
i=Aq+Quf(a. 1), (a,1) € R(Qp) X R. (2.6)

If X is a Hilbert space, the phase condition may be chosen according to

Ty .
Trata) = [ "0, a(t) = ho(0)x di. (2.7)

For the boundary conditions, we may take, for instance, the projection boundary conditions

which are defined by

Ry p(q(Ty), 1) = Quo(1)(q(Ty) = pp(p)), (2.8)
R_,(q(T-),p) = Q- (1)(q(T-) = p,(p)),

where Q4 ,(p) and Q4 ,(pt) are the unstable and stable spectral projections in R((Q),) of
the operator (A + Q,Duf(p,(1), 11))|r(Q,- We have the following result for the finite-

dimensional boundary-value problem on R(Q,) described above.

Theorem 3 Assume that (A1)-(A3), (H1)-(H3) and (C) are met where X is a Hilbert

space. There exist positive numbers pg, 1, and C such that for all sufficiently large intervals

10



T the following is true. For any p € [0, po), the boundary-value problem (2.6-2.8) on R(Q,)

has a unique solution (h,(t), fi,) in the tube

{(g. 1) € COT-, T4), R(Q,)) X R; |ul +  sup  |q(t) — h(t)]o < 7},
te[T_T4]

and

|ﬂp| + sup |Bp(t) - h(t)|a < 0(6_2A5T+ + M- + sup |(id _Qp)h(t)|a)v
tE[T_,T+] teER

for numbers A° and A* as in Corollary 2.

We point out that super-convergence in the parameter occurs. Indeed, following the proof

given in [29], we have

gl OB 4 BT 4 aupl i -Q R0

2.5 Reversible Systems

In applications, elliptic equations are often time-reversible. Here, we account for this prop-
erty, and adapt the algorithms described above to reversible systems. Consider equation
(2.1)

o= Au+ f(u), uwe X (2.9)

Time-reversibility is encoded in the following hypothesis.

Hypothesis (R) Suppose that S € L(X) is a bounded operator such that

(i) S anti-commutes with A and f, that is, SA = —AS and f(Su)= —Sf(u) on D(A).
(i) % = id.

(7i1) S commutes with (), for all p.

We remark that § € £(X®) on account of (R)(i). Finally, we assume that the homoclinic

solution h(t) is symmetric and a certain transversality condition is satisfied.

Hypothesis (H4)
(i) Sh(0) = h(0), that is, h(0) € Fix(\5).

(ii) Fix(5) & R(¢5(0,0)) = X°.

11



Here, ¢% (t,7) denotes the stable evolution of the variational equation (2.2) about h(t); see

Theorem 5 below. We then solve the boundary-value problem
i= At @i, (d=S)u(0)=0, Ry, (u(Ty)) =0, (2.10)

on the interval [0,77].

Hypothesis (T2) Suppose that Xp are closed subspaces of X*. Assume that Ry , €
C?(X°xR, X,) such that DR, and D*R,, are bounded in a small ball centered at (p,(11,), t,)
m X x R uniformly in p. Furthermore, DuR-|-7p(pp(,up)7HP)|R(P+7P(MP)) s tnvertible, and

the inverse is bounded uniformly in p.

Theorem 4 Assume that (A1)-(A3), (H1)-(H2), (H}), (C), (Q) and (R) are met. Sup-
pose that R, , satisfies (T2). The boundary-value problem (2.10) has then a unique solution
Bp for all Ty sufficiently large and p small enough. Furthermore, BP(O) € Fix(9) is sym-

metric, and

sup |hy(t) = h(t)la < C(|[Ry p(A(T4))]a + sup [(id =Qp)h(1)]a).
t€[0,7] teR

The statements of Theorem 1 and 3 are also true for (2.10) if adapted appropriately.

Corollary 4 Assume that (A1)-(A3), (H1)-(H2), and (R)(i) and (ii) are met. There is
then a constant 7. > 0 such that (2.9) has a periodic orbit u, with minimal period T for
any T > Ty. Furthermore,
sup  |u (1) = h(t)|o < Ce™7,
te[—%ﬂ',%ﬂ']

where the constant A is as in Corollary 2.

Proof. We apply Theorem 4 with Ry(u) = 3(id—S)u and X = R(@id-5). By
Dunford-Taylor calculus and (R)(i), we have SPy = P_S. Moreover, due to (R)(ii),
v € R(id—9) implies Sv = —v. Using these facts, it is then straightforward to show
that Py(id —9)|rp,) = idrp,) and (id =S)Py|ria—s)y = idrGa—s). Hence, Hypothesis
(T2) is satisfied. It follows as in [31] that the solution of this boundary-value problem is
periodic. Note that A* = A due to reversibility. |

2.6 Computation of Heteroclinic Orbits

We emphasize that the results presented thus far also apply to heteroclinic orbits, that

is, solutions connecting two different equilibria py as ¢ — +oo. Here, we briefly outline

12



the necessary changes. Suppose that py are hyperbolic equilibria of (2.1) which satisfy
Hypothesis (H1). Furthermore, assume that h(t) satisfies (H2) but with lim;_ 4, h(?) = px.
In particular, (H2) implies that the heteroclinic orbit h(t) is isolated. Next, we assume
that (A1)-(A3) are met. As a consequence of (H2), (A3) and [26, Corollary 1], the adjoint
variational equation (2.3)

b= —(A* + D, f(h(1),0)")v

about the heteroclinic orbit h(¢) has only finitely many, linearly independent bounded
solutions ;(t) for j = 1,...,m on R. Hypothesis (H3) is then replaced by the following

assumption.

Hypothesis (H5) Let pp € R™ and assume that the m X m matriz M with entries
M;j = [0 (¥i(t), Dy, f(A(1),0)) dt is invertible.

Note that Hypothesis (H5) is automatically met if m = 0, that is, if the heteroclinic orbit

is transversely constructed.

With Hypothesis (H3) replaced by (H5), Theorem 1 remains true. Let py ,(p) denote
the perturbed equilibria for (2.4). We denote the spectral projections of A + D, f(p—,0)
and A+ Q,D,f(p- ,(1), 1) onto the stable eigenspaces corresponding to eigenvalues with
negative real part by P_ and P_ ,(u), respectively. Similarly, Py and Py ,(p) are the
spectral projections of A + D, f(p4,0) and A+ Q, D, f(p+,,(1), 1), respectively, onto the

eigenspaces corresponding to eigenvalues with positive real part.

