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1 IntroductionThe numerical computation of solitary-wave solutions to elliptic systemsuxx + �yu+ g(y; u; ux;ryu) = 0; (x; y) 2 R � 
; (1.1)in in�nite cylinders R � 
 is investigated. Here, u 2 Rm, and 
 is an open and boundedsubset of Rn with Lipschitz boundary. Appropriate boundary conditionsR((u; ux;ryu)jR�@
) = 0 (1.2)on R � @
 should be added. Solitary waves are solutions h(x; y) satisfyinglimx!�1 h(x; y) = p�(y)uniformly for y 2 
. In applications, they frequently arise as travelling waves h(x � ct; y)for parabolic equationsut = uxx + �yu+ g(y; u; ux;ryu); (x; y) 2 R � 
: (1.3)These applications include problems in structural mechanics such as shells and struts,chemical kinetics, combustion, and nerve impulses; see, for instance, [32] and the compre-hensive bibliography there. Analytically, the existence of solitary-wave solutions exhibitingnon-trivial structure in the direction of the cross-section is still a largely open problem.Existence has been proved in many cases for small solutions using center-manifold theory[19, 25]. In special cases, it may be possible to exploit maximum principles [1, 2, 17] andvariational structure [27, 28]. Another approach establishing existence of front solutionsuses topological methods [10, 12].Suppose that h(x; y) is a solitary wave which satis�es (1.1{1.2). In order to calculate hnumerically, the problem on the in�nite cylinder R�
 has to be approximated by a suitablesystem uxx + �yu + g(y; u; ux;ryu) = 0; (x; y) 2 (T�; T+)� 
 (1.4)R((u; ux;ryu)j[T�;T+]�@
) = 0;posed on a �nite cylinder. Here, we have to specify appropriate conditionsR�((u; ux;ryu)jfT�g�
) = 0; (1.5)R+((u; ux;ryu)jfT+g�
) = 0;at the boundaries induced by the truncation of the cylinder axis. The issue is then todetermine whether equation (1.4{1.5) has a unique solution close to the solitary wave h,and if it does, to derive estimates for the error caused by the truncation.1



In this article, we give su�cient conditions on the equation and the boundary conditions(1.5) such that the aforementioned algorithm works. Boundary conditions which satisfythese conditions are called admissible. One implication of our assumptions is that thesolitary wave h(x; y) converges exponentially towards p�(y) as jxj ! 1 uniformly in y 2 
.The di�erence of the solution hT of (1.4{1.5) and the solitary wave h can then be estimatedby jh� hT j � C(jR�(hjfT�g�
)j+ jR+(hjfT+g�
)j);in appropriate norms, where the positive constant C does not depend on T� and T+. Here,the right-hand side converges to zero exponentially as jT�j; T+ !1.In order to prove this result, we interpret the variable x as time, and write (1.1) as a�rst-order system  uxvx! =  v��yu� g(y; u; v;ryu)!: (1.6)Here, for each �xed x 2 R, (u; v)(x) is a function of y 2 
 contained in some function spacedepending on the boundary conditions on @
. A solitary wave of (1.1) corresponds to ahomoclinic or heteroclinic solution of (1.6) which connects the equilibria p�(y) and p+(y),that is, we have limx!�1(h(x); hx(x))! (p�; 0) (1.7)in the underlying function space. We then investigate the truncated boundary-value prob-lem by replacing (1.7) by a condition of the formR�((u; v)(T�)) = 0; R+((u; v)(T+)) = 0: (1.8)The key for solving the resulting boundary-value problem are exponential dichotomies forthe linearization  uxvx! = 0@ 0 id��y �Dug �Dryugry Duxg 1A uv!; (1.9)of (1.6) about the solitary wave (h(x); hx(x)). Here, derivatives of g are evaluated at(y; h; hx;ryh). Exponential dichotomies are projections onto x-dependent stable and un-stable subspaces, say Es(x) and Eu(x), such that solutions (u; v)(x) of (1.9) associated withinitial values (u; v)(x0) in the stable space Es(x0) exist for x > x0 and decay exponentiallyfor x ! 1. In contrast, solutions (u; v)(x) associated with initial values (u; v)(x0) in theunstable space Eu(x0) satisfy (1.9) in backward x-direction x < x0 and decay exponen-tially for decreasing x. In the context of elliptic equations, the stable and unstable spacesare both in�nite-dimensional. Existence of exponential dichotomies for ordinary, parabolic2



or functional di�erential equations is well known. For elliptic equations, existence has re-cently been proved in [26] using a novel functional-analytic approach. The results in thislatter article then allow us to solve the truncated boundary-value problem and to derivethe aforementioned error estimate.It remains to actually solve the truncated boundary-value problem. There are two di�er-ent ways of accomplishing this task. Firstly, we concentrate on the elliptic formulation.Consider, for instance, equation (1.1) with Dirichlet boundary conditions, that is,uxx +�yu+ g(y; u; ux;ryu) = 0; (x; y) 2 R � 
ujR�@
 = 0;and assume that the solitary wave converges to zero as jxj tends to in�nity. We may thenwant to take Dirichlet boundary conditions for the arti�cial conditions (1.5) which resultsin the truncated problemuxx + �yu + g(y; u; ux;ryu) = 0; (x; y) 2 (T�; T+)� 
uj@((T�;T+)�
) = 0:This system can now be discretized using �nite di�erences or �nite elements. Of course,the same procedure works for Neumann or periodic boundary conditions provided they areadmissible. Secondly, we could take a dynamical-systems point of view and consider the�rst-order system (1.6-1.8). We now discretize only in the cross-section 
 and obtain alarge system of ODEs  uxvx! = Qn v��yu� g(y; u; v;ryu)!;0 = R�((u; v)(T�));0 = R+((u; v)(T+));de�ned on R(Qn) where the Galerkin projection Qn projects the function space in 
 ontoa �nite-dimensional subspace. ODE codes such as Homcont, see [7, 9], can then be usedto solve the resulting boundary-value problem.Often, elliptic equations have an additional re
ection symmetry. For instance, consider thefourth-order equationuxxxx + �2yu+ g(y; u; uxx;�yu) = 0; (x; y) 2 R� 
; (1.10)which is included in our general set-up. The Z2-symmetry u(x; y) 7! u(�x; y) leaves(1.10) invariant. This symmetry manifests itself as a time-reversibility S : (u; v1; v2; v3) 7!(u;�v1; v2;�v3) for the associated dynamical system(u; v1; v2; v3)x = (v1; v2; v3;��2yu� g(y; u; v2;�yu)):3



It is shown that the algorithm given above can be adapted to this situation. We also remarkthat our results apply to parabolic equationsut = �u+ g(u;ru); x 2 
;with 
 � Rn bounded and open. Here, we are interested in the computation of homoclinicor heteroclinic solutions h(t; x) which satisfy limt!�1 h(t; x) = p�(x).For ordinary di�erential equations, well-posedness of the truncated problem has been inves-tigated by Beyn [4], and Doedel and Friedman [11] for very general boundary conditions.In addition, error estimates have been derived in these articles. Hagstrom and Keller[15, 16] considered elliptic problems of the form (1.1) assuming that (1.9) has an exponen-tial dichotomy. They investigated the so-called asymptotic boundary conditions. Theseconditions select precisely those solutions converging to p�(y) as x ! �1. In particu-lar, the solution of the truncated problem coincides with the true wave h on the in�nitecylinder. The actual calculation of the asymptotic boundary conditions, however, involvesagain certain approximations which were not investigated in [15, 16].As a concrete application, we consider the post buckling of an in�nitely long cylindrical shellunder axial compression as modeled by the von K�arm�an{Donnell equations. In [22, 23] and[24] solitary-waves were computed as solutions representing localized buckling patterns andit was shown that these solutions provide a good approximation to the localized bucklingpattern observed in experiments on long shells. The numerical procedure involved thereduction to a truncated boundary-value problem and its discretization using Galerkinapproximation as discussed above. Here, we show numerically that, for a �xed spatialtruncation, the error in the truncation on the length of the cylinder scales in accordancewith our theoretical predictions.This paper is organized as follows. Section 2 contains the general set-up and the mainresults. We summarize the results about exponential dichotomies from [26] in Section 3.The theorems on Galerkin approximations and the truncated boundary-value problem areproved in Sections 4{6. We show in Section 7 that our results apply to semilinear ellipticequations. Numerical simulations and a comparison of the numerical and theoretical errorare presented in Section 8. Finally, the application to the von K�arm�an{Donnell equationis given in Section 9.Acknowledgements BS is grateful to Andrew Poje for helpful discussions on discretiza-tion issues and for allowing us to use his conjugated-gradient solver. DP was supported bythe Deutsche Forschungsgemeinschaft (DFG) under grant Schn426/5-1. GJL was supportedby the EPSRC, UK. 4