Suppose that the boundary conditions are given by

Rty umspt) = (R g o)y Be p(uss 1) € R(Py (1)) % R(P-5(11,).

We assume that Dy, Ry ,(px o(1p), f1p)|R(Py () 18 invertible, and the inverse is bounded
uniformly in p. If Hypothesis (T1)(ii) is replaced by this assumption, the results in the

previous sections remain true.

3 Exponential Dichotomies — an Excursion

Here, we summarize the results in [26] which are the key to the proofs of the theorems

presented in the last section.

Assume that the operator A is as in Section 2, that is, A : D(4) C X — X is a closed
operator such that its domain D(A) is dense in X. Furthermore, A satisfies Hypotheses
(A1) and (A2). Moreover, let B € C%(R,L(X*, X)) be a continuous family of operators.
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Consider the differential equation
v =(A+ B(t))v. (3.1)
We are particularly interested in solutions v(¢) with some prescribed exponential behavior

forte Rt andt € R™.

Definition (Ezponential Dichotomy)

Fquation (3.1) has an exponential dichotomy in X< on the interval J C R if there exist
positive constants C' and r, and operators ¢*(t,7) and ¢"(7,t) in L(X) defined fort > 7
with t, 7 € J such that the following is true.

(i) For any v € X<, ¢*(t,7)v is a solution of (3.1) for t > 7 in J. Similarly, $*(t,7)v
is a solution of (3.1) for t <1 in J.

(i1) For any v € X<, ¢*(t,7)v and ¢"(7,t)v are continuous int > 7 in J.
(iii) ||6°(t, T)||o + |6%(7, V)||o < Ce™ =7 for allt > 7 in J.
(iv) ¢*(t,7)p°(T,8) = ¢°(t,s) for all t > 7 > s in J, and the analogous property for

¢*(7,1).

Note that the operators P(t) = ¢°(t,t) are projections. We assume that B(t¢) is small for

large |t|. The constant € is specified in Theorem 5 below.

Hypothesis (D1) There are numbers ¥ > 0 and t. > 0 such that B € C%’(R, L(X*, X))
and || B(t)|| c(x=,x) < € for all [t| > t..

Finally, we assume forward and backward uniqueness of solutions of equation (3.1) on the

interval R.

Hypothesis (D2) The only bounded solution v(t) of (3.1) on the intervals Rt or R~
with v(0) = 0 is the trivial solution v(t) = 0. Similarly, the only bounded solution w(t) of
the adjoint equation w = —(A + B(t))*w on R or R™ with w(0) = 0 is w(t) = 0.

We then have the following existence result for exponential dichotomies of (3.1).

Theorem 5 ([26]) Suppose that Hypotheses (A1)-(A2) and (D2) are satisfied. There is
then a constant ¢g > 0 such that (3.1) has an ewponential dichotomy on RY provided
Hypothesis (D1) is met with € = €.
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(i) The projections P(t) = ¢*(t,t) are Holder continuous int € RT with values in L(X*).

(i) The operator ¢*(t,7) has a bounded extension to X satisfying ¢°(t,7)¢°(T,s) =
¢*(t,s) forallt > 7> s>0.

(iii) 6*(1.7) € LOX.X%) for ¢ > 7 and [6°(t, Dl|epr,xey < C(t = 7)72 ),

Analogous properties hold for ¢*(7,t) witht > 7 > 0.

The same results is true with R™ replaced by R™. We denote the evolution operators by
¢5.(t,7) and @y (7,t) for t > 7 > 0, and by ¢ (7,1) and ¢*(t,7) for t < 7 < 0. Finally, we

compare the evolution operators for two different equations.

Lemma 3.1 ([26]) Suppose Bi(t) and Bs(t) satisfy the assumptions of Theorem 5 on
J = RT. There exist positive numbers C' and n such that the following is true. If

sup || B1(t) — B2 (1) (xa,x) < 1
>0

the projections P;(t), j € {1,2}, which correspond to the equations v = (A+ B;(t))v satisfy

the estimate

sup || P(t) = Pa(t)||z(xay < Cn.
>0

4 The Galerkin Approximation

In this section, Theorem 1 is proved. Throughout, C' denotes various different constants
all independent of T_ and 7T,. We will use the following version of Banach’s fixed point

theorem.

Lemma 4.1 Suppose that Y and Y are Banach spaces and G 1Y — Y is a C-function.
Assume that there exists a linear, bounded and invertible operator L : Y — Y, an element

Yo €Y, and numbers n > 0 and 0 < K < 1 such that
(i) ||id—=L7YDG(y))|| < & for all y € B,(yo),
(ii) |L7'G(yo)| < (1 = K)7.
There exists then a unique point y, € B,(yo) with G(y.) = 0 and
Yo — 9l < (1 =) L7 G (wo)], IDG(y) 7 < (L+w) IL7H],
uniformly in y € By(yo).
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Here, B, (y) is the ball with center y and radius 7 in Y. We start with a useful consequence

of Hypothesis (Q).

Lemma 4.2 Assume that (Q) is satisfied and let K € L(X%, X) be a compact operator.
Then [|(id =Q ) K| z(x2,x) — 0 as p — 0.

Proof. We argue by contradiction. Suppose that there are elements v, € X* and p, > 0
with |v,|, = 1 and p,, — 0 as n — oo such that |(id —Q,, )Kv,|o > 6§ > 0. After choosing

a subsequence, we have Kv, — w in X since K is compact. Hence,

|(id =Qp, ) K vnlo < [(id =Qp, )Jwlo + [(id =@, )(Kvn — w)lo
< |(id =@, )wlo + C|Kv, — w|o — 0,

as n — 0o, due to (Q)(ii). This is a contradiction. [ |

Note that D, f(u,p) is compact for any (u, p) provided Hypothesis (C) is satisfied.

4.1 Persistence of the Equilibrium

In order to show that the equilibrium persists, consider

(A4 Duf(po,0)) " (Alpo + u) + Q,f(po + u, 1))
= wt (A+ Do f(po,0) 7 (Qp(f(po + 1) = f(p0,0) = Duf(po, 0)u)
+(id =Q,)(f(po,0) + Duf(po, 0)u))

= Gp(u, p).
It suffices to seek zeroes of G ,(u,u) near (po,0). The map G is smooth in (u,u) as a map
from X x R to X and satisfies G(0,0) = 0 as well as D,G(0,0) = id. Furthermore,
using Apo + f(po.0) = 0,

Go0,)la < CHA+ Duf(po, 0))HQu(F(pos 1) = F(p0,0)) + (id =Q,) F(po, 0]

C(Jul + (A + D f(po,0) 7 Alid =@, )pola)
C(Jpl + 1Gd =Q, )pola),

and, due to (C) and Lemma 4.2,

IN

IN

194Gt p) = il < DS (o -+ 0,10) = D (p0,0) + (4 =Q) D f (1 O < 5

for all (u,u,p)in a ball in X x R? centered at the origin with sufficiently small radius
n. We apply Lemma 4.1 for any (p,p) in B,(0) C R? with L = id. Hence, there exists a
unique zero p,(p) € B,(po) C X of G (-, 1), with po(0) = po and

Po(1) = pola < C(I(d =Q,)pola + [ul)-
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Furthermore, p,(p) is smooth in p. By construction, p,(p) are equilibria of (2.4). By
Hypothesis (C), Theorem 5, and Lemma 4.2, the equation

b= (A+ QD f(po(p), 1))v

has an exponential dichotomy on R with projections Py ,(p) and P_ ,(p). This proves the
first, and part of the third claim in Theorem 1.

4.2 Persistence of the Homoclinic Orbit

Next, we introduce a new variable v by
u(t) = h(t) + v(t), (4.1)
and write equation (2.4), that is @ = Au + Q,f(u, ), in the form
v = (A4 D, f(h(1),0))v+ F,(t,v,p) (4.2)
= (A+ Duf(h(1),0)v + Duf(h(1), 0+ Fp(t, v, ),

with

Fy(to,0) o= —(1d=Q,)(Duf(h(1),0)0+ Dy f(h(1),0)u + F(h(t),0))
+Q, (SR + v,1) = F(h(1),0) = Dy f(h(1),0)0 = D, f(h(1), 0)ps).

Due to Hypothesis (C) and Lemma 4.2, we have the estimate

1D () Fo (s 05 )l cxe 0y < Cllwla+ |1l) + 9(p), (4.3)
for some function g(p) with g(p) — 0 as p — 0.

On account of Theorem 5 and Hypotheses (A1)-(A3), we know that equation (2.2)
v =(A+ Dy f(h(1),0))v

has exponential dichotomies on RT and R™. As in Theorem 5, we denote the solution
operators of this equation by ¢3(t,7) and ¢{(7,t) for t > 7 > 0, and by ¢°(7,t) and
ov(t, ) for t <7 <0.

Solutions of the nonlinear equation (4.2) are bounded on R if, and only if, there exist

(by,b_) € R(¢5(0,0)) X R(¢*(0,0)) such that

0l) = GO+ [ LB e drt [ LTI ()

o (1) = qﬂ(t,O)b_—|—/Otqﬂ(t,r)Fp(T,v_(T),,u)dT—l—/_tooqbs_(t,T)Fp(T,v_(T),u)dT,
0 (0) = v (0)
0 = (p,v4(0)).

17



Here, ¢ € (X)* is chosen such that (¢, h(0)) = 1. The last equation takes care of the
translational invariance of (2.4). In the first and second equation, we have ¢ € Rt and
t € R, respectively. We remark that it suffices to seek weak solutions of (4.2) since any

weak solution is actually a strong solution, see [26, Lemma 3.1]. Let

Gplby, by vp v, ) =
vy (1) = 95 (,0)by — Jo &% (6, T) (7, 00 (1), ) dr = [2, ¢4 (8, TV E)(T, v4(7), p) dr
v (1) = ¢4 (1,00 — Jg 6L (t, T Fy(T, 0-(7), ) dr — [L 62 (8, 7)Fy(r, v(7), ) dr
by — b — f5° ¢L(0, ) Ey(r, vy (), p) dr — 202 (0,7)Fy(7, 0 (7), 1) dr
(9, 8%(0,0)by — [~ @4(0, ) Fp(T, v4(7), ) d7)

and consider GG, :Y — Y for fixed p as a map defined on the spaces

Y = R(¢%.(0,0)) x R(¢“(0,0)) x C°(RT,X*) x C°(R™,X*) x R,

Y = CO%RY,X%)xCO%R™,X%) x X“xR.
Note that 7, is well defined and smooth in (by,b_, vy, v_, ). We exploit the splitting (4.2)
of F, into the linear term D, f(h(t),0)u and the quadratic term F,, see (4.3). Therefore,
consider
Golby, b, vp v, ) = L(by,b_,vp, v, p)
Jo 0% (L) Ep(7, 04 (7), ) dr 4[5 S48 T)Ey(T, v (7), 1) dr
Jo 01 (8, TV ST, 0-(7), ) dr 4 [Lo 62 (t,7)Ey(r, 0o (7), 1) dr
Jo© (0, T)Ey(T, +()M)d7+f @2 (0, ) bp(7, 0(7T), p) d7
(@, [5° 40, TV Ep(m, 04 (7). ) dr)

where the linear part L : Y — Y is bounded and given by

L(by, b vy, 0, p) =
vg = 830 0)by — u( fy @3 TIDuf(h(7),0) d7 + [ 64(,7) D, f(h(r),0) dr)
C = 6n (00— p( Jy 61 TIDL(h(7),0) dr + [ 62 (-, 7)Duf(h(7),0) dr)
by — b — p( J5° L0, 7)Duf(h(7),0) dr + [°. 62(0,7) D, f(h(7),0) d7)
(9, 830, 00b5 — ju [ S0, 7) D, f((7),0) d7)

Note that the last two components of I do not depend on (v4,v_). The linear operator
R(6%(0,0)) x R(6(0,0)) — X, ®o(by,b_) = by — b_.
is a Fredholm operator with index zero. Its null space and range are given by

span{((0), h(0))} C R(¢%(0.0)) x R(¢“(0,0)),
{v e X% (4(0),v) = 0}.

= =
e
2
[T
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On the other hand,

and
| ) s, 0))
- <¢(o),/0°o ¢i(0,r)DMf(h(T),0)dT—|—/_OOO 6 (0,7)D,.f(h(r),0) dr).

Hence, as a consequence of Hypothesis (H3), the operator L is continuously invertible.