2 Main Results2.1 The SettingAssume that A is a closed operator de�ned on a re
exive Banach space X with densedomain D(A).Let B 2 L(X) be any bounded operator. We say that A and B commute if Bu 2 D(A) forany u 2 D(A) and AB = BA on D(A).Hypothesis (A1) Suppose that there is a constant C such thatk(A� i�)�1kL(X) � C1 + j�jfor all � 2 R. Assume that there is a projection P̂� 2 L(X) with the following properties:A�1 and P̂� commute, and there exists a � > 0 such that Re� < �� for any � 2 spec(AP̂�)and Re � > � for any � 2 spec(A(id�P̂�)).Throughout, C denotes various di�erent constants all independent of T� and T+.Su�cient conditions for the existence of the projection P̂�, which is sometimes referredto as the Calderon projector [6], have been given in [5, 13]. We also refer to the explicitconstruction of the projections for semilinear elliptic equations in [26, Section 6].De�ne P̂+ = id�P̂� and A� = �P̂�A, A+ = P̂+A, and let X� = R(P̂�) and X+ = R(P̂+).Here, range and kernel of an operator L are denoted by R(L) and N(L), respectively. ByHypothesis (A1), the operators A� and A+ are sectorial with their spectrum contained inthe right half-plane. Therefore, for � � 0, we can de�ne the interpolation spaces X�+ =D(A�+) and X�� = D(A��), see [18]. Finally, we set X� = X�+ �X��. We denote the normin X� by j � j� and the operator norm in L(X�) by k � k�. The projection P̂� is then inL(X�) for any � < 1.In addition, we assume that A has compact resolvent.Hypothesis (A2) The operator A�1 2 L(X) is compact.In the following, we consider the abstract evolution equation_u = Au+ f(u; �); (u; �) 2 X� � R (2.1)for some �xed � 2 [0; 1) and for f 2 C2(X��R; X). We say that u(t) is a solution of (2.1)on the interval [0; T ) ifu 2 C1((0; T ); X)\ C0((0; T ); D(A))\ C0([0; T ); X�)5



and u(t) satis�es (2.1) in X for t 2 (0; T ). We assume the existence of a hyperbolicequilibrium and of a homoclinic orbit for � = 0.Hypothesis (H1) Equation (2.1) has a hyperbolic equilibrium p0 2 D(A) for � = 0. Inparticular, A+Duf(p0; 0) meets Hypothesis (A1).Hypothesis (H2) Let h(t) 2 C1(R; X�) \ C0(R; X1) be a homoclinic solution of (2.1)for � = 0 with h(t)! p0 as jtj ! 1. We assume that h(t) is non-degenerate, that is, _h(t)is the only bounded solution, up to constant multiples, of the variational equation_v = Av +Duf(h(t); 0)v (2.2)about h(t).Next, we introduce the adjoint variational equation_v = �(A� +Duf(h(t); 0)�)v; (2.3)about the homoclinic solution h(t). To describe the asymptotic behavior of solutions of(2.2) and (2.3), we have to assume forward and backward uniqueness.Hypothesis (A3) The only bounded solution of (2.2) and (2.3) on R+ or R� with v(0) = 0is the trivial solution v(t) = 0.Hypotheses (H2) and (A3) imply that the adjoint equation (2.3) has a unique, up to scalarmultiples, bounded solution  (t) on R. Finally, we assume that the Melnikov integralassociated with h(t) does not vanish.Hypothesis (H3) M := R1�1h (t); D�f(h(t); 0)i dt 6= 0:2.2 The Galerkin ApproximationFirst, we show persistence of the homoclinic orbit h(t) under �nite-dimensional Galerkinapproximations of equation (2.1). We may think of a Galerkin approximation as a familyof projections denoted by Q� 2 L(X) for � > 0. Here, Q0 = id, while Q� will have�nite-dimensional range for � > 0 and approximates the identity in a weak sense.Hypothesis (Q)(i) A commutes with Q�. 6



(ii) The norms kQ�kL(X) � C are bounded uniformly in �.(iii) For any u 2 X, we have jQ�u� uj0 ! 0 as �! 0.It is a consequence of Hypothesis (Q)(i) that A�Q� = Q�A�. Therefore, we have Q� 2L(X�) and kQ�kL(X�) � C independently of � > 0. Furthermore, jQ�u�uj� ! 0 as �! 0for any u 2 X�. In order to obtain uniform convergence of the Galerkin approximation,we assume compactness of the nonlinearity f .Hypothesis (C) If Q� 6= id for some � > 0, we assume that f : X� � R ! X is acompact map.The next theorem shows the persistence of the equilibrium and the homoclinic orbit underthe Galerkin approximation_u = Au +Q�f(u; �); (u; �) 2 X� � R; (2.4)of equation (2.1).We emphasize that the subspaces R(Q�) and N(Q�) are both invariant under equation(2.4). For initial data u0 2 (id�Q�)X�, equation (2.4) reduces to the linear equation_u = Au, which has no bounded solution on R except u = 0.We also remark that the norms on Q�X� and Q�X are equivalent, but the equivalenceconstants tend to in�nity as � ! 0. Therefore, estimates which are uniform with respectto � can only be expected in the X�-norm.Theorem 1 Assume that Hypotheses (A1){(A3), (H1){(H3), (C), and (Q) are satis�ed.There are then positive numbers �0, �0, and C such that the following is true for any0 � � < �0 and j�j < �0.(i) Equation (2.4) has a hyperbolic equilibrium p�(�) 2 R(Q�) with p0(0) = p0 andjp�(�)� p0j� � C(j(id�Q�)p0j� + j�j):(ii) For every �, there exists a �� such that equation (2.4) has a non-degenerate homoclinicorbit h�(t) 2 Q�X� with h�(t)! p�(��) as jtj ! 1, andj��j+ supt2R jh�(t)� h(t)j� � C supt2R j(id�Q�)h(t)j�:(iii) Besides p�(�) and h�(t), there are no other equilibria or homoclinic solutions of (2.4)in the open set f(u; �) 2 X� � R; j�j+ inf t2R ju� h(t)j� < �0g.7



We denote the spectral projections associated with A+Duf(p0; 0) and A+Q�Duf(p�(�); �)in X� by P� and P�;�(�), respectively. In particular, P� and P�;�(�) project onto thestable eigenspaces corresponding to eigenvalues with negative real part of A + Duf(p0; 0)and A +Q�Duf(p�(�); �), respectively.2.3 The Truncated Boundary-Value ProblemHere, we investigate the numerical computation of the homoclinic orbits h� of the Galerkinapproximation. The approach most commonly used consists of truncating the in�niteinterval R to a �nite interval [T�; T+] for some T� < 0 < T+ and imposing boundaryconditions at the end points t = T� and t = T+. The truncated boundary-value problemis given by 0BBB@ _u �Au� Q�f(u; �)R�(u(T+); u(T�); �)JT;�(u; �) 1CCCA = 0 (2.5)for t 2 T = (T�; T+). Here, JT;� denotes a phase condition and R� encodes the boundaryconditions. They have to satisfy the following conditions.Hypothesis (T1)(i) JT;� : C0(T;X�) � R ! R is of class C2, and JT;�(h�; ��) ! 0 as jT�j, T+ ! 1.Furthermore, there is a constant d0 > 0 independent of T�, T+ and � such thatDuJT;�(h�; ��) _h� � d0 > 0 for all jT�j, T+ su�ciently large. Finally, DuJT;�(u; �)and D2uJT;�(u; �) are bounded in a ball in C0(T;X�) � R of �xed radius centered at(h�; ��) uniformly in T�, T+, and �.(ii) We have R� 2 C2(X��X��R; X�) such that DR� and D2R� are bounded in a smallball centered at (p�(��); p�(��); ��) in X� �X� � R uniformly in �. Furthermore,Du+ ;u�R�(p�(��); p�(��); ��)jR(P+;�(��))�R(P�;�(��))is invertible, and the inverse is bounded uniformly in �.Note that _h(�) and _h�(�) are contained in C0(T;X�). Therefore, the condition on J in(T1)(i) makes sense.Remark 2.1 The boundary conditions are often separated, that is, given byR�(u+; u�; �) = (R+;�(u+; �); R�;�(u�; �)) 2 R(P+;�(��))� R(P�;�(��)) = X�:8