Due to the estimate (4.3), we can apply Lemma 4.1 for any small fixed p to the map G,
with yo = (0,0,0,0). Hence, we obtain the existence and uniqueness statements in (ii) and
(iii) of Theorem 1. It is straightforward to show that h,(¢) is homoclinic to the hyperbolic
equilibrium p,(p, ).

The estimate given in (ii) follows from Lemma 4.1 provided we can prove that

|Gp(0707070)|)7 < CilelRp |(id =@ ) (t)]a (4.4)
where
G,(0,0,0,0,0) =
f5¢i(t77)( Qo) f(h(),0)dr + [, ¢4(1,7)(id =Q,) f(h(7),0) dr
Jo (6, 7)(d =Q ) f(A(T). 0) dr + [L ¢ (1,7)(id =Q, ) [(h7),0) dr
Jo© @40, 7)(d =Q,) f(h(7),0) dr + [ 62 (0, 7)(id =Q,) f(h(r),0) dr
(0. Jo~ @40, 7)(id =Q,) f(h(T), 0) dT)
In order to prove (4.4), it suffices to show that
| [ 4= ). 00| < Csup fid =@l (45)

for some constant ¢’ independently of ¢ > 0, and similar estimates for the other integrals.

We use the fact that h(t) satisfies h = Ah + f(h,0) for t € R, that is,
he CHR,X)NCR, D(A)). (4.6)
Therefore, using (Q)(i), we have
t
| éxtem6a-Qu)shr). 0)dr
t
= [ 6070 -Q)(5h(r) ~ An(r)) dr
0 T
t
| (- (diqﬁ(t, ))(id =Q,)h(7) = 63 (1,7)A(id —Q, )h(r) ) dr
0 T
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+¢% (L, 1)(id —Q,)h(1)
= /Ot (qﬁi(t,r)(A + Dy f(h(7),0))(id =@, )h(T) — ¢i(taT)A(id—Qp)h(r))dT
+¢% (L, 1)(id —Q,)h(1)
- /Ot &% (6, ) Dy f(h(), 0)(id =Q,)h(T) dT + ¢ (1, 1)(id —Q ,)h(1).

Note that integration by parts and taking the derivative %qﬁj_(t, 7) is allowed on account
of (4.6). It is now straightforward to obtain the aforementioned estimate (4.5). The other
estimates are obtained in an analogous fashion, and we omit the details. This proves the

claim (4.4).

Finally, we show the homoclinic orbits h,(¢) of (2.4) are non-degenerate.

Lemma 4.3 The only bounded solution, up to constant multiples, of the variational equa-
tion

0= (A+QpDuf(hy(t),pp))v

about h,(t) is given by h,(t). In other words, the solutions h,(t) are non-degenerate.

Proof. On account of Theorem 5, the variational equation

b= Av+ Qp Dy f(hy(1), pp)v

has an exponential dichotomy on R* and R~ with solution operators ¢% ,(t,7) and

4 o(rt) fort > 7 >0, and ¢2 (7,t) and ¢¥ ,(t,7) for t < 7 < 0. On account of Hy-
pothesis (C), and Lemmata 3.1 and 4.2, ¢5 ,(0,0) and ¢* ,(0,0) are close to ¢%(0,0) and
" (0,0), respectively, in the £(X“)-norm. Therefore, hp(t) is the only bounded solution,

up to constant multiples, of equation (2.4). [ ]

It is a consequence of the proof of Lemma 4.3 that h,(-) € CO(R, X®). Indeed, h,(0) €
R(¢% ,(0,0)), and therefore h,(0) € X©. Furthermore, h,(t) = (bj_w(t,O)/:op(O) fort > 0 is
continuous in ¢ as a function into X* by Theorem 5. Since the choice of t = 0 is arbitrary,

we see that in fact h,(-) € CO(R, X®).

5 The Truncated Boundary-Value Problem

In this section, we prove Theorem 2. Again, (' denotes various different constants inde-

pendent of T_ and T%.
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5.1 The Nonlinear Equation

We exploit the transformation u(t) = h,(t) + v(¢) and g = p, + v. The function v(¢) then
satisfies the equation
b= (A4 DuI(h(0),0)0 + Fy(t,v,0) (5.1)
= (A D). 0)0 + Dy f(hp(0)s 1,0 + (L, v,0),

where

Fy(to,0) = Qu(F(ho(t) + v,y +0) = [(hy(1) 11p) = Duf (h(1),0)0)
—(id =Q,) Duf(h(1), 0)0 = Dy f(hy(1), 1)1
The derivative Dy, ) F)(t,v,v) is given by
Do Fplt,v,v) =
(Qu(Duf(hy(t) + v, 1+ v) = Dy f(R(1),0)) = (id =Q,) Du f((2),0),
Qo Duf (hyl(t) + 0,11, + 1) = Dy fhp(1), 1)) = (id = Q) Dyuf (hy (1), 1)

Due to Theorem 1, Hypothesis (C), and Lemma 4.2, we obtain the estimate

1Dy ot v, i)l cxaxrxy < Cllvla + V) + 9(p), (5.2)

uniformly in p for (v,v) in a ball centered at zero of sufficiently small radius 1 in X x R.

Here, the function g(p) — 0 as p — 0. Let
a=(ay,a_) € X,:=R(Py)xR(P-), (5.3)
b=(by,b_) € Xy:=R(¢7(0,0))x R(¢%(0,0)).

We define the maps

Iir, @ Xox XpxCU0,T4], X% x R — C°[0,T4], X%),
I_7, @ XoxXpyxCUT_,0,,X*)x R — C°T_,0],X%),

Ly, b, 04 0)(8) = 62 (6T Jas + 5 (1,0)b5 (5.4)
+ /Ti AL (t, T)E, (T, vp(T),v)dT + /Ot &L (t, ), (T, v(T),v)dT,

and the analogous expression for I_ 7 ,(a,b,v_,v). Note that both maps are smooth. Any

bounded solution of (5.1) satisfies the integral equation

0 = v-l—(t)_I-I-,T,p(avbvv-l-vl/)(t)v (5.5)
0 = v_(t)—I_7,(a,bv_,v)(t),
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together with the equation v4(0) = v_(0) for some (a,b). Here, t € [0,74] in the first, and
t € [T-,0] in the second equation in (5.5). In addition, we have to solve the phase and

boundary conditions

Ry(hy(T4) + 04 (T4), hy(T2) + 0 (T ), 1y + )
J1,0(hp + V(vg,v-), p1p + v)

( (
e} e}
—~
(@)
(@p}
~—

where the linear, bounded operator
& CO([Ov T—l—]v Xa) X CO([T—v 0]7 Xa) - CO([T—v T—I—]v Xa)

is defined by
vy(t) +v-(0) — vy (0) t>0,
v_(t) t <0.

V(og, v )(1) = {

For v € X¢, we expand the boundary conditions

Ry(ho(T3) + vgs ho(T-) + v pip + v) = Rp(hp(T4 ), hp(T-), ) (5.8)
Dy Rl holT4 ), (T ), )04 -, 0)
—I_RP(hP(T-I-)? hP(T—)v Uy, U, V)v

with

1D s om0y Bo (o (T4 ), hp(T-), vgs v, )| < Cllog o + |v-o + [v]), (5.9)

for (vy,v_,v) in a ball with small radius centered at zero in X® x X x R, independently

of p. Similarly, for v € C°(T, X?), we have

J1.p(hp + 010 +v) = J1,0( Ry 1) (5.10)
+DyJ1 ol )0 4 Dy o (s i )1 + jT,p(hpv v, V),

with
1D o) I1,0( Ry 0, )| < C(J0]a + |V]), (5.11)

for (v,v) in a ball with small radius centered at zero in C°(T, X?) x R, independently of

p. We consider the nonlinear equation
Gr,:Y — Y, Gr,(a,b,vy,v_,v)=0 (5.12)
with

Y = X, x Xy xC%0,T], X)) x C°([T_,0], X*) x R
Y = C%0,T4],X%) x C°([T_,0],X%) x X* x X x R,
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defined by the right-hand side of (5.5), the continuity equation
0=147,(a,b,vy,v)0)—1_7,(a,bv_,v)0)
the first two equations in (5.6), and the equation
0 = Trglhy + V(T g(@,b, 04 0), T (0,5, 0o )), g + 1),

It is a consequence of the above discussion that G is well defined and smooth. Furthermore,
due to the estimates (5.2), (5.9) and (5.11), we can solve equation (5.12) in a ball centered at
the origin with small radius 7 uniformly for any sufficiently small p provided the linearized
operator at (a,b,vy,v_,v) = 0 is invertible uniformly in 7" and p. The arguments are
analogous to those presented in the last section, whence we omit them. Note that the error

estimate in Theorem 2 follows from

Gr,p(0) = (0,00, Ry(hp(T3), hy(T2), 1), 1By 1))

and Lemma 4.1. Indeed, replacing h,(+) by h,(- 4+ 7r,,) for some small y7 ,, we can achieve
that Jr ,(h,, p,) = 0.

5.2 The Linearized Boundary-Value Problem

It remains to show that the operator Lt , = DGt ,(0) is invertible as a map from Y to Y.
Let

Ty p(a,b,0)(1) = 4 (1, Ty )ay + ¢5(1,0)by (5.13)

er(/;+ ¢1(t,r)Duf(hp(r),up)dr+/Of qﬁ(t,r)Duf(hp(T),up)dT),

I_7,(a,b,v)(t) = ¢ (t, T_)a_ + " (1,0)b_ (5.14)

+u(/Tt_ ¢* (6, 7)Dyf(hy(T), pip) dT + /Of (6, VDo f (hy(T), p1) d7)7

for t € [0,7T4] and t € [T_,0], respectively. The linear operators I are bounded from
X, x Xp x R into C°([0,74], X?) and C°([T_,0], X?), respectively. We then have

Lt ,(a,b,vy,v_,v) = (5.15)
vy — IA_|_7T7p(a, b,v)
v —1_7,(a,b,v)
L 7p(a,b,0)(0) = 1= 7p(a, b, v)(0)
DRy (hp(Ts ), hp(T2 ), 1) (T 1,00 b,0)(T4), I, b, w)(T2), v)
Dy J1 ol :“p)v(j-l—,T,p(av b, v), j—,T,p(av b,v))+ Dudro(hy + v, pip)v
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We have to show that the equation

LT,p(avbvv-I—vv—vl/) = (g-l-vg—vcvrvj) (516)

has a unique solution (a,b,vy,v_,v) €Y for any (g4,g9—,¢,7,7) € Y, and

|(a,b,v+,v_,1/)|y < C|(g+7g—7cvrvj)|f/

for some positive constant C' independent of p and 7. Inspecting the definition (5.15) of
Lt ,, it is clear that we can solve the first two components in (5.16) for (vy,v_) such that

(vy,v-) = Wi(a,b,v,g4,9-) with ||Wq|| < C.

Next, consider the boundary condition

ro= DRP(hP(T-I-)vhP(T—)vup)(w-l-vw—vl/)v (5'17)
with
0
wy = oY (T4,Ty)ay + ¢4 (T4, 0)by + V/T O3 (T4, 7) D f(hp(T), 1) dr,
+
0
wo = (T, T )a_ + ¢"(T-,0)b_ + V/T S (T 7)D o f(h (7). p1y) dr.

The key is that

Doy Byp(hp(T4), hp(T- ), o) (04 (T4, T4 )| Rpyy» 92T, T2 )| Rep_y)
: R(Py) x R(P_) — X°
is invertible uniformly in p due to Hypothesis (T1)(ii). Indeed, the projections ¢% (1,7%)

and Py as well as ¢° (T_,T_) and P_ are close to each other for all |T_|, T sufficiently
large and p small enough due to Hypothesis (C), and Lemmata 3.1 and 4.2.

Therefore, we can solve (5.17) for @ = (ay,a_) and obtain a = Wy(b, v, r) with ||[Wy|| < C
independently of T_, T and p. Actually, we obtain the better estimate
[Wa (b, v, 7)o < Cle™™* [byla + = [0-]a + 1] + |7]a),
since
|65 (T, 0)by o < Ce™ T [by ],
and the analogous estimate for ¢* (7_,0) by Theorem 5.