If the operators DuR�;�(p�(��); ��)jR(P�;�(��)) are invertible, and the inverses are boundeduniformly in �, then the invertibility condition in Hypothesis (T1)(ii) is also satis�ed.We have the following theorem.Theorem 2 Assume that (A1){(A3), (H1){(H3), (C), (Q) and (T1) are met. There existpositive numbers �0, � and C such that for all su�ciently large intervals T the following istrue. For any � 2 [0; �0), the boundary-value problem (2.5) has a unique solution (�h�(t); ���)in the tube f(u; �) 2 C0([T�; T+]; X�)� R; j�j+ supt2[T�;T+] ju(t)� h(t)j� � �g;and j��� � ��j+ supt2[T�;T+] j�h�(t)� h�(t+ 
T;�)j� � CjR�(h�(T+); h�(T�); ��)j�for an appropriate small number 
T;�.Combining Theorems 1 and 2, and exploiting Hypothesis (T1), we obtain the followingcorollary.Corollary 1 Under the assumptions of Theorem 2, we have the estimatej���j+ supt2[T�;T+] j�h�(t)� h(t)j�j � C�jR�(h(T+); h(T�); 0)j�+ supt2R j(id�Q�)h(t)j��for the di�erence of the true homoclinic orbit h and the numerical approximation �h obtainedby solving the boundary-value problem on a �nite interval for the Galerkin approximationof (2.1).The error estimate can be made more explicit.Corollary 2 Under the assumptions of Theorem 2, we have the estimatej���j+ supt2[T�;T+] j�h�(t)� h(t)j� � C(e��sT+ + e�uT� + supt2R j(id�Q�)h(t)j�);where the constants �s and �u are chosen such that � =2 spec(A+Duf(p0; 0)) for any � 2 Cwith Re� 2 [��s; �u].We point out that the case Q� = id for all � is included in the analysis. It corresponds totruncating equation (2.1) directly without going to a �nite-dimensional approximation. Amore analytical consequence of Theorem 2 is the existence of periodic solutions with largeperiod near the homoclinic orbit h. 9



Corollary 3 Assume that (A1){(A3) and (H1){(H3) are met. There is then a constant�� > 0 such that (2.1) has a periodic orbit (u� ; ��) with minimal period � for any � > ��.Furthermore, j�� j+ supt2[� 12 �; 12 � ] ju�(t)� h(t)j� � C(e��s� + e�u�);where the constants �s and �u are as in Corollary 2.Proof. Consider the phase condition JT (u) := h'; u(0)i where ' 2 (X�)� is chosensuch that h'; _h(0)i = 1. The boundary condition is R(u+; u�; �) = u+ � u�. SinceR(P+) � R(P�) = X�, Hypothesis (T1) is satis�ed, and we can apply Theorem 2 withQ� = id for all �.This corollary has been proved for ordinary di�erential equations in [3] and [21]. The proofgiven in [21] also covers parabolic and functional-di�erential equations. Our contributionis the extension to elliptic equations.2.4 The Algorithm in PracticeIn practice, the Galerkin approximation is considered on the �nite-dimensional spaceR(Q�), that is, _q = Aq + Q�f(q; �); (q; �) 2 R(Q�)� R: (2.6)If X is a Hilbert space, the phase condition may be chosen according toJT;�(q; �) = Z T+T� h _h�(t); q(t)� h�(t)iX dt: (2.7)For the boundary conditions, we may take, for instance, the projection boundary conditionswhich are de�ned by R+;�(q(T+); �) = Q+;�(�)(q(T+)� p�(�)); (2.8)R�;�(q(T�); �) = Q�;�(�)(q(T�)� p�(�));where Q+;�(�) and Q+;�(�) are the unstable and stable spectral projections in R(Q�) ofthe operator (A + Q�Duf(p�(�); �))jR(Q�). We have the following result for the �nite-dimensional boundary-value problem on R(Q�) described above.Theorem 3 Assume that (A1){(A3), (H1){(H3) and (C) are met where X is a Hilbertspace. There exist positive numbers �0, �, and C such that for all su�ciently large intervals10



T the following is true. For any � 2 [0; �0), the boundary-value problem (2.6{2.8) on R(Q�)has a unique solution (�h�(t); ���) in the tubef(q; �) 2 C0([T�; T+]; R(Q�))� R; j�j+ supt2[T�;T+] jq(t)� h(t)j� � �g;and j���j+ supt2[T�;T+] j�h�(t)� h(t)j� � C(e�2�sT+ + e2�uT� + supt2R j(id�Q�)h(t)j�);for numbers �s and �u as in Corollary 2.We point out that super-convergence in the parameter occurs. Indeed, following the proofgiven in [29], we havej���j � C(e�(2�s+�u)T+ + e(2�u+�s)T� + supt2R j(id�Q�)h(t)j�):2.5 Reversible SystemsIn applications, elliptic equations are often time-reversible. Here, we account for this prop-erty, and adapt the algorithms described above to reversible systems. Consider equation(2.1) _u = Au+ f(u); u 2 X�: (2.9)Time-reversibility is encoded in the following hypothesis.Hypothesis (R) Suppose that S 2 L(X) is a bounded operator such that(i) S anti-commutes with A and f , that is, SA = �AS and f(Su) = �Sf(u) on D(A).(ii) S2 = id.(iii) S commutes with Q� for all �.We remark that S 2 L(X�) on account of (R)(i). Finally, we assume that the homoclinicsolution h(t) is symmetric and a certain transversality condition is satis�ed.Hypothesis (H4)(i) Sh(0) = h(0), that is, h(0) 2 Fix(S).(ii) Fix(S)�R(�s+(0; 0)) = X�. 11



Here, �s+(t; �) denotes the stable evolution of the variational equation (2.2) about h(t); seeTheorem 5 below. We then solve the boundary-value problem_u = Au+Q�f(u); (id�S)u(0) = 0; R+;�(u(T+)) = 0; (2.10)on the interval [0; T+].Hypothesis (T2) Suppose that X̂� are closed subspaces of X�. Assume that R+;� 2C2(X��R; X̂�) such that DR� and D2R� are bounded in a small ball centered at (p�(��); ��)in X� � R uniformly in �. Furthermore, DuR+;�(p�(��); ��)jR(P+;�(��)) is invertible, andthe inverse is bounded uniformly in �.Theorem 4 Assume that (A1){(A3), (H1){(H2), (H4), (C), (Q) and (R) are met. Sup-pose that R+;� satis�es (T2). The boundary-value problem (2.10) has then a unique solution�h� for all T+ su�ciently large and � small enough. Furthermore, �h�(0) 2 Fix(S) is sym-metric, and supt2[0;T+] j�h�(t)� h(t)j� � C(jR+;�(h(T+))j�+ supt2R j(id�Q�)h(t)j�):The statements of Theorem 1 and 3 are also true for (2.10) if adapted appropriately.Corollary 4 Assume that (A1){(A3), (H1){(H2), and (R)(i) and (ii) are met. There isthen a constant �� > 0 such that (2.9) has a periodic orbit u� with minimal period � forany � > ��. Furthermore, supt2[� 12 �; 12 � ] ju�(t)� h(t)j� � Ce��s� ;where the constant �s is as in Corollary 2.Proof. We apply Theorem 4 with R+(u) = 12(id�S)u and X̂ = R(id�S). ByDunford-Taylor calculus and (R)(i), we have SP+ = P�S. Moreover, due to (R)(ii),v 2 R(id�S) implies Sv = �v. Using these facts, it is then straightforward to showthat P+(id�S)jR(P+) = idR(P+) and (id�S)P+jR(id�S) = idR(id�S). Hence, Hypothesis(T2) is satis�ed. It follows as in [31] that the solution of this boundary-value problem isperiodic. Note that �s = �u due to reversibility.2.6 Computation of Heteroclinic OrbitsWe emphasize that the results presented thus far also apply to heteroclinic orbits, thatis, solutions connecting two di�erent equilibria p� as t ! �1. Here, we brie
y outline12



the necessary changes. Suppose that p� are hyperbolic equilibria of (2.1) which satisfyHypothesis (H1). Furthermore, assume that h(t) satis�es (H2) but with limt!�1 h(t) = p�.In particular, (H2) implies that the heteroclinic orbit h(t) is isolated. Next, we assumethat (A1){(A3) are met. As a consequence of (H2), (A3) and [26, Corollary 1], the adjointvariational equation (2.3) _v = �(A� +Duf(h(t); 0)�)vabout the heteroclinic orbit h(t) has only �nitely many, linearly independent boundedsolutions  j(t) for j = 1; :::; m on R. Hypothesis (H3) is then replaced by the followingassumption.Hypothesis (H5) Let � 2 Rm and assume that the m � m matrix M with entriesMij := R1�1h i(t); D�jf(h(t); 0)i dt is invertible.Note that Hypothesis (H5) is automatically met if m = 0, that is, if the heteroclinic orbitis transversely constructed.With Hypothesis (H3) replaced by (H5), Theorem 1 remains true. Let p�;�(�) denotethe perturbed equilibria for (2.4). We denote the spectral projections of A + Duf(p�; 0)and A+ Q�Duf(p�;�(�); �) onto the stable eigenspaces corresponding to eigenvalues withnegative real part by P� and P�;�(�), respectively. Similarly, P+ and P+;�(�) are thespectral projections of A +Duf(p+; 0) and A + Q�Duf(p+;�(�); �), respectively, onto theeigenspaces corresponding to eigenvalues with positive real part.Suppose that the boundary conditions are given byR�(u+; u�; �) = (R+;�(u+; �); R�;�(u�; �)) 2 R(P+;�(��))�R(P�;�(��)):We assume that DuR�;�(p�;�(��); ��)jR(P�;�(��)) is invertible, and the inverse is boundeduniformly in �. If Hypothesis (T1)(ii) is replaced by this assumption, the results in theprevious sections remain true.3 Exponential Dichotomies { an ExcursionHere, we summarize the results in [26] which are the key to the proofs of the theoremspresented in the last section.Assume that the operator A is as in Section 2, that is, A : D(A) � X ! X is a closedoperator such that its domain D(A) is dense in X . Furthermore, A satis�es Hypotheses(A1) and (A2). Moreover, let B 2 C0(R;L(X�; X)) be a continuous family of operators.13