In the next step, we apply these estimates to the operator V(IA_|_7T7p(a,b,V),j_j’p(a,b,l/))
appearing in the phase condition; see also (5.7) for its definition. Using (5.13), (5.14) and

the estimates for a, we obtain the expansion

(bi(t, 0)b+ +b_ — b_|_ + Wg(b, v, T)(t) t >0,

V(I_|_7T7p, I—7T7p)(a, b, l/)(t) = { e (t, O)b_ + I/V3(b7 v, r)(t) t <0,
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with
[Wa(b, v, 7)(1)|o < Cle™ T bylo + €T [b_|o + V] + |7]0)-

According to the results in Section 4.2, we may write
(b-l-vb—) = (6+76—)+7(h(0)7h(0))7 (l;-l-vi)—) S Xba
with X2 @ span{(h(0),h(0))} = X'. We obtain
V(L L), b, 0)(8) = 7h(8) + Wa(b, v, 7)(2),
with
Walb, v, r) (D)o < Ce™™ M1+ [bila + [o—]o + 7] + Ir[),
and |T'| := min(|7_|,T5). The phase condition and continuity equation are then given by
J = DI (hy, i)+ Ws(b, v, 1),
¢ = U0, T Wai(by,vyry) — &% (0, T_)Wo_(b_,vyr_) + by —b_ (5.18)
i 0
o [ OO dr + [0 D f (7). 1) ),
with
(Ws(b, v, 7)] < C(e™* [byfa + €™ [b-]a + V] + [r]a)-
Note that we have the estimates

|¢1-T—(07T+)W27+(b+7 v, T-I-) - (bs—(ovT—)WZ—(b—v v, T—)|a
< O™ 4 ) (lblo + [b-lo + V] + 7o)

due to Theorem 5. Moreover,

[ 0 D0,

is bounded away from zero due to Hypothesis (H3), Theorem 1 and the fact that (¢)

converges to zero exponentially. Therefore, by the same arguments as in Section 4.2 using

Theorem 1 and Hypothesis (T1)(i), we can solve (5.18) for (b, 7, v).

5.3 Proof of Theorem 4

The proof is a consequence of the proof of Theorem 2. In fact, we only need to consider
functions vy and variables ay and b4. It is straightforward to see that by can be used to
solve the boundary condition (id —5)u(0) = 0 due to the transversality condition (R)(ii).
We omit the details.
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6 The Finite-Dimensional Boundary-Value Problem

In this section, we prove Theorem 3. We embed the boundary-value problem on R(Q,)
into a larger one defined on X®, and then apply Theorem 2. Any element w in X® can be

written according to
vu=qg+w, (¢gw)e€RQ, xXN,).

Using this decomposition, we have

(A + QpDuf(pP(:u)v:u)NR(Qp) QpDuf(pP(:u)v:uNN(Qp) ) ‘

A+QpDuf(pp(u),u)=( 0 AN,
N(Qp

The spectral projections of A, A+ Q,Dyf(p,(1), 1) and (A + Q,Duf(p,(1t), 1)) R(q,) are
denoted by Py, Py () and Q4 ,(p), respectively; see Hypotheses (Al) and (H1). On
account of Hypothesis (Q), we then have

Q1) Diy(p) )

Pl = ( 0 (d-Q,)k:

for some bounded operators Dy ().

The equation @ = Au+ Q, f(u, 1) is equivalent to

G=Aq+Q,f(g+w,p), = Aw. (6.1)

We include the phase and boundary conditions

Ty .
Ty = [ 0.0+ w(0) = b)) x dr

Ry((qyw)(Ty)yp) = Py olpip)Pro(p)(q(Ty) + w(Ty) — p(p)) (6.2)
R_((qow)(T_), ) = P (o) Po p(pu)(q(T2) + w(T-) = py(p)).

We first prove that (6.1-6.2) has a unique solution. Using Remark 2.1, it is straightforward
to show that (6.2) satisfies Hypothesis (T1). For instance, for pn = p,,

DuR-I—(pp(Np)mup)‘R = P:I:,p(:up)‘R

(Px,0(10)) (Px,0(10))

which is clearly invertible as an operator into R(Py ,(x,)). Therefore, this operator re-
mains invertible for y close to p, with uniform inverse. The same argument applies to the
derivative of the second boundary condition. Hence, Theorem 2 applies, and (6.1-6.2) has

a unique solution.

To finish the argument, we observe that any solution (¢, w) of (6.1-6.2) has necessarily

w = 0. Indeed, w has to satisfy
W= Aw, Prw(Ty), P_w(T_)=0.
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Since A|N(Qp) is hyperbolic, w = 0 is the only solution. With w = 0, it is easy to see that
(6.1-6.2) and (2.6-2.8) coincide. Hence, (¢, w) = (¢,0) satisfies (6.1-6.2) if, and only if, ¢
is a solution of (2.6-2.8).

Finally, we have

|Ry ,(h(T}),0)]s < C|h(T_|_)7())|ZZ < Cem N T

and the analogous estimate for Ry ,(h(1%),0). This completes the proof of Theorem 3.

7 Semilinear Elliptic Equations

Here, we show that elliptic equations on infinite cylinders are included in the abstract set-up
of the earlier sections. We refer to [26] for more details. Furthermore, we comment on the

satisfaction of the hypotheses of Theorems 1 and 2, and discuss particular discretizations.

Let Y be a Hilbert space and L : D(L) C Y — Y a densely defined, positive definite,
self-adjoint operator with compact resolvent. In most application, we have Y = L?(Q) for
some bounded domain © and L = —A on ) together with Dirichlet boundary conditions,
say, so that D(L) = H*(Q) N H}(Q). We denote the fractional power spaces associated
with L by Y. In particular, Y1 = D(L). Suppose that

1+a—¢

g:Y 2 xYT Y

is a nonlinearity of class (2 for some a € [0,1) and ¢ > 0. Consider the abstract elliptic
equation

Upe — Lu = g(u,u,), x€R (7.1)

for u € Y. We reformulate (7.1) as the first-order equation

d
e Av + G(v) (7.2)

with v = (u, u,) and G(v) = (0, ¢(v)). Here,

id
A= ) vyt vy
L 0

In particular, Hypothesis (A1) is met; in fact, the projections Py are given by

. 1( id  LL3

1 1
Py =- Yz xY =Yz xY.
2\ 41> id )

The fractional power spaces are X = V3 < V5. The mapping G : X¢ C X — X is

C? since ¢ is. It is also clear that A has compact resolvent whenever L has.
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Therefore, Hypotheses (A1), (A2) and (C) are met. We refer to [8, Satz 5] for conditions
guaranteeing that Hypothesis (A3) is met. Given a particular solitary-wave solution of
such an elliptic system, hyperbolicity of equilibria (H1) and transverse unfolding (H3) are

generic properties, at least if we allow for nonlinearities of the form g(y, u, uy, Vyu, p).