Consider the di�erential equation _v = (A+ B(t)) v: (3.1)We are particularly interested in solutions v(t) with some prescribed exponential behaviorfor t 2 R+ and t 2 R�.De�nition (Exponential Dichotomy)Equation (3.1) has an exponential dichotomy in X� on the interval J � R if there existpositive constants C and �, and operators �s(t; �) and �u(�; t) in L(X�) de�ned for t � �with t; � 2 J such that the following is true.(i) For any v 2 X�, �s(t; �)v is a solution of (3.1) for t � � in J. Similarly, �u(t; �)vis a solution of (3.1) for t � � in J.(ii) For any v 2 X�, �s(t; �)v and �u(�; t)v are continuous in t � � in J.(iii) k�s(t; �)k�+ k�u(�; t)k� � Ce��(t��) for all t � � in J.(iv) �s(t; �)�s(�; s) = �s(t; s) for all t � � � s in J, and the analogous property for�u(�; t).Note that the operators P (t) = �s(t; t) are projections. We assume that B(t) is small forlarge jtj. The constant � is speci�ed in Theorem 5 below.Hypothesis (D1) There are numbers # > 0 and t� > 0 such that B 2 C0;#(R;L(X�; X))and kB(t)kL(X�;X) � � for all jtj � t�.Finally, we assume forward and backward uniqueness of solutions of equation (3.1) on theinterval R.Hypothesis (D2) The only bounded solution v(t) of (3.1) on the intervals R+ or R�with v(0) = 0 is the trivial solution v(t) = 0. Similarly, the only bounded solution w(t) ofthe adjoint equation _w = �(A+B(t))�w on R+ or R� with w(0) = 0 is w(t) = 0.We then have the following existence result for exponential dichotomies of (3.1).Theorem 5 ([26]) Suppose that Hypotheses (A1){(A2) and (D2) are satis�ed. There isthen a constant �0 > 0 such that (3.1) has an exponential dichotomy on R+ providedHypothesis (D1) is met with � = �0. 14



(i) The projections P (t) = �s(t; t) are H�older continuous in t 2 R+ with values in L(X�).(ii) The operator �s(t; �) has a bounded extension to X satisfying �s(t; �)�s(�; s) =�s(t; s) for all t � � � s � 0.(iii) �s(t; �) 2 L(X;X�) for t > � and k�s(t; �)kL(X;X�) � C(t� �)�� e��(t��).Analogous properties hold for �u(�; t) with t � � � 0.The same results is true with R+ replaced by R�. We denote the evolution operators by�s+(t; �) and �u+(�; t) for t � � � 0, and by �s�(�; t) and �u�(t; �) for t � � � 0. Finally, wecompare the evolution operators for two di�erent equations.Lemma 3.1 ([26]) Suppose B1(t) and B2(t) satisfy the assumptions of Theorem 5 onJ = R+. There exist positive numbers C and � such that the following is true. Ifsupt�0 kB1(t)�B2(t)kL(X�;X) < �;the projections Pj(t), j 2 f1; 2g, which correspond to the equations _v = (A+Bj(t))v satisfythe estimate supt�0 kP1(t)� P2(t)kL(X�) � C�:4 The Galerkin ApproximationIn this section, Theorem 1 is proved. Throughout, C denotes various di�erent constantsall independent of T� and T+. We will use the following version of Banach's �xed pointtheorem.Lemma 4.1 Suppose that Y and Ŷ are Banach spaces and G : Y ! Ŷ is a C1-function.Assume that there exists a linear, bounded and invertible operator L : Y ! Ŷ , an elementy0 2 Y , and numbers � > 0 and 0 < � < 1 such that(i) k id�L�1DG(y))k � � for all y 2 B�(y0),(ii) jL�1G(y0)j � (1� �)�.There exists then a unique point y� 2 B�(y0) with G(y�) = 0 andjy0 � y�j � (1� �)�1 jL�1G(y0)j; kDG(y)�1k � (1 + �) kL�1k;uniformly in y 2 B�(y0). 15



Here, B�(y) is the ball with center y and radius � in Y . We start with a useful consequenceof Hypothesis (Q).Lemma 4.2 Assume that (Q) is satis�ed and let K 2 L(X�; X) be a compact operator.Then k(id�Q�)KkL(X�;X) ! 0 as �! 0.Proof. We argue by contradiction. Suppose that there are elements vn 2 X� and �n > 0with jvnj� = 1 and �n ! 0 as n ! 1 such that j(id�Q�n)Kvnj0 � � > 0. After choosinga subsequence, we have Kvn ! w in X since K is compact. Hence,j(id�Q�n)Kvnj0 � j(id�Q�n)wj0 + j(id�Q�n)(Kvn � w)j0� j(id�Q�n)wj0 + CjKvn � wj0 ! 0;as n!1, due to (Q)(ii). This is a contradiction.Note that Duf(u; �) is compact for any (u; �) provided Hypothesis (C) is satis�ed.4.1 Persistence of the EquilibriumIn order to show that the equilibrium persists, consider(A+Duf(p0; 0))�1(A(p0 + u) + Q�f(p0 + u; �))= u+ (A+Duf(p0; 0))�1�Q�(f(p0 + u; �)� f(p0; 0)�Duf(p0; 0)u)+(id�Q�)(f(p0; 0) +Duf(p0; 0)u)�=: G�(u; �):It su�ces to seek zeroes of G�(u; �) near (p0; 0). The map G is smooth in (u; �) as a mapfrom X� � R to X� and satis�es G0(0; 0) = 0 as well as DuG0(0; 0) = id. Furthermore,using Ap0 + f(p0; 0) = 0,jG�(0; �)j� � Cj(A+Duf(p0; 0))�1(Q�(f(p0; �)� f(p0; 0))+ (id�Q�)f(p0; 0))j�� C(j�j+ j(A+Duf(p0; 0))�1A(id�Q�)p0j�)� C(j�j+ j(id�Q�)p0j�);and, due to (C) and Lemma 4.2,kDuG(u; �; �)� id k� � CkDuf(p0 + u; �)�Duf(p0; 0) + (id�Q�)Duf(p0; 0)k� < 12for all (u; �; �) in a ball in X� � R2 centered at the origin with su�ciently small radius�. We apply Lemma 4.1 for any (�; �) in B�(0) � R2 with L = id. Hence, there exists aunique zero p�(�) 2 B�(p0) � X� of G�(�; �), with p0(0) = p0 andjp�(�)� p0j� � C(j(id�Q�)p0j� + j�j):16



Furthermore, p�(�) is smooth in �. By construction, p�(�) are equilibria of (2.4). ByHypothesis (C), Theorem 5, and Lemma 4.2, the equation_v = (A+ Q�Duf(p�(�); �))vhas an exponential dichotomy on R with projections P+;�(�) and P�;�(�). This proves the�rst, and part of the third claim in Theorem 1.4.2 Persistence of the Homoclinic OrbitNext, we introduce a new variable v byu(t) = h(t) + v(t); (4.1)and write equation (2.4), that is _u = Au +Q�f(u; �), in the form_v = (A+Duf(h(t); 0))v+ F�(t; v; �) (4.2)= (A+Duf(h(t); 0))v+D�f(h(t); 0)�+ F̂�(t; v; �);withF̂�(t; v; �) := �(id�Q�)�Duf(h(t); 0)v+D�f(h(t); 0)�+ f(h(t); 0)�+Q��f(h(t) + v; �)� f(h(t); 0)�Duf(h(t); 0)v�D�f(h(t); 0)��:Due to Hypothesis (C) and Lemma 4.2, we have the estimatekD(u;�)F̂�(t; v; �)kL(X�;X) � C(jvj�+ j�j) + g(�); (4.3)for some function g(�) with g(�)! 0 as �! 0.On account of Theorem 5 and Hypotheses (A1){(A3), we know that equation (2.2)_v = (A+Duf(h(t); 0))vhas exponential dichotomies on R+ and R�. As in Theorem 5, we denote the solutionoperators of this equation by �s+(t; �) and �u+(�; t) for t � � � 0, and by �s�(�; t) and�u�(t; �) for t � � � 0.Solutions of the nonlinear equation (4.2) are bounded on R if, and only if, there exist(b+; b�) 2 R(�s+(0; 0))� R(�u�(0; 0)) such thatv+(t) = �s+(t; 0)b+ + Z t0 �s+(t; �)F�(�; v+(�); �) d� + Z t1 �u+(t; �)F�(�; v+(�); �) d�;v�(t) = �u�(t; 0)b� + Z t0 �u�(t; �)F�(�; v�(�); �) d� + Z t�1 �s�(t; �)F�(�; v�(�); �) d�;v+(0) = v�(0)0 = h'; v+(0)i: 17



Here, ' 2 (X�)� is chosen such that h'; _h(0)i = 1. The last equation takes care of thetranslational invariance of (2.4). In the �rst and second equation, we have t 2 R+ andt 2 R�, respectively. We remark that it su�ces to seek weak solutions of (4.2) since anyweak solution is actually a strong solution, see [26, Lemma 3.1]. LetG�(b+; b�; v+; v�; �) :=0BBBBB@ v+(t)� �s+(t; 0)b+ � R t0 �s+(t; �)F�(�; v+(�); �) d� � R t1 �u+(t; �)F�(�; v+(�); �) d�v�(t)� �u�(t; 0)b� � R t0 �u�(t; �)F�(�; v�(�); �) d� � R t�1 �s�(t; �)F�(�; v�(�); �) d�b+ � b� � R10 �u+(0; �)F�(�; v+(�); �) d� � R 0�1 �s�(0; �)F�(�; v�(�); �) d�h'; �s+(0; 0)b+� R10 �u+(0; �)F�(�; v+(�); �) d�i 1CCCCCA ;and consider G� : Y ! Ŷ for �xed � as a map de�ned on the spacesY := R(�s+(0; 0))�R(�u�(0; 0))� C0(R+; X�)� C0(R�; X�)� R;Ŷ := C0(R+; X�)� C0(R�; X�)�X� � R:Note that G� is well de�ned and smooth in (b+; b�; v+; v�; �). We exploit the splitting (4.2)of F� into the linear term D�f(h(t); 0)� and the quadratic term F̂�, see (4.3). Therefore,consider G�(b+; b�; v+; v�; �) = L(b+; b�; v+; v�; �)�0BBBBB@ R t0 �s+(t; �)F̂�(�; v+(�); �) d� + R t1 �u+(t; �)F̂�(�; v+(�); �) d�R t0 �u�(t; �)F̂�(�; v�(�); �) d� + R t�1 �s�(t; �)F̂�(�; v�(�); �) d�R10 �u+(0; �)F̂�(�; v+(�); �) d� + R 0�1 �s�(0; �)F̂�(�; v�(�); �) d�h'; R10 �u+(0; �)F̂�(�; v+(�); �) d�i 1CCCCCA ;where the linear part L : Y ! Ŷ is bounded and given byL(b+; b�; v+; v�; �) =0BBBBBB@ v+ � �s+(�; 0)b+� �� R0 �s+(�; �)D�f(h(�); 0) d� + R1 �u+(�; �)D�f(h(�); 0) d��v� � �u�(�; 0)b�� �� R0 �u�(�; �)D�f(h(�); 0) d� + R�1 �s�(�; �)D�f(h(�); 0) d��b+ � b� � �� R10 �u+(0; �)D�f(h(�); 0) d� + R 0�1 �s�(0; �)D�f(h(�); 0) d��h'; �s+(0; 0)b+� � R10 �u+(0; �)D�f(h(�); 0) d�i 1CCCCCCA :Note that the last two components of L do not depend on (v+; v�). The linear operator�0 : R(�s+(0; 0))�R(�u�(0; 0))! X�; �0(b+; b�) = b+ � b�;is a Fredholm operator with index zero. Its null space and range are given byN(�0) = spanf( _h(0); _h(0))g � R(�s+(0; 0))�R(�u�(0; 0));R(�0) = fv 2 X�; h (0); vi= 0g:18



On the other hand, h'; �s+(0; 0) _h(0)i = h'; _h(0)i = 1;and Z 1�1h (�); D�f(h(�); 0)i d�= D (0); Z 10 �u+(0; �)D�f(h(�); 0) d� + Z 0�1 �s�(0; �)D�f(h(�); 0) d�E:Hence, as a consequence of Hypothesis (H3), the operator L is continuously invertible.Due to the estimate (4.3), we can apply Lemma 4.1 for any small �xed � to the map G�with y0 = (0; 0; 0; 0). Hence, we obtain the existence and uniqueness statements in (ii) and(iii) of Theorem 1. It is straightforward to show that h�(t) is homoclinic to the hyperbolicequilibrium p�(��).The estimate given in (ii) follows from Lemma 4.1 provided we can prove thatjG�(0; 0; 0; 0)jŶ � C supt2R j(id�Q�)h(t)j�; (4.4)where G�(0; 0; 0; 0; 0) =0BBBBB@ R t0 �s+(t; �)(id�Q�)f(h(�); 0) d� + R t1 �u+(t; �)(id�Q�)f(h(�); 0) d�R t0 �u�(t; �)(id�Q�)f(h(�); 0) d� + R t�1 �s�(t; �)(id�Q�)f(h�); 0) d�R10 �u+(0; �)(id�Q�)f(h(�); 0) d� + R 0�1 �s�(0; �)(id�Q�)f(h(�); 0) d�h'; R10 �u+(0; �)(id�Q�)f(h(�); 0) d�i 1CCCCCA :In order to prove (4.4), it su�ces to show that��� Z t0 �s+(t; �)(id�Q�)f(h(�); 0) d����� � C sup�2R j(id�Q�)h(�)j� (4.5)for some constant C independently of t � 0, and similar estimates for the other integrals.We use the fact that h(t) satis�es _h = Ah+ f(h; 0) for t 2 R, that is,h 2 C1(R; X) \ C0(R; D(A)): (4.6)Therefore, using (Q)(i), we haveZ t0 �s+(t; �)(id�Q�)f(h(�); 0) d�= Z t0 �s+(t; �)(id�Q�)( dd� h(�)�Ah(�)) d�= Z t0 �� � dd� �s+(t; �)�(id�Q�)h(�)� �s+(t; �)A(id�Q�)h(�)�d�19



+�s+(t; t)(id�Q�)h(t)= Z t0 ��s+(t; �)(A+Duf(h(�); 0))(id�Q�)h(�)� �s+(t; �)A(id�Q�)h(�)�d�+�s+(t; t)(id�Q�)h(t)= Z t0 �s+(t; �)Duf(h(�); 0)(id�Q�)h(�) d� + �s+(t; t)(id�Q�)h(t):Note that integration by parts and taking the derivative dd� �s+(t; �) is allowed on accountof (4.6). It is now straightforward to obtain the aforementioned estimate (4.5). The otherestimates are obtained in an analogous fashion, and we omit the details. This proves theclaim (4.4).Finally, we show the homoclinic orbits h�(t) of (2.4) are non-degenerate.Lemma 4.3 The only bounded solution, up to constant multiples, of the variational equa-tion _v = (A+ Q�Duf(h�(t); ��))vabout h�(t) is given by _h�(t). In other words, the solutions h�(t) are non-degenerate.Proof. On account of Theorem 5, the variational equation_v = Av + Q�Duf(h�(t); ��)vhas an exponential dichotomy on R+ and R� with solution operators �s+;�(t; �) and�u+;�(�; t) for t � � � 0, and �s�;�(�; t) and �u�;�(t; �) for t � � � 0. On account of Hy-pothesis (C), and Lemmata 3.1 and 4.2, �s+;�(0; 0) and �u�;�(0; 0) are close to �s+(0; 0) and�u�(0; 0), respectively, in the L(X�)-norm. Therefore, _h�(t) is the only bounded solution,up to constant multiples, of equation (2.4).It is a consequence of the proof of Lemma 4.3 that _h�(�) 2 C0(R; X�). Indeed, _h�(0) 2R(�s+;�(0; 0)), and therefore _h�(0) 2 X�. Furthermore, _h�(t) = �s+;�(t; 0) _h�(0) for t > 0 iscontinuous in t as a function into X� by Theorem 5. Since the choice of t = 0 is arbitrary,we see that in fact _h�(�) 2 C0(R; X�).5 The Truncated Boundary-Value ProblemIn this section, we prove Theorem 2. Again, C denotes various di�erent constants inde-pendent of T� and T+. 20