In order to apply our results to concrete problems, we have to choose a discretization in the
cross-section, corresponding to the projectors J),, and boundary conditions at z = 7_ and
x = T4. For elliptic equations (7.1), it is convenient to choose @), with p € {1/k; k € N}
as the orthogonal Galerkin projections onto the first m eigenfunctions of L. Condition
(Q) is then an immediate consequence of the completeness of the orthonormal system of

eigenfunctions.

The choice of boundary conditions R turns out to be less evident in general, as the projectors
P, , and P_, might be hard to compute. We emphasize here that, in general, simple
Dirichlet boundary conditions u(7x) = p or Neumann boundary conditions v(74) = 0 will
not work. Even for systems of equations on the line with no cross-section, that is ¥ = R?*,
the dimensions of stable and unstable subspaces at the equilibrium may not coincide:
dim R(Py) # k. Then Dirichlet as well as Neumann boundary conditions yield ill-posed
problems. The only generic choice then seems to be given through periodic boundary
conditions — or the actual computation of P,. However, there are important cases where
Dirichlet and Neumann conditions work. Examples are reversible systems or equations of

variational type, which we now discuss in more detail.

If ¢ = g(u), then the system is reversible. Reversibility acts through S(u,v) = (u,—v).
The condition (id —5)u(0) in (2.10) reduces to v = 0, in other words, Neumann boundary
conditions at z = 0. The hyperbolicity assumption (H1) is then equivalent to linear stability
of the equilibrium wu(z,y) = p(y) for the parabolic equation u; = uz, — Lu — g(u) on the
cylinder. Due to the second-order structure, eigenfunctions of the linearization of (7.1)
at the equilibrium are of the form (uk,:l:\/A_kuk) where A and uj are eigenvalues and
eigenfunctions, respectively, of L + Dg(p). By hyperbolicity, A\ > 0. We claim that we can
choose Dirichlet or Neumann conditions at @ = T, as well. Indeed, the stable subspace
R(P_) is spanned by (ug,/Arug) and the spaces {(u,v);u =0} or {(u,v);v =0} are closed

complements of this subspace. We summarize this result in the following proposition.

Proposition 1 Assume that (H1), (H2) and (H4) are met. Furthermore, suppose that
g = g(u). Dirichlet and Neumann boundary condition then satisfy (T2).

These arguments can be slightly generalized to elliptic equations with variational structure
Upe = Lu 4 cuy + VF(u),

28



where heteroclinic orbits connecting stable equilibria are of interest. Again stability is with
respect to the linearization of the associated parabolic problem in the infinite cylinder.
Though this system is not reversible, a calculation similar to the one given above shows
that Dirichlet or Neumann boundary conditions at = T_ and « = T, satisfy Hypothesis
(T1)(ii) on the boundary conditions.

We remark that Corollaries 3 and 4 establish the existence of solutions of (7.1) which are
periodic in z with arbitrarily large period and have the same profile in the cross-section as

the solitary wave.

8 Numerical Simulations

In this section, we compare the theoretical predictions with numerical computations. Con-

sider the elliptic equation
Upy + Uyy + cty = u(l42p—u)+pyy, —p(1+p), (z,y)€Rx(-1,1), (8.1)
for v € R with Neumann boundary conditions
uy(z,£1)=0, =z €R. (8.2)

For the function p(y), we take the polynomial p(y) = (14 y)*(1—y)? which clearly satisfies
py(£1) = 0. Note that p(y) satisfies (8.1-8.2) for any ¢. Furthermore, we have the explicit

solitary wave

h(z,y) = ply) + %sech2 (%x), (8.3)

of (8.1) for ¢ = 0. We write (8.1) as the first-order system

) ” oo
dz \ v —tyy — v+ u(l+2p—u)+ pyy —p(1+p))’

in , where (u,v) € H(—=1,1)n L*(—1,1).

It turns out that Hypotheses (A1)-(A3), (H1)-(H3) and (C) are satisfied with respect to
the parameter ¢; see Section 7 and [26, Section 6.3]. Alternatively, we may fix ¢ = 0.
Equation (8.4) is then reversible with S(u,v) = (u,—v), and Hypotheses (R)(i), (R)(ii)
and (H4) are met.

8.1 Projection Boundary Conditions

The even eigenfunctions and corresponding eigenvalues of the linearization of (8.4) at (p,0)

are given by

1+ w2k2)72
qxi(y) = (( +11 ) 2) coskny and  Ayp = £V 14 72k2, (8.5)
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respectively, for k& € Ng. We consider the Galerkin projection

n

@n = Z (@k: Y xre,

k=—n
which clearly satisfies Hypothesis (Q).
The Fourier series of the polynomial p(y) is given by

16 48 (—1)k+t
ply) = 'H + oy ; T Cos kmy,

and
(14 =Qu)ploo ~ n~*(an + b)
for some positive numbers a and b.

We then solve the system

(8.6)

d fu) 0 )
de\v) — “"\—uy —cv+u(l+2p—u)+pyy —p(1+p))’

0 = /_:« <Q”(hl”hl’l’)($)v(uvv)($)_ Qn(hl’vhxl’)($)>

0 = Qeale)((w.0)T) = (pa(c).0),
0 = Q_m(c)((u,?})(—T)_(pn(c)vo))v

n*A(T,n)

Lrpe dz, (8.8)

90
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Figure 1: This plot contains the scaled error n*A(T, n) versus the number n of Galerkin modes for

the solution of (8.8) for fixed length 7" = 15.0 of the truncation interval. In this scaling, the error

is a linear function of n, see (8.9).
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Figure 2: Here, the scaled error In A(T,n) versus the length T' of the interval (=7, 7) for the
solution of (8.8) is shown. For small T, the scaled error is then linear in 7" with slope —1.8 which
i1s in agreement with the prediction of —2 in Theorem 3. For larger values of T, the error due
to the Galerkin truncation becomes dominant. As expected, the remaining error is smaller for a
larger number of modes. Also, since the error curves for different values of n are not shifted against
each other, the picture confirms that the constant C' appearing in (8.9) is independent of n. The
case n = oo corresponds to setting p(y) = 0 which demonstrates the error induced purely by the

truncation of the interval.

n (=1,7T) with (u,v) € R(Q,); see Section 2.4. Hypothesis (T1) is met, whence Theorem 3
is applicable. Therefore, the difference A(T,n) of the true solution h(z,y) given in (8.3)
and the solution h,(z,y) of (8.8) can be estimated by

A(T,n) = sup{|hu(z,y) — h(z,y)|; (z,y) € (=T, T) x (=1,1)} (8.9)
< Cfe 2TJFSUP*H id =Q.)(0, p)(x,y)l; (2,9) € (=1, T) x (=1,1)})
~ Cle” “(an +b)),

using the expression for the eigenvalues given in (8.5).