5.1 The Nonlinear EquationWe exploit the transformation u(t) = h�(t) + v(t) and � = �� + �. The function v(t) thensatis�es the equation_v = (A+Duf(h(t); 0))v+ F�(t; v; �) (5.1)= (A+Duf(h(t); 0))v+D�f(h�(t); ��)� + F̂�(t; v; �);where F̂�(t; v; �) = Q��f(h�(t) + v; �� + �)� f(h�(t); ��)�Duf(h(t); 0)v��(id�Q�)Duf(h(t); 0)v�D�f(h�(t); ��)�:The derivative D(v;�)F̂�(t; v; �) is given byD(v;�)F̂�(t; v; �) =hQ�(Duf(h�(t) + v; �� + �)�Duf(h(t); 0))� (id�Q�)Duf(h(t); 0);Q�(D�f(h�(t) + v; �� + �)�D�f(h�(t); ��))� (id�Q�)D�f(h�(t); ��)i:Due to Theorem 1, Hypothesis (C), and Lemma 4.2, we obtain the estimatekD(v;�)F̂�(t; v; �)kL(X��R;X) � C(jvj�+ j�j) + g(�); (5.2)uniformly in � for (v; �) in a ball centered at zero of su�ciently small radius � in X� � R.Here, the function g(�)! 0 as �! 0. Leta = (a+; a�) 2 Xa := R(P+)�R(P�); (5.3)b = (b+; b�) 2 Xb := R(�s+(0; 0))� R(�u�(0; 0)):We de�ne the mapsI+;T;� : Xa �Xb � C0([0; T+]; X�)� R! C0([0; T+]; X�);I�;T;� : Xa �Xb � C0([T�; 0]; X�)� R! C0([T�; 0]; X�);by I+;T;�(a; b; v+; �)(t) = �u+(t; T+)a+ + �s+(t; 0)b+ (5.4)+ Z tT+ �u+(t; �)F�(�; v+(�); �) d� + Z t0 �s+(t; �)F�(�; v+(�); �) d�;and the analogous expression for I�;T;�(a; b; v�; �). Note that both maps are smooth. Anybounded solution of (5.1) satis�es the integral equation0 = v+(t)� I+;T;�(a; b; v+; �)(t); (5.5)0 = v�(t)� I�;T;�(a; b; v�; �)(t);21



together with the equation v+(0) = v�(0) for some (a; b). Here, t 2 [0; T+] in the �rst, andt 2 [T�; 0] in the second equation in (5.5). In addition, we have to solve the phase andboundary conditionsR�(h�(T+) + v+(T+); h�(T�) + v�(T�); �� + �) = 0; (5.6)JT;�(h� + V (v+; v�); �� + �) = 0;where the linear, bounded operatorV : C0([0; T+]; X�)� C0([T�; 0]; X�)! C0([T�; T+]; X�)is de�ned by V (v+; v�)(t) = 8<: v+(t) + v�(0)� v+(0) t > 0;v�(t) t � 0: (5.7)For v 2 X�, we expand the boundary conditionsR�(h�(T+) + v+; h�(T�) + v�; �� + �) = R�(h�(T+); h�(T�); ��) (5.8)+Du+ ;u�;�R�(h�(T+); h�(T�); ��)(v+; v�; �)+R̂�(h�(T+); h�(T�); v+; v�; �);with kD(v+;v�;�)R̂�(h�(T+); h�(T�); v+; v�; �)k � C(jv+j� + jv�j� + j�j); (5.9)for (v+; v�; �) in a ball with small radius centered at zero in X� �X� � R, independentlyof �. Similarly, for v 2 C0(T;X�), we haveJT;�(h� + v; �� + �) = JT;�(h�; ��) (5.10)+DvJT;�(h�; ��)v +D�JT;�(h�; ��)� + ĴT;�(h�; v; �);with kD(v;�)ĴT;�(h�; v; �)k � C(jvj�+ j�j); (5.11)for (v; �) in a ball with small radius centered at zero in C0(T;X�) � R, independently of�. We consider the nonlinear equationGT;� : Y ! Ŷ ; GT;�(a; b; v+; v�; �) = 0 (5.12)with Y = Xa �Xb � C0([0; T+]; X�)� C0([T�; 0]; X�)� RŶ = C0([0; T+]; X�)� C0([T�; 0]; X�)�X� �X� � R;22



de�ned by the right-hand side of (5.5), the continuity equation0 = I+;T;�(a; b; v+; �)(0)� I�;T;�(a; b; v�; �)(0)the �rst two equations in (5.6), and the equation0 = JT;�(h� + V (I+;T;�(a; b; v+; �); I�;T;�(a; b; v�; �)); �� + �):It is a consequence of the above discussion that G is well de�ned and smooth. Furthermore,due to the estimates (5.2), (5.9) and (5.11), we can solve equation (5.12) in a ball centered atthe origin with small radius � uniformly for any su�ciently small � provided the linearizedoperator at (a; b; v+; v�; �) = 0 is invertible uniformly in T and �. The arguments areanalogous to those presented in the last section, whence we omit them. Note that the errorestimate in Theorem 2 follows fromGT;�(0) = �0; 0; 0; R�(h�(T+); h�(T�); ��); JT;�(h�; ��)�and Lemma 4.1. Indeed, replacing h�(�) by h�(�+ 
T;�) for some small 
T;�, we can achievethat JT;�(h�; ��) = 0.5.2 The Linearized Boundary-Value ProblemIt remains to show that the operator LT;� = DGT;�(0) is invertible as a map from Y to Ŷ .Let Î+;T;�(a; b; �)(t) = �u+(t; T+)a+ + �s+(t; 0)b+ (5.13)+�� Z tT+ �u+(t; �)D�f(h�(�); ��) d� + Z t0 �s+(t; �)D�f(h�(�); ��) d��;Î�;T;�(a; b; �)(t) = �s�(t; T�)a� + �u�(t; 0)b� (5.14)+�� Z tT� �s�(t; �)D�f(h�(�); ��) d� + Z t0 �u�(t; �)D�f(h�(�); ��) d��;for t 2 [0; T+] and t 2 [T�; 0], respectively. The linear operators Î are bounded fromXa �Xb � R into C0([0; T+]; X�) and C0([T�; 0]; X�), respectively. We then haveLT;�(a; b; v+; v�; �) = (5.15)0BBBBBBBBB@ v+ � Î+;T;�(a; b; �)v� � Î�;T;�(a; b; �)Î+;T;�(a; b; �)(0)� Î�;T;�(a; b; �)(0)DR�(h�(T+); h�(T�); ��)�Î+;T;�(a; b; �)(T+); Î�;T;�(a; b; �)(T�); ��DvJT;�(h�; ��)V (Î+;T;�(a; b; �); Î�;T;�(a; b; �))+D�JT;�(h� + v; ��)� 1CCCCCCCCCA :23



We have to show that the equationLT;�(a; b; v+; v�; �) = (g+; g�; c; r; j) (5.16)has a unique solution (a; b; v+; v�; �) 2 Y for any (g+; g�; c; r; j) 2 Ŷ , andj(a; b; v+; v�; �)jY � Cj(g+; g�; c; r; j)jŶfor some positive constant C independent of � and T . Inspecting the de�nition (5.15) ofLT;�, it is clear that we can solve the �rst two components in (5.16) for (v+; v�) such that(v+; v�) = W1(a; b; �; g+; g�) with kW1k � C.Next, consider the boundary conditionr = DR�(h�(T+); h�(T�); ��)(w+; w�; �); (5.17)with w+ = �u+(T+; T+)a+ + �s+(T+; 0)b+ + � Z 0T+ �s+(T+; �)D�f(h�(�); ��) d�;w� = �s�(T�; T�)a� + �u�(T�; 0)b� + � Z 0T� �u�(T�; �)D�f(h�(�); ��) d�:The key is thatDu+;u�R�(h�(T+); h�(T�); ��)(�u+(T+; T+)jR(P+); �s�(T�; T�)jR(P�)): R(P+)�R(P�)! X�is invertible uniformly in � due to Hypothesis (T1)(ii). Indeed, the projections �u+(T+; T+)and P+ as well as �s�(T�; T�) and P� are close to each other for all jT�j, T+ su�cientlylarge and � small enough due to Hypothesis (C), and Lemmata 3.1 and 4.2.Therefore, we can solve (5.17) for a = (a+; a�) and obtain a = W2(b; �; r) with kW2k � Cindependently of T�, T+ and �. Actually, we obtain the better estimatejW2(b; �; r)j� � C(e��T+ jb+j� + e�T� jb�j� + j�j+ jrj�);since j�s+(T+; 0)b+j� � Ce��T+ jb+j�;and the analogous estimate for �u�(T�; 0) by Theorem 5.In the next step, we apply these estimates to the operator V (Î+;T;�(a; b; �); Î�;T;�(a; b; �))appearing in the phase condition; see also (5.7) for its de�nition. Using (5.13), (5.14) andthe estimates for a, we obtain the expansionV (Î+;T;�; Î�;T;�)(a; b; �)(t) = 8<: �s+(t; 0)b++ b� � b+ +W3(b; �; r)(t) t > 0;�u�(t; 0)b�+W3(b; �; r)(t) t � 0;24



with jW3(b; �; r)(t)j� � C(e��T+ jb+j� + e�T� jb�j� + j�j+ jrj�):According to the results in Section 4.2, we may write(b+; b�) = (b̂+; b̂�) + 
( _h(0); _h(0)); (b̂+; b̂�) 2 X̂�bwith X̂�b � spanf( _h(0); _h(0))g = X�b . We obtainV (Î+;T;�; Î�;T;�)(a; b; �)(t) = 
 _h(t) +W4(b; �; r)(t);with jW4(b; �; r)(t)j� � C(e��jT jj
j+ ĵb+j� + ĵb�j� + j�j+ jrj�);and jT j := min(jT�j; T+). The phase condition and continuity equation are then given byj = 
DvJT;�(h�; ��) _h+W5(b; �; r);c = �u+(0; T+)W2;+(b+; �; r+)� �s�(0; T�)W2;�(b�; �; r�) + b̂+ � b̂� (5.18)��� Z T+0 �u+(0; �)D�f(h�(�); ��) d� + Z 0T� �s�(0; �)D�f(h�(�); ��) d��;with jW5(b; �; r)j � C(e��T+ jb+j� + e�T� jb�j� + j�j+ jrj�):Note that we have the estimatesj�u+(0; T+)W2;+(b+; �; r+)� �s�(0; T�)W2;�(b�; �; r�)j�� C(e��T+ + e�T�)(jb+j� + jb�j� + j�j+ jrj�)due to Theorem 5. Moreover, Z T+T� h (t); D�f(h�(t); ��)i dtis bounded away from zero due to Hypothesis (H3), Theorem 1 and the fact that  (t)converges to zero exponentially. Therefore, by the same arguments as in Section 4.2 usingTheorem 1 and Hypothesis (T1)(i), we can solve (5.18) for (b̂; 
; �).5.3 Proof of Theorem 4The proof is a consequence of the proof of Theorem 2. In fact, we only need to considerfunctions v+ and variables a+ and b+. It is straightforward to see that b+ can be used tosolve the boundary condition (id�S)u(0) = 0 due to the transversality condition (R)(ii).We omit the details. 25



6 The Finite-Dimensional Boundary-Value ProblemIn this section, we prove Theorem 3. We embed the boundary-value problem on R(Q�)into a larger one de�ned on X�, and then apply Theorem 2. Any element u in X� can bewritten according to u = q + w; (q; w) 2 R(Q�)�N(Q�):Using this decomposition, we haveA+ Q�Duf(p�(�); �) = 0@ (A+ Q�Duf(p�(�); �))jR(Q�) Q�Duf(p�(�); �)jN(Q�)0 AjN(Q�) 1A :The spectral projections of A, A +Q�Duf(p�(�); �) and (A+ Q�Duf(p�(�); �))jR(Q�) aredenoted by P̂�, P�;�(�) and Q�;�(�), respectively; see Hypotheses (A1) and (H1). Onaccount of Hypothesis (Q), we then haveP�;�(�) = 0@ Q�;�(�) D�;�(�)0 (id�Q�)P̂� 1A ;for some bounded operators D�;�(�).The equation _u = Au+Q�f(u; �) is equivalent to_q = Aq + Q�f(q + w; �); _w = Aw: (6.1)We include the phase and boundary conditions~J((q; w); �) = Z T+T� h _h�(t); (q(t) + w(t)� h�(t)iX dt;~R+((q; w)(T+); �) = P+;�(��)P+;�(�)(q(T+) + w(T+)� p�(�)) (6.2)~R�((q; w)(T�); �) = P�;�(��)P�;�(�)(q(T�) + w(T�)� p�(�)):We �rst prove that (6.1{6.2) has a unique solution. Using Remark 2.1, it is straightforwardto show that (6.2) satis�es Hypothesis (T1). For instance, for � = ��,Du ~R+(p�(��); ��)���R(P�;�(��)) = P�;�(��)���R(P�;�(��))which is clearly invertible as an operator into R(P+;�(��)). Therefore, this operator re-mains invertible for � close to �� with uniform inverse. The same argument applies to thederivative of the second boundary condition. Hence, Theorem 2 applies, and (6.1{6.2) hasa unique solution.To �nish the argument, we observe that any solution (q; w) of (6.1{6.2) has necessarilyw = 0. Indeed, w has to satisfy_w = Aw; P̂+w(T+); P̂�w(T�) = 0:26



Since AjN(Q�) is hyperbolic, w = 0 is the only solution. With w = 0, it is easy to see that(6.1{6.2) and (2.6{2.8) coincide. Hence, (q; w) = (q; 0) satis�es (6.1{6.2) if, and only if, qis a solution of (2.6{2.8).Finally, we have jR+;�(h(T+); 0)j� � Cjh(T+); 0)j2� � Ce�2�sT+ ;and the analogous estimate for R+;�(h(T+); 0). This completes the proof of Theorem 3.7 Semilinear Elliptic EquationsHere, we show that elliptic equations on in�nite cylinders are included in the abstract set-upof the earlier sections. We refer to [26] for more details. Furthermore, we comment on thesatisfaction of the hypotheses of Theorems 1 and 2, and discuss particular discretizations.Let Y be a Hilbert space and L : D(L) � Y ! Y a densely de�ned, positive de�nite,self-adjoint operator with compact resolvent. In most application, we have Y = L2(
) forsome bounded domain 
 and L = �� on 
 together with Dirichlet boundary conditions,say, so that D(L) = H2(
) \ H10(
). We denote the fractional power spaces associatedwith L by Y �. In particular, Y 1 = D(L). Suppose thatg : Y 1+���2 � Y ���2 ! Yis a nonlinearity of class C2 for some � 2 [0; 1) and � > 0. Consider the abstract ellipticequation uxx � Lu = g(u; ux); x 2 R (7.1)for u 2 Y �. We reformulate (7.1) as the �rst-order equationddxv = Av +G(v) (7.2)with v = (u; ux) and G(v) = (0; g(v)). Here,A = 0@ 0 idL 0 1A : Y 1 � Y 12 ! Y 12 � Y:In particular, Hypothesis (A1) is met; in fact, the projections P̂� are given byP̂� = 12 0@ id �L� 12�L 12 id 1A : Y 12 � Y ! Y 12 � Y:The fractional power spaces are X� = Y 1+�2 � Y �2 . The mapping G : X� � X��� ! X isC2 since g is. It is also clear that A has compact resolvent whenever L has.27



Therefore, Hypotheses (A1), (A2) and (C) are met. We refer to [8, Satz 5] for conditionsguaranteeing that Hypothesis (A3) is met. Given a particular solitary-wave solution ofsuch an elliptic system, hyperbolicity of equilibria (H1) and transverse unfolding (H3) aregeneric properties, at least if we allow for nonlinearities of the form g(y; u; ux;ryu; �).In order to apply our results to concrete problems, we have to choose a discretization in thecross-section, corresponding to the projectors Q�, and boundary conditions at x = T� andx = T+. For elliptic equations (7.1), it is convenient to choose Q� with � 2 f1=k; k 2 Ngas the orthogonal Galerkin projections onto the �rst m eigenfunctions of L. Condition(Q) is then an immediate consequence of the completeness of the orthonormal system ofeigenfunctions.The choice of boundary conditions R turns out to be less evident in general, as the projectorsP+;� and P�;� might be hard to compute. We emphasize here that, in general, simpleDirichlet boundary conditions u(T�) = p or Neumann boundary conditions v(T�) = 0 willnot work. Even for systems of equations on the line with no cross-section, that is Y = R2k,the dimensions of stable and unstable subspaces at the equilibrium may not coincide:dimR(P+) 6= k. Then Dirichlet as well as Neumann boundary conditions yield ill-posedproblems. The only generic choice then seems to be given through periodic boundaryconditions | or the actual computation of P+. However, there are important cases whereDirichlet and Neumann conditions work. Examples are reversible systems or equations ofvariational type, which we now discuss in more detail.If g = g(u), then the system is reversible. Reversibility acts through S(u; v) = (u;�v).The condition (id�S)u(0) in (2.10) reduces to v = 0, in other words, Neumann boundaryconditions at x = 0. The hyperbolicity assumption (H1) is then equivalent to linear stabilityof the equilibrium u(x; y) = p(y) for the parabolic equation ut = uxx � Lu � g(u) on thecylinder. Due to the second-order structure, eigenfunctions of the linearization of (7.1)at the equilibrium are of the form (uk;�p�kuk) where �k and uk are eigenvalues andeigenfunctions, respectively, of L+Dg(p). By hyperbolicity, �k > 0. We claim that we canchoose Dirichlet or Neumann conditions at x = T+ as well. Indeed, the stable subspaceR(P�) is spanned by (uk;p�kuk) and the spaces f(u; v); u= 0g or f(u; v); v = 0g are closedcomplements of this subspace. We summarize this result in the following proposition.Proposition 1 Assume that (H1), (H2) and (H4) are met. Furthermore, suppose thatg = g(u). Dirichlet and Neumann boundary condition then satisfy (T2).These arguments can be slightly generalized to elliptic equations with variational structureuxx = Lu + cux +rF (u);28