The boundary-value problem (8.8) is now solved using AuT097, see [9], for various choices
of T and n. The results of the numerical simulations are plotted in Figures 1 and 2. They

confirm the theoretical error estimate (8.9).

Note that the residual (id =@, )(pyy — p(1 + p)) on the right-hand side of (8.8) is actually
of the order % The error, however, is induced by the approximation of the true solution

using Galerkin modes which is of the order n%
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8.2 Neumann Boundary Conditions

Next, we consider the approximation

Uy —I_ ul/l/ = u(l —I_ 2p - u) +pyy - p(l —I_p)v ($,y) € (OvT) X (_17 1)7
wy(z,£1) =0, x € (0,7), (8.10)
uz(0,y) = uy,(T,y) =0, y € (=1,1).

Hypothesis (T2) is met and Theorem 4 applies with ¢, = id. Hence, the difference A(T)
of the solution h(z,y) given in (8.3) and the solution A(x,y) of (8.10) can be estimated by

A(T) = sup{|h(z,y) — h(z,y)|; (z,y) € (=T, T) x (=1,1)} < Ce~T (8.11)

using the expression for the eigenvalues given in (8.5).

We used second-order centered finite differences on a staggered grid with N, horizontal and
N, vertical mesh points in order to solve (8.10). For the resulting equation on the grid, we
employed a conjugated-gradient solver (without preconditioning) together with Newton’s
method. The difference of the associated solution hy and the true solution h is denoted
by A(T,N) where N = (N, N,). The results of the numerical simulations are shown in
Figure 3. Again, the theoretical predictions of Theorem 4 are in good agreement with the

computations.

For comparison, we also computed solutions of

Upe + Uyy = u(1 +2p — u) + pyy — p(1 + p), (z.y) € (0,T) x (=1,1),
wy(z,£1) =0, x € (0,7), (8.12)
ux(0,y) = 0, y€(-1,1),
u(T,y) + (T, y) — ply) = 0, y € (=1,1).

These are the projection boundary conditions. The error is therefore expected to behave

like =27 by Theorem 4; see Figure 4.

9 An Application to the von Karman—Donnell Equations

As mentioned in the introduction, we consider the post buckling of an infinitely long cylin-
drical shell under axial compression as modeled by the von Karman—Donnell equations.
In [22, 23] and [24] solitary-waves were computed and it was shown that these solutions
provide a good approximation to the localized buckling pattern observed in experiments.

Here, we indicate how the proofs of Sections 4 and 5 may be adapted to this case and show
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Figure 3: The scaled error In A(T, N) versus the length T' of the interval (=7, T) for the solution
of (8.10) is shown. Here, N = (N,, N,) is the number of horizontal and vertical grid points. For
small T, the scaled error is linear in 7" with slopes of —0.86, —0.99 and —1.01. The slope predicted
in Theorem 4 is —1. If T is large enough, the error due to the approximation with finite differences

becomes dominant; again, the remaining error is smaller for a larger number of grid points.

§ 7T

Figure 4: Here, the error for the solution of (8.12) is plotted. For small T', the scaled error is linear

in T" with slope —1.86; Theorem 4 predicts a slope of —2.
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numerically that, for a fixed spatial truncation, the error in the truncation on the length

of the cylinder scales in accordance with Theorem 4.

9.1 The von Karman—Donnell Equations

The classical formulation for a thin cylindrical shell of radius r and thickness ¢ is given by

the von Karmdn—Donnell equations:

REVAW 4 Moy — pny = WezQyy + Wyy Pry — 2WeyPay (9.1)
V4¢ + PWryr = (wxy)2 — Wep Wy

where V* is the two-dimensional bi-harmonic operator, € R is the axial and y € [0, 277)
is the circumferential coordinate, w is the outward radial displacement measured from
an unbuckled state, and ¢ is a stress function [20]. Parameters appearing in (9.1) are
the curvature, p = 1/r, the geometric constant, x* = #2/12(1 — v?), where v is Poisson’s
ratio, and loading parameter A. Localized buckle patterns are observed and these are well

approximated by a solitary wave in x, see [22, 24] and Figure 5.

We discretize the von Karman-Donnell equations (9.1) in such a way as to exploit the
natural symmetries in the problem. Experimentally a well defined number, s, of periodic
waves is observed circumferentially [20, 33] in the buckled deformation, corresponding to

an invariance under rotation of 27 /s. Hence we write

w(z,y) = Z apm () cos(mspy); Z by () cos(mspy), s € N.
m=0

Substituting into the von Kérmén—Donnell equations and taking the L? inner product with
cos(mspy), we obtain a system of nonlinear ODEs for the Fourier modes a,, and b,, for
m = 0,...,00. The Galerkin approximation is formed by taking m = 0,...,M — 1 for
some finite M giving a system of 8 M first-order ordinary differential equations. We may

formally write the resulting set of ODEs as

iv _ i 11 111 i i il iv _ i 11 111 i i il
m FLm(am,am, m7 bmvbmvbmvbm) bm - FQ,m(amvamv m7 bmvbmvbmvbm)

where superscripts denote differentiation with respect to x.

Note that s = 1 corresponds to the standard Galerkin approximation. Convergence as M is
increased was examined numerically in [23] and it was found that M = 6 gives a reasonable

compromise between accuracy and computation efficiency.

Experimentally, the observed buckle patterns tend to be cross-symmetric about a section

x =T/2 that is
w(z,y)=w(l —z,y+ 7r/s) & e, y)=o(T —x,y+ 7r/s). (9.2)

34