where heteroclinic orbits connecting stable equilibria are of interest. Again stability is withrespect to the linearization of the associated parabolic problem in the in�nite cylinder.Though this system is not reversible, a calculation similar to the one given above showsthat Dirichlet or Neumann boundary conditions at x = T� and x = T+ satisfy Hypothesis(T1)(ii) on the boundary conditions.We remark that Corollaries 3 and 4 establish the existence of solutions of (7.1) which areperiodic in x with arbitrarily large period and have the same pro�le in the cross-section asthe solitary wave.8 Numerical SimulationsIn this section, we compare the theoretical predictions with numerical computations. Con-sider the elliptic equationuxx + uyy + cux = u(1 + 2p� u) + pyy � p(1 + p); (x; y) 2 R� (�1; 1); (8.1)for u 2 R with Neumann boundary conditionsuy(x;�1) = 0; x 2 R: (8.2)For the function p(y), we take the polynomial p(y) = (1+y)2(1�y)2 which clearly satis�espy(�1) = 0. Note that p(y) satis�es (8.1{8.2) for any c. Furthermore, we have the explicitsolitary wave h(x; y) = p(y) + 32 sech2 �12x�; (8.3)of (8.1) for c = 0. We write (8.1) as the �rst-order systemddx uv! =  v�uyy � cv + u(1 + 2p� u) + pyy � p(1 + p)!; (8.4)in x, where (u; v) 2 H1(�1; 1)\ L2(�1; 1).It turns out that Hypotheses (A1){(A3), (H1){(H3) and (C) are satis�ed with respect tothe parameter c; see Section 7 and [26, Section 6.3]. Alternatively, we may �x c = 0.Equation (8.4) is then reversible with S(u; v) = (u;�v), and Hypotheses (R)(i), (R)(ii)and (H4) are met.8.1 Projection Boundary ConditionsThe even eigenfunctions and corresponding eigenvalues of the linearization of (8.4) at (p; 0)are given by q�k(y) =  (1 + �2k2)� 12�1 ! cosk�y and ��k = �p1 + �2k2; (8.5)29



respectively, for k 2 N0. We consider the Galerkin projectionQn = nXk=�nhqk; �iH1�L2 ; (8.6)which clearly satis�es Hypothesis (Q).The Fourier series of the polynomial p(y) is given byp(y) = 1615 + 48�4 1Xk=1 (�1)k+1k4 cosk�y;and j(id�Qn)pjC0 � n�4(an+ b) (8.7)for some positive numbers a and b.We then solve the systemddx uv! = Qn v�uyy � cv + u(1 + 2p� u) + pyy � p(1 + p)!;0 = Z T�T DQn(hx; hxx)(x); (u; v)(x)� Qn(hx; hxx)(x)EL2�L2 dx; (8.8)0 = Q+;n(c)�(u; v)(T )� (pn(c); 0)�;0 = Q�;n(c)�(u; v)(�T )� (pn(c); 0)�;
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2 4 6 8 10 12 14 16 18 20 nFigure 1: This plot contains the scaled error n4�(T; n) versus the number n of Galerkin modes forthe solution of (8.8) for �xed length T = 15:0 of the truncation interval. In this scaling, the erroris a linear function of n, see (8.9). 30
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Figure 2: Here, the scaled error ln�(T; n) versus the length T of the interval (�T; T ) for thesolution of (8.8) is shown. For small T , the scaled error is then linear in T with slope �1:8 whichis in agreement with the prediction of �2 in Theorem 3. For larger values of T , the error dueto the Galerkin truncation becomes dominant. As expected, the remaining error is smaller for alarger number of modes. Also, since the error curves for di�erent values of n are not shifted againsteach other, the picture con�rms that the constant C appearing in (8.9) is independent of n. Thecase n = 1 corresponds to setting p(y) = 0 which demonstrates the error induced purely by thetruncation of the interval.on (�T; T ) with (u; v) 2 R(Qn); see Section 2.4. Hypothesis (T1) is met, whence Theorem 3is applicable. Therefore, the di�erence �(T; n) of the true solution h(x; y) given in (8.3)and the solution �hn(x; y) of (8.8) can be estimated by�(T; n) = supfj�hn(x; y)� h(x; y)j; (x; y) 2 (�T; T )� (�1; 1)g (8.9)� C�e�2T + supfj(id�Qn)(0; p)(x; y)j; (x; y) 2 (�T; T )� (�1; 1)g�� C(e�2T + n�4(an+ b));using the expression for the eigenvalues given in (8.5).The boundary-value problem (8.8) is now solved using Auto97, see [9], for various choicesof T and n. The results of the numerical simulations are plotted in Figures 1 and 2. Theycon�rm the theoretical error estimate (8.9).Note that the residual (id�Qn)(pyy � p(1 + p)) on the right-hand side of (8.8) is actuallyof the order 1n . The error, however, is induced by the approximation of the true solutionusing Galerkin modes which is of the order 1n3 .31



8.2 Neumann Boundary ConditionsNext, we consider the approximationuxx + uyy = u(1 + 2p� u) + pyy � p(1 + p); (x; y) 2 (0; T )� (�1; 1);uy(x;�1) = 0; x 2 (0; T ); (8.10)ux(0; y) = ux(T; y) = 0; y 2 (�1; 1):Hypothesis (T2) is met and Theorem 4 applies with Q� � id. Hence, the di�erence �(T )of the solution h(x; y) given in (8.3) and the solution �h(x; y) of (8.10) can be estimated by�(T ) = supfj�h(x; y)� h(x; y)j; (x; y) 2 (�T; T )� (�1; 1)g � Ce�T (8.11)using the expression for the eigenvalues given in (8.5).We used second-order centered �nite di�erences on a staggered grid with Nx horizontal andNy vertical mesh points in order to solve (8.10). For the resulting equation on the grid, weemployed a conjugated-gradient solver (without preconditioning) together with Newton'smethod. The di�erence of the associated solution �hN and the true solution h is denotedby �(T;N) where N = (Nx; Ny). The results of the numerical simulations are shown inFigure 3. Again, the theoretical predictions of Theorem 4 are in good agreement with thecomputations.For comparison, we also computed solutions ofuxx + uyy = u(1 + 2p� u) + pyy � p(1 + p); (x; y) 2 (0; T )� (�1; 1);uy(x;�1) = 0; x 2 (0; T ); (8.12)ux(0; y) = 0; y 2 (�1; 1);ux(T; y) + u(T; y)� p(y) = 0; y 2 (�1; 1):These are the projection boundary conditions. The error is therefore expected to behavelike e�2T by Theorem 4; see Figure 4.9 An Application to the von K�arm�an{Donnell EquationsAs mentioned in the introduction, we consider the post buckling of an in�nitely long cylin-drical shell under axial compression as modeled by the von K�arm�an{Donnell equations.In [22, 23] and [24] solitary-waves were computed and it was shown that these solutionsprovide a good approximation to the localized buckling pattern observed in experiments.Here, we indicate how the proofs of Sections 4 and 5 may be adapted to this case and show32
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Figure 3: The scaled error ln�(T;N ) versus the length T of the interval (�T; T ) for the solutionof (8.10) is shown. Here, N = (Nx; Ny) is the number of horizontal and vertical grid points. Forsmall T , the scaled error is linear in T with slopes of �0:86, �0:99 and �1:01. The slope predictedin Theorem 4 is �1. If T is large enough, the error due to the approximation with �nite di�erencesbecomes dominant; again, the remaining error is smaller for a larger number of grid points.
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Figure 4: Here, the error for the solution of (8.12) is plotted. For small T , the scaled error is linearin T with slope �1:86; Theorem 4 predicts a slope of �2.33



numerically that, for a �xed spatial truncation, the error in the truncation on the lengthof the cylinder scales in accordance with Theorem 4.9.1 The von K�arm�an{Donnell EquationsThe classical formulation for a thin cylindrical shell of radius r and thickness t is given bythe von K�arm�an{Donnell equations:�2r4w + �wxx � ��xx = wxx�yy + wyy�xx � 2wxy�xy (9.1)r4�+ �wxx = (wxy)2 � wxxwyywhere r4 is the two-dimensional bi-harmonic operator, x 2 R is the axial and y 2 [0; 2�r)is the circumferential coordinate, w is the outward radial displacement measured froman unbuckled state, and � is a stress function [20]. Parameters appearing in (9.1) arethe curvature, � = 1=r; the geometric constant, �2 = t2=12(1� �2); where � is Poisson'sratio, and loading parameter �. Localized buckle patterns are observed and these are wellapproximated by a solitary wave in x, see [22, 24] and Figure 5.We discretize the von K�arm�an{Donnell equations (9.1) in such a way as to exploit thenatural symmetries in the problem. Experimentally a well de�ned number, s, of periodicwaves is observed circumferentially [20, 33] in the buckled deformation, corresponding toan invariance under rotation of 2�=s. Hence we writew(x; y) = 1Xm=0 am(x) cos(ms�y); �(x; y) = 1Xm=0 bm(x) cos(ms�y); s 2 N:Substituting into the von K�arm�an{Donnell equations and taking the L2 inner product withcos(ms�y), we obtain a system of nonlinear ODEs for the Fourier modes am and bm form = 0; : : : ;1. The Galerkin approximation is formed by taking m = 0; : : : ;M � 1 forsome �nite M giving a system of 8M �rst-order ordinary di�erential equations. We mayformally write the resulting set of ODEs asaivm = F1;m(am; aim; aiim; aiiim; bm; bim; biim; biiim); bivm = F2;m(am; aim; aiim; aiiim; bm; bim; biim; biiim);where superscripts denote di�erentiation with respect to x.Note that s = 1 corresponds to the standard Galerkin approximation. Convergence asM isincreased was examined numerically in [23] and it was found thatM = 6 gives a reasonablecompromise between accuracy and computation e�ciency.Experimentally, the observed buckle patterns tend to be cross-symmetric about a sectionx = T=2 that isw(x; y) = w(T � x; y + �r=s) & �(x; y) = �(T � x; y + �r=s): (9.2)34


